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Abstract. In this paper, we present a satisfiability preserving transfor-
mation of the fuzzy Description Logic ALC . into the classical Descrip-
tion Logic ALCH. We can use the already existing DL systems to do the
reasoning of ALCx, by applying the result of this paper. This work is
inspired by Straccia, who has transformed the fuzzy Description Logic
FALCH into the classical Description Logic ALCH.

1 Introduction

The Semantic Web is a vision for the future of the Web in which informa-
tion is given explicit meaning, making it easier for machines to automatically
process and integrate information available on the Web. While as a basic com-
ponent of the Semantic Web, an ontology is a collection of information and is
a document or file that formally defines the relations among terms. OWL! is
a Web Ontology Language and is intended to provide a language that can be
used to describe the classes and relations between them that are inherent in
Web documents and applications. The OWL language provides three increas-
ingly expressive sublanguages: OWL Lite, OWL DL, OWL Full. OWL DL is so
named due to its correspondence with description logics. OWL DL was designed
to support the existing Description Logic business segment and has desirable
computational properties for reasoning systems. According to the corresponding
relation between axioms of OWL ontology and terms of Description Logic, we
can represent the knowledge base contained in the ontology in syntax of DLs.
Description Logics (DLs) [1] have been studied and applied successfully in a
lot of fields. The concepts in classical DLs are usually interpreted as crisp sets,
i.e., an individual either belongs to the set or not. In the real world, the answers to
some questions are often not only yes or no, rather we may say that an individual
is an instance of a concept only to some certain degree. We often say linguistic
terms such as “Very”, “More or Less” etc. to distinguish, e.g. between a young
person and a very young person. In 1970s, the theory of approximate reasoning
based on the notions of linguistic variable and fuzzy logic was introduced and
developed by Zadeh [19-21]. Adverbs as “Very”, “More or Less” and “Possibly”

! Please visit http://www.w3.org/TR/owl-guide/ for more details.



are called hedges in fuzzy DLs. Some approaches to handling uncertainty and
vagueness in DL for the Semantic Web are described in [10].

A well known feature of DLs is the emphasis on reasoning as a central ser-
vice. Some reasoning procedures for fuzzy DLs have been proposed in [16]. A
transformation of fALCH into ALCH has been presented in [17]. This approach,
however, only works for DLs where modifier concepts are not allowed.

In this paper we consider the fuzzy linguistic description logic ALCx, [7]
which is an instance of the description logic framework £ — ALC with the cer-
tainty lattice characterized by a hedge algebra and allows the modification by
hedges. Because the certainty lattice is characterized by a HA, the modifica-
tion by hedges becomes more natural than that in ALCxy [8] and ALCx ¢ [14]
which extend fuzzy ALC by allowing the modification by hedges of HAs. We will
present a satisfiability preserving transformation of ALCx, into ALCH which
makes the reuse of the technical results of classical Dls for ALC £, feasible.

The remaining part of this paper is organized in the following way. First we
state some preliminaries on ALCH, hedge algebra and ALC z,. Then we present
the transformation of ALC z, into ALCH. Finally we discuss the main result of
the paper and identify some possibilities for further work.

2 Preliminaries

ALCH

We consider the language ALCH (Attributive Language with Complement and
role Hierarchy). In abstract notation, we use the letters A and B for concept
names, the letter R for role names, and the letters C' and D for concept terms.

Definition 1. Let Np and N¢ be disjoint sets of role names and concept names.
Let A € N¢ and R € Ng. Concept terms in ALCH are formed according to the
following syntax rule:

A|T|L|CnD|CuD|-C|VR.C|3R.C
The semantics of concept terms are defined formally by interpretations.

Definition 2. An interpretation Z is a pair (A%, 1), where AT is a nonempty
set (interpretation domain) and -% is an interpretation function which assigns to
each concept name A a set AT C AT and to each role name R a binary relation
RT C AT x AT, The interpretation of complex concept terms is extended by the
following inductive definitions:

TI :AI
17 =90
(cnD)yf =ctnD?
(CuD)f =ctuD?
(ﬂC)Z — AZ \ CI
(VR.C)T ={d € AT |Vd'.(d,d') ¢ RT ord e CT}
(3R.C)* ={d € AT | 3d'.(d,d') € R and d' € C*}



A concept term C' is satisfiable iff there exists an interpretation Z such that
CT # (), denoted by Z |= C. Two concept terms C and D are equivalent (denoted
by C = D) iff CT = D? for all interpretation Z.

We have seen how we can form complex descriptions of concepts to describe
classes of objects. Now, we introduce terminological axzioms, which make state-
ments about how concept terms and roles are related to each other respectively.

In the most general case, terminological axiom have the form C' C D or R C
S, where C, D are concept terms, R, .S are role names. This kind of terminological
axioms are also called inclusions. A set of axioms of the form R T S is called
role hierarchy. An interpretation Z satisfies an inclusion C T D (R C S) iff
CcT c DT (RT C S7%),denoted by Z=CLC D (IT}=RLCS).

A terminology, i.e., TBoz, is a finite set of terminological axioms. An inter-
pretation Z satisfies (is a model of) a terminology 7 iff 7 satisfies each element
in 7, denoted by Z = 7.

Assertions define how individuals relate with each other and how individuals
relate with concept terms. Let N; be a set of individual names which is disjoint
to Ng and N¢. An assertion « is an expression of the form a : C or (a,b) : R,
where a,b € N7, R € Nr and C' € N¢. A finite set of assertions is called A Boz.
An interpretation Z satisfies a concept assertion a : C iff aZ € CT, denoted by
T |= a : C. T satisfies a role assertion (a,b) : R iff (a,b%) € R%, denoted by
7 = (a,b) : R. An interpretation Z satisfies (is a model of) an ABox A iff 7
satisfies each assertion in A, denoted by 7 = A.

A knowledge base is of the form (7, A) where 7 is a TBox and A is an ABox.
An interpretation Z satisfies (is a model of, denoted by Z | K) a knowledge base
K =(T,A) iff T satisfies both T and .A. We say that a knowledge base K entails
an assertion «, denoted K = « iff each model of K satisfies . Furthermore, let
7T be a TBox and let C, D be two concept terms. We say that D subsumes C
with respect to 7 (denoted by C' C¢ D) iff for each model of 7, Z = C* C DZ.

The problem of determining whether K |= « is called entailment problem; the
problem of determining whether C' T+ D is called subsumption problem; and the
problem of determining whether /C is satisfiable is called satisfiability problem.
Entailment problem and subsumption problem can be reduced to satisfiability
problem.

Linear symmetric Hedge Algebra

In this section, we introduce linear symmetric Hedge Algebras (HAs). For general
HAs, please refer to [12,11,13].

Let us consider a linguistic variable TRUTH with the domain dom(TRUTH ) =
{True, False, VeryTrue, VeryFalse, More True, MoreFalse, PossiblyTrue, . . .}. This
domain is an infinite partially ordered set, with a natural ordering a < b mean-
ing that b describes a larger degree of truth if we consider T'rue > False. This
set is generated from the basic elements (generators) G = { True, False} by us-
ing hedges, i.e., unary operations from a finite set H = { Very, Possibly, More}.
The dom(TRUTH) which is a set of linguistic values can be represented as



X ={0c| ce G,0 € H*} where H* is the Kleene star of H, From the alge-
braic point of view, the truth domain can be described as an abstract algebra
AX = (X,G,H,>).

To define relations between hedges, we introduce some notations first. We
define that H(z) = {ox | 0 € H*} for all x € X. Let I be the identity hedge,
i.e.,, Vr € X. Iz = z. The identity I is the least element. Each element of H is
an ordering operation, i.e., Vh € H, Vx € X, either hx > x or hx < x.

Definition 3. [12] Let h,k € H be two hedges, for all x € X we define:

— h,k are converse if hx < x iff kx > x;

— h,k are compatible if hx < x iff kx < x;

— h modifies terms stronger or equal than k, denoted by h > k if hx < kx < x
or hr > kx > x;

—h>kifh>k and h # k;

— h is positive wrt k if hkx < kx < x or hkx > kx > x;

— h is negative wrt k if ka < hkx < x or kx > hkx > x.

ALC g, only considers symmetric HAs, i.e., there are exactly two generators
as in the example G = { True, False}. Let G = {c*, ¢~} where ¢t > ¢™. ¢t and
¢~ are called positive and negative generators respectively. Because there are
only two generators, the relations presented in Definition 3 divides the set H
into two subsets H" ={h € H | h¢t > ¢t} and H- ={h € H | h¢' < '}, ie,
every operation in H7T is converse w.r.t. any operation in H~ and vice-versa,
and the operations in the same subset are compatible with each other.

Definition 4. [7] An abstract algebra AX = (X,G, H,>), where H # (,G =
{ct,c7} and X = {oc | ¢ € G,0 € H*} is called a linear symmetric hedge
algebra if it satisfies the properties (Al)-(A5).

(A1) Every hedge in HT is a converse operation of all operations in H~.

(A2) Each hedge operation is either positive or negative w.r.t. the others, in-
cluding itself.

(A3) The sets HT U{I} and H~ U {I} are linearly ordered with the I.

(A4) If h # k and ha < kx then h'hx < k'kx, for all hk, b/, k' € H and z € X.

(A5) If u ¢ H(v) and u < v (u > v) then u < hv (u > hv), for any hedge h
and u,v € X.

Let AX = (X,G, H,>) be a linear symmetric hedge algebra and ¢ € G. We
define that, e = ct ifc=c  and ¢ =c~ if c=c¢". Let # € X and = = oc, where
o € H*. The contradictory element to x is y = oc written y = —x.

[12] gave us the following proposition to compare elements in X.

Proposition 5 Let AX = (X, G, H,>) be a linear symmetric HA, x = h,, - - - hiu
and y = kpy, -+ - kiu are two elements of X where uw € X. Then there exists an
index j < min{n,m} + 1 such that h; = k; for all i < j, and

(i) =z <y iff hjx; < kjx;, where xj = hj_1---hiu;



(i) x=yiff n=m=j and hjx; = kjx;.

In order to define the semantics of the hedge modification, we only consider
monotonic HAs defined in [7] which also extended the order relation on HtU{I}
and H~ U{I} to one on H U{I}. We will use “hedge algebra” instead of “linear
symmetric hedge algebra” in the rest of this paper.

Inverse mapping of hedges

Fuzzy description logics represent the assessment “It is true that Tom is very
old” by
(VeryOld)* (Tom)* = True. (1)

In a fuzzy linguistic logic [19-21], the assessment “It is true that Tom is very
old” and the assessment “It is very true that Tom is old” are equivalent, which
means

(01d)* (Tom)* = VeryTrue, (2)

and (1) has the same meaning. This signifies that the modifier can be moved
from concept term to truth value and vice versa. For any h € H and for any
o € H*, the rules of moving hedges [11] are as follows,

RT1: (hC)E(d) = oc — (C)%(d) = che
RT2: (C)E(d) = ochc — (hC)*(d) = oc.

where C is a concept term and d € AZ.

Definition 6. [7] Consider a monotonic HA AX = (X,{ct,c"},H,>) and a
h € H. A mapping h~ : X — X is called an inverse mapping of h iff it satisfies
the following two properties,

1. h=(ohe) = oec.
2. o1¢1 > 09C0 & h*(olcl) > hi(O—QCQ).

where ¢,c1,c0 € G, h € H and 01,00 € H*.

ALC 7,

ALC £, is a Description Logic in which the truth domain of interpretations is
represented by a hedge algebra. The syntax of ALC z is similar to that of ALCH
except that ALC £, allows concept modifiers and does not include role hierarchy.

Definition 7. Let H be a set of hedges. Let A be a concept name and R a role,
complex concept terms denoted by C, D in ALCx, are formed according to the
following syntax rule:

A|T|L|C N D|CUD|-C|sC|VR.C|3AR.C
where 6 € H*.



In [13], HAs are extended by adding two artificial hedges inf and sup defined
as inf(z) = infimum(H (z)), sup(z) = supremum(H (z)). If H = @, H(c") and
H(c™) are infinite, according to [13] inf(ct) = sup(c™). Let W = inf (True) =
sup (False) and let sup(True) and inf(False) be the greatest and the least ele-
ments of X respectively.

The semantics is based on the notion of interpretations.

Definition 8. Let AX be a monotonic HA such that AX = (X, {True, False}, H, >
). A fuzzy interpretation (f-interpretation) Z for ALCx. is a pair (A%, 1), where
A7 is a nonempty set and T is an interpretation function mapping:

— individuals to elements in AT;
— a concept C into a function CT : AT — X;
— a role R into a function RT : AT x AT — X.

For all d € AT the interpretation function satisfies the following equations

TZ(d) = sup(True),

()
(=C)(d) = =C*(d),
(CND)*(d) = min(C%(d), D (d)),
(C'UD)*(d) = max(CZ(d), D¥(d)),
(6C)%(d) =6~ (C*(d)),
(VR.C)%(d) = inf ez {max(—R%(d, d'), CT(d))},
(3R.C)*(d) = supge oz {min(RT(d, d'), CT(d))},

where —x is the contradictory element of x, and 6~ is the inverse of the hedge
chain 0.

Definition 9. A fuzzy assertion (fassertion) is an expression of the form {a
oc) where « is of the form a : C or (a,b): R, < € {>,>,<,<} and oc € X.

Formally, an f-interpretation Z satisfies a fuzzy assertion (a : C > oc) (re-
spectively {(a,b) : R > oc)) iff CZ(al) > oc (respectively RZ(a%,b%) > oc).
An f-interpretation Z satisfies a fuzzy assertion {(a : C < oc) (respectively
{(a,b) : R < oc)) iff CT(a?) < oc (respectively RZ(a%,bT) < oc). Similarly
for > and <.

Concerning terminological axioms, an ALCr, terminology axiom is of the
form C' C D, where C and D are ALCz, concept terms. From a semantics
point of view, a f-interpretation Z satisfies a fuzzy concept inclusion C C D iff
Vd € AT.C%(d) < D*(d). Two concept terms C, D are said to be equivalent,
denoted by C = D iff T = D7 for all f-interpretations Z. Some properties
concerning the hedge modification are showed in the following proposition [7].

Proposition 10 We have the following semantical equivalence:
o(CMD)=46(C)Nnd(D)

5(C'UD) = 5§(C)Ls(D)
(51((520) = ((5162)0



A fuzzy knowledge base (fKB) is (T, A), where T and A are finite sets of termi-
nological axioms and fassertions respectively.

Example 11 A f{KB { = ({ACVR.-B},{a: YR.C > VeryTrue}).

An f-interpretation Z satisfies (is a model of) a TBox 7 iff T satisfies each
element in 7. 7 satisfies (is a model of) an ABox A iff 7 satisfies each element
in A. 7 satisfies (is a model of) a fKB fK = (T, A) iff Z satisfies both A and 7.
Given a fKB fK and a fassertion fa. We say that fK entails fa (denoted K = fa)
iff each model of {KC satisfies fa.

3 Transforming ALCx, into ALCH

We will introduce a satisfiability preserving transformation from ALCz, into
ALCH in this section. First, we illustrate the basic idea which is similar to the
one in [17] which is the first efforts in this direction. There is also other more
efficient representation in [3].

Consider a monotonic HA AX = (X, { True, False}, H,>). In the following,
we assume that ¢ € {¢*,c™} where ¢t = True,c” = False, 0 € H*, oc €
X and 1 € {>,>,<,<}. Assume we have an ALCx, knowledge base, fK =
(T, A), where A = {faq, fag, fas, fau} and faq = (a : A > True), faz = (b :
A > VeryTrue), fas = {a : B < False), and fagy = (b : B < VeryFalse)
where A, B are concept names. We introduce four new concept names: A> prye,
A> VeryTrue, B<False and B< veryFalse- The concept name A 7 represents the
set of individuals that are instances of A with degree greater and equal to True.
The concept name B< veryFaise Tepresents the set of individuals that are instances
of B with degree less and equal to VeryFalse. We can map the fuzzy assertions
into classical assertions:

(a:A> True) — (a: AsTrye),
(b:A> VeryTrue) — (b: A> VeryTrue)s
(a: B < False) — (a: B< paise),
(b: B < VeryFalse) — (b : B< veryFaise)-

We also need to consider the relationships among the newly introduced concept
names. Because VeryTrue > True, it is easy to get if a truth value oc > VeryTrue
then oc > True. Thus, we obtain a new inclusion A> veryTrue & A> Trye. Sim-
ilarly for B, because VeryFulse < Fulse, a truth value oc < VeryFalse implies
oc < False too. Then the inclusion B<veryraise & B<False is obtained.

Now, let us proceed with the mappings. Let f = (7,A) be an ALCx.
knowledge base. We are going to transform X into an ALCH knowledge base
K. We assume oc € [inf(Fualse),sup(True)] and < € {>, >, <, <}.

The transformation of ABox

In order to transform A, we define two mappings 6 and p to map all the assertions
in A into classical assertions. Notice that we do not allow assertions of the forms



(a,b) : R < oc and (a,b) : R < oc although they are legal forms of assertions
in ALCx, because they related to ‘negated role’ which is not part of classical
ALCH.

We use the mapping p to encode the basic idea we present at the beginning
of this section. The mapping p combines the ALC z, concept term, the > and
the fuzzy value oc together into one ALCH concept term.

Let A be a concept name, C, D be concept terms and R be a role name. For
roles we have simply

p(R,<10¢) = Ryqoe.

For concept terms, the mapping p is inductively defined on the structures of
concept terms:

For T,
Tifxoc=>oc
Tifxoe=> oc,0¢ <sup(ch)
_J Lifxioc=>sup(ch)
p(T,pa0c) = T ifaoc = < sup(ch)
lifxioe=<oc,o0c <sup(ch)
Lifaoe= <o
For 1,
Tifxoc = > inf(c7)
Lifxtoc=>oc,0c¢ > inf(c™)
p(L, 5 o) = Lifxioe=>oc

Tifxoec=<oc
Tifoc= < oc,0c¢>inf(c7)
Lifioc= <inf(c™).

For concept name A,
p(A, 1 0¢) = Appe-
For concept conjunction C' M D,

p(C,xaoc) M p(D, < oc) if € {>, >}

pCND,paoc) = {p(C,M oc) Up(D,<oc) if < € {<, <}.

For concept disjunction C'U D,

p(Ci<ioc) U p(D,>a0c¢) ifa € {>,>}

pCUD,pa0c) = {p(C,M oc) Np(D,xoc) if < € {<, <}

For concept negation —C,
p(=C,xio¢) = p(C,— <1 00),
where = > =<,->=<,- <=2, < = >,

For modifier concept 6C,



p(0C, 1 oc) = p(C,1x1 gdc).
For existential quantification IR.C,

Ip(R,x0¢).p(Cyxaoc) if it € {>, >}

P(ER.Cpa0c) = {Vp(R, —oc).p(Cixoc) if € {<, <},

where — < = > and — < = >.
For universal quantification VR.C,

Vp(R,+ > 0¢).p(C, < oc) if > € {>, >}

p(VR.C,<0c) = { Jp(R,~ x10¢).p(C,x0c) if 1 € {<, <},

where + > = > and + > = >.
0 maps fuzzy assertions into classical assertions using p. Let fa be a fassertion
in A, we define it as follows.

- a:p(Cyxoc) if fa = (a: Cxoc)
0fer) = { (a,b) : Z(R,M oc) if fa = {(a,b) : R < oc).

Example 12 Let fo = (a: Very(AN B) < LessFalse), then

0(fa) =a: p(Very(AN B), < LessFalse)
=a:p((ANB),< LessVeryFalse)
=a: p(A, < LessVeryFalse) U p(B, < LessVeryFalse)

=a: ASLessVeryFalse U BgLessVeryFalse-
We extend 6 to a set of fassertions A point-wise,
0(A) ={0(fa) | fa € A}.
According to the rules above, we can see that |#(.A)| is linearly bounded by |.A|.

4 The transformation of TBox

The new TBox is a union of two terminologies. One is the newly introduced TBox
(denoted by 7 (NX) which is the terminology relating to the newly introduced
concept names and role names. The other one is k(fIC, 7)) which is reduced by a
mapping k from the TBox of an ALC . knowledge base.

The newly introduced TBox

Many new concept names and new role names are introduced when we transform
an ABox. We need a set of terminological axioms to define the relationships
among those new names.

We need to collect all the linguist terms oc that might be the subscript of a
concept name or a role name. It means that not only the set of linguistic terms
that appears in the original ABox but also the set of new linguist terms which



are produced by applying the p for modifier concepts should be included. Let A
be a concept name, R be a role name.

XK ={oc|{a=oc) € A} U {odc| p(0C, = ac) = p(C, =<1 aéc)}.

such that 6C occurs in fK.
We define a sorted set of linguistic terms,

N = {inf (False), W,sup (True)} U XU {o¢|oc e X*} = {n1,...,nym}

where n; < n;4q for 1 <4 <|N|—1and ny = inf (False),n|ysx| = sup (True).
Let 7(NX) be the set of terminological axioms relating to the newly intro-
duced concept names and role names.

Definition 13. Let A™® and RX be the sets of concept names and role names
occurring in §KC respectively. For each A € A™, for each R € R, for each
1 <i<|N'™E| —1 and for each 2 < j < |NK|, T(N®) contains

AZni+1 EA>n1 ) A>ni EAznl ’
A<nj EASTI]' s ASW EA<ni+1;
Aan r A<nj EJ— ) TEAan U A<nj ’
A>ni I Agnl El B 77214>nZ u Agnw
Rzni+1 ER>nZ ’ R>ni ERzm .

where n € NIk,

ni+1 > n; because N fK is a sorted set. Then if an individual is an instance
of a concept name with degree > n;;; then the degree is also > n;. The first
terminological axiom shows that if an individual is an instance of A>,,,, then
it is an instance of As,, as well. Similarly, if an individual is an instance of
a concept name with degree < n; then the degree is also < n;4;. The third
terminological axiom shows that if an individual is an instance of A<, then it
is also an instance of A, ,,. A>y, M A<y, E L because there is no individual
such that it is an instance of a concept name with degree > n; and with degree
< n; at the same time.

T (N'®) contains 8| A |(INTX| — 1) plus 2/R|(INTF| — 1) terminological
axioms.

The mapping

x maps the fuzzy TBox into the classical TBox.

Definition 14. Let C, D be two concept terms and C C D € T. For alln € N™*

&(fK,C C D) = UneNT’C,me{z,>}{p(CaN n) C p(D,>=1n)}
UnGN“C,NE{S,<}{p(D7[><] n) E p(Ca > n)}

(3)

We extend k to a terminology T point-wise. For all T € T

KK, T) = Urerc(fK, 7).



The satisfiability preserving theorem

Now we can define the reduction of fK into an ALCH knowledge base, denoted
K(K),

K(K) = (T(NT®) U (5K, T), 0(A)).-

The transformation can be done in polynomial time. The soundness and com-
pleteness of the algorithm is guaranteed by the following satisfiability preserving
theorem.

Theorem 15 Let fK be an ALCr, knowledge base. Then fKC is satisfiable iff
the ALCH knowledge base K(§KC) is satisfiable.

Proof. Please refer to my thesis [18] which can be download from my homepage.?

5 Discussion

In this paper, we have presented a satisfiability preserving transformation of
ALC 7, into ALCH which is with general TBox and role hierarchy. Since all
other reasoning tasks such as entailment problem and subsumption problem
can be reduced to satisfiability problem, this result allows for algorithms and
complexity results that were found for ALCH to be applied to ALC 7.

As for the complexity of the transformation, we know the fact that |6(.A)| is
linearly bounded by |A|, |7 (N®)| = 8| AF|(INTX| — 1) + 2|RIF|(JNTX| — 1) and
x(fKC, T) contains at most 4|7 || N*|. Therefore, the resulted classical knowledge
base (at most polynomial size) can be constructed in polynomial time.

There exist some reasoners for fuzzy DLs, e.g. FiRE [15], GURDL [5], De-
Lorean [2], GERDS [6], YADLR [9] and fuzzyDL [4]. Among them, fuzzyDL
allows modifiers defined in terms of linear hedges and triangular functions and
DeLorean supports triangularly-modified concept. So if we can transform variety
of fuzzy DLs into classical DLs then we can use the already existing DL systems
to do the reasoning of fuzzy DLs.
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