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Abstract—This paper describes a Semantic Web (SW) model for 

gene lists and the metadata required for their practical 

interpretation. Our provenance information captures the context 

of experiments as well as the processing and analysis parameters 

involved in deriving the gene lists from DNA microarray 

experiments. We demonstrate a range of practical neuroscience 

queries which draw on the proposed model.  Our provenance 

representation includes the origins of the gene list and basic 

information about the data set itself (e.g. last modification date 

and original data source), in order to facilitate the federation of 

gene lists with other types of Semantic Web-formatted data and 

include the integration of a broader molecular context through 

additional omics data. 

Keywords-data integration, query federation, semantic web 

I.  INTRODUCTION 

In the genomics/post-genomics era, massive amounts of 

data generated by high throughput experiments, including 

those using microarray technologies, have presented both 

promises and challenges to clinical, and translational research. 

One goal of microarray experiments is to discover, out of tens 

of thousands of genes, a small subset of genes (usually on the 

order of hundreds) whose expression pattern is indicative of 

some biological response to a given experimental condition.  

Many computational/statistical approaches have been 

developed to detect such biologically significant gene lists. 

According to [1], the workflow of a microarray experiment is 

divided into the following steps: i) experimental design that 

includes the type of biological questions the experiment is 

designed to address, how the experiment is implemented (e.g., 

experiment and control), sample preparation, microarray 

platform selection,  hybridization process, and scanning; ii) 

data extraction, which includes image quantification, 

filtering, and normalization; and iii) data analysis and 

modeling, which include approaches such as clustering, t-

tests, enrichment analysis and so on.  

The gene lists produced in step iii are usually reported as 

part of the experimental results published in scientific papers, 

and the steps involved in obtaining the gene lists are described 

in the methods section. Sometimes, gene lists are made 

electronically available (e.g., spreadsheets) through journal 

web sites. However, to the best of our knowledge, there is no 

standard format for uniformly representing and broadly 

sharing such gene lists in a focused scientific context.  

We believe it would be useful to the community if such 

gene lists were commonly represented in a standard SW 

vocabulary and accessible to SW applications. This approach 

makes it possible for researchers to work with the gene list 

without requiring a post hoc significance analysis to re-derive 

the list. If experimental factors are included with gene lists, 

researchers can account for context without requiring labor-

intensive manual research into the experimental factors for 



each microarray study. A standard representation can be used 

both for gene lists reported in individual papers (note that 

these published gene lists are not yet stored in most microarray 

databases) and those computed from datasets collected from 

multiple microarray experiments across different microarray 

databases (e.g., GEO profiles [2] and Gene Expression Atlas 

[3]).  

Integrated analysis (meta-analysis) requires raw and 

processed datasets from independent microarray experiments 

to be selected, compared, combined, and correlated using a 

variety of computational/statistical methods. This is, of course, 

much easier with machine-readable provenance and 

experimental context. To this end, MIAME [4] was proposed 

by the Microarray Gene Expression Data (MGED 

(http://www.mged.org)) community (now called “Functional 

Genomics Data Society” or FGED) to describe the Minimum 

Information About a Microarray Experiment (MIAME) that is 

needed to enable the interpretation of the results of the 

experiment unambiguously and potentially to reproduce the 

experiment. MIAME represents a set of guidelines for 

microarray databases and data management software. The 

MAGE data model and MAGE-ML (a standard XML format 

for serializing the MAGE model) [5] have been developed 

based on the MIAME data content specifications. In addition, 

MAGE-TAB [6] was proposed as a (more user-friendly) 

alternative to MAGE-ML.  

Along with the development of these standards, a 

significant number of microarray databases ranging from 

individual labs (e.g., Nomad at deRisi lab (http://ucsf-

nomad.sourceforge.net/)), institutions (e.g., SMD 7], YMD 

[8], and RAD [9]) to the scientific community (e.g., GEO [2] 

and ArrayExpress [10]) have been created, making large 

collections of microarray datasets accessible to the public. 

There are also microarray databases that serve the needs of 

specific biomedical domains (e.g., the NIH Neuroscience 

Microarray Consortium (http://np2.ctrl.ucla.edu/np2/ 

home.do)). Major journal publishers have promoted sharing of 

microarray data by requiring authors to submit their data to 

public microarray repositories. Some journal publishers make 

supplemental data available on their web sites.  

While many microarray databases are MIAME-compliant, 

several challenges still remain for researchers wishing to 

locate datasets relevant to their interest:  

   

• There is no central repository for all microarray datasets, 

and experiment/dataset are stored on multiple databases.  

• Users must learn to use different search interfaces and 

analytic facilities at each database.  

• Many databases lack experimental context, annotation, 

and provenance.  

• There is a lack of use of standard vocabularies in many 

microarray databases.  

• The lists of differentially expressed genes discussed by 

most articles associated with a microarray study are not 

disclosed in any standard format, nor are they 

programmatically accessible.   

 

The Semantic Web [11] has been actively explored in the 

context of biomedicine. For example, the W3C Semantic Web 

Health Care and Life Sciences Interest Group (HCLS IG) 

(http://www.w3.org/2001/sw/hcls/) represents a major 

community effort involving both academia and industry.  The 

HCLS IG and allied efforts provide a growing corpus of 

biomedical datasets expressed in the Resource Description 

Framework (RDF) and web ontology language (OWL). Wang et 

al [12] has described how the transition from the eXtended 

Markup Language (XML) to RDF could potentially enhance 

semantic representation and integration of omic data. In 

addition to data, biomedical ontologies are made available to 

the community through organizations such as NCBO 

(http://www.bioontology.org/) and OBO Foundry 

(http://www.obofoundry.org/).  

   

In this paper we explore using SW to represent microarray 

experimental data and provenance information about the context 

under which the data were generated, including the goal of the 

experiment, experimental factors (such as the disease or the cell 

region), and the statistical analysis process which leads to the 

experiment results. We explore the role of provenance 

information in helping biologists understand microarray 

experiments in the context of other experiments as well as other 

existing biomedical knowledge. To facilitate a quality-aware 

federation of microarray experiment results, we also provide 

provenance information about the gene lists data published 

using SW standards. As a pilot study, we take a bottom-up 

approach focusing on the type of provenance information 

required to meet our motivation use cases and creating a 

representation model with the minimum set of terms to meet 

these use cases. Although these terms are currently defined in 

our own namespaces, they can largely be mapped to existing 

provenance vocabularies, which are generically defined and 

evolving, to achieve maximum interoperability, in the next 

stage of our pilot study. 

II. MOTIVATION 

One motivation of microarray experiments is to identify 

genes that are differentially expressed in biological samples 

under different conditions (e.g., disease vs. control). The 

samples may come from tissues extracted from different 

organs or parts of the same organ (e.g., different brain 

regions). In this case, we may be able to discover differentially 

expressed genes in each organ/organ part and how disease 

may affect each organ/organ part at the gene expression level. 

A common outcome of experiments is a list of candidate genes 

which may serve as diagnostic or therapeutic markers. These 

gene lists, abundant in biomedical literature, are provided in 

heterogeneous formats (e.g., Excel spreadsheets and printed 

tables embedded in papers) that hinder the reuse of the results. 

In order to reuse such gene lists in additional pathway or 

molecular analysis, it is important that they are represented in 

a standardized, distributable, and machine-readable format that 

is amenable to semantic queries.  

After obtaining a representative list of differentially 

expressed genes, scientists may need to study these 

experiment results in a broader molecular context with 



additional data. In the case of neurological disease studies 

such as Alzheimer's Disease (AD), researchers may want to 

combine gene expression data from multiple AD microarray 

studies. For example, one characterization of AD is the 

formation of intracellular neurofibrillary tangles that affect 

neurons in brain regions involved in the memory function. It is 

important to have meta-data such as the cell type(s), cell 

histopathology, and brain region(s) for comparing/integrating 

the results across different AD microarray experiments. It is 

important also to consider the (raw) data source and the types 

of analysis performed on the data to arrive at meaningful 

interpretations.  Finally, gene expression data may be 

combined with other types of data including genomic 

functions, pathways, and associated diseases to broaden the 

spectrum of integrative data analysis.  

In our pilot study, we selected three microarray 

experiments from different journals ([13-15]) to explore how 

to represent gene list experiment results in a structured format 

and what types of metadata can better enable the computer to 

search for genes that may play a molecular role in the 

pathogenesis of AD. All the gene lists from the selected 

publications were derived from human brain samples that were 

prepared for AD studies. We wanted to be able to answer a 

variety of user questions regarding semantically related 

experiments and their experimental results.  For example:  

• Q0: What microarray experiments analyze samples taken 

from the Entorhinal cortex region of Alzheimer's patients? 

• Q1: Was the same data normalization algorithm or 

statistical software package used in both studies that 

analyze gene expression in the entorhinal cortex region of 

AD patients?  

• Q2: What genes are overexpressed in the Entorhinal 

cortex region in the context of Alzheimer's and what is 

their expression fold change and associated p-value?  

• Q3: Are there any genes that are expressed differently in 

two different brain regions (such as in Hippocampus and 

Entorhinal cortex)?  

The MIAME standard outlines the minimum set of 

information that is needed for describing microarray 

experiments in order to facilitate the reproduction of these 

experiments and a uniform interpretation of experiment 

results. Experiments recording and publishing MIAME-

compliant experimental protocol should contain sufficient 

information to answer questions like Q0 and Q1. However, 

because MIAME does not specify a format, and MAGE-ML 

and MAGE-TAB do not specify a standard representation for 

experiment results (such as the set of genes showing particular 

expression patterns), there is no simple mechanism to find 

semantically related experimental results based on the patterns 

of differentially expressed genes.  

In order to answer questions Q2 and Q3, it is necessary to 

model both experimental information (ex: Entorhinal cortex) 

and statistical data (e.g. the p-values associated with gene 

expression values). 

Additionally, we want to be able to extend the knowledge 

about genes linked to AD such that scientists can access and 

extend their understandings about their gene expression data 

analysis results to answer questions like the following:  

• Q4: What other diseases may be associated with the same 

genes found to be linked to AD?   

• Q5: What drugs are known that affect the same 

overexpressed gene products and what are their target 

diseases? 

• Q6: Select all the genes determined to be differentially 

expressed in the Entorhinal cortex in experiments performed 

by AD investigators at the Translational Genomics Research 

Institute 

For these types of questions, the microarray experiment 

results need to be federated (Q4, Q5) or combined (Q6) with 

other datasets describing the data itself. We show how the 

structured representation of microarray experiment data and 

associated provenance metadata will enable us to query across 

different aspects of domain knowledge about these experiment 

results using several other datasets in the HCLS KB. We also 

show how we can provide additional provenance information 

about different datasets to support some quality-aware 

federation queries over distributed data sources.  

III. METHODS 

To address questions Q0-Q3 we need both a precise 

representation of the gene lists reported in the three selected 

publications and a representation of the provenance of these 

gene lists, such as the methods and procedures involved in 

their generation. As mentioned in Section I, several standards 

exist for describing microarray experiment protocols, 

however, none is comprehensive enough to fully capture the 

complex process of reporting the results of a microarray 

experiment. To answer questions Q4-Q5 we need to query 

across the exemplar datasets, using provenance information of 

different levels of granularity, from the basic information 

about the context of each experiment to details about the 

analysis processes generating the gene expression results. 

Although a number of provenance vocabularies, such as the 

open provenance model (OPM, http://openprovenance.org/) 

and Provenir (http://wiki.knoesis.org/index.php/ 

Provenir_Ontology) are available, we choose a bottom-up 

approach in this pilot study. On the one hand, at the time of 

the writing, little was known about how to choose between 

these existing vocabularies to best suit our purpose; on the 

other hand, our pilot study aims to focus on capturing the 

minimum information to answer our case study questions. 

This approach has the added advantage of shielding our model 

from having to keep pace with rapidly evolving ontologies 

while still enabling mapping to upper level ontologies in the 

future. For these reasons, our data model includes the 

minimum set of terms necessary to describe the three 

examples selected, and is made available under our own local 

namespace:  
 

@prefix biordf:http://purl.org/net/biordfmicroarray/ns# 
 

Compared with provenance vocabularies, many domain 

specific ontologies are much more established and stable, such 

as NIF (http://www.neuinfo.org/), disease ontology (DO, 

http://do-wiki.nubic.northwestern.edu/index.php/Main_Page), 

or the voiD vocabulary [16]. Therefore, we reuse terms from 



these ontologies that are already widely used to annotate 

(biological) datasets in our data model in order to enable 

maximum interoperability with other approaches. 

A. The Data Model 

Our data model captures the minimum information 

necessary to describe the gene lists and the microarray 

experiment context in which they were generated. To answer 

each of the individual case study questions, different aspects 

of each dataset had to be considered. For example, to answer 

questions like Q0 and Q3 a good overview of each microarray 

experiment is necessary, including the samples used, the 

disease of interest, microarray platform, etc. For questions like 

Q1 and Q2, however, a different set of assertions concerned 

specifically with comparing gene expression quantification 

methods in different settings is required. Finally, the ability to 

answer questions like Q4 and Q5 involve the more complex 

component of performing simultaneous queries on more than 

one data source. As such, information describing the metadata 

associated with each data source is also necessary. To 

accommodate these different data types in our model, we have 

defined four provenance levels, with each level entailing 

different subsets of information:  

Institutional level: Includes assertions about the laboratory 

where the experiments were performed and the reference 

where the results were published to help determine the 

trustworthiness of the data. This information is useful to 

constrain the list of significant genes to only those that are 

published in peer-reviewed articles and/or were performed at 

certain institutions that have the track record of generating 

high quality microarray data published in respected journals.   

Experiment protocol level: Includes assertions about the 

brain regions from which the samples were gathered and the 

histology of the cells. Such information has been partially 

mapped to MGED, DO and NIF terms.   

Data analysis and significance level: Includes assertions 

about the statistical analysis methodology for selecting the 

relevant genes. Terms defined for this level are also provided 

as a separate statistic module (http://purl.org/net/ 

biordfmicroarray/stat#) to describe software tools and 

statistical terms.   
Dataset description level: Includes assertions about when the 
dataset is published, based on which version of a source 
dataset, and who published the dataset. Some existing 
vocabularies for describing RDF datasets on the Web were 
reused to enhance their trustworthiness such as the Vocabulary 
of Interlinked Dataset (voiD) [16] that provide basic 
information about who published the data as well as a summary 
of the content of the dataset, such as the number of genes 
described by the dataset or the SPARQL endpoint through 
which the dataset can be accessed. The Provenance Vocabulary 
[17] was also used to provide a richer set of provenance 
information, such as when the dataset is published, using which 
tool, or by accessing which data server.  

B. Formulation of SPARQL queries 

The queries described here are formulated at our demo site 

(http://purl.org/net/biordfmicroarray/demo), where they can be 

directly executed or copied and performed locally using 

software such as SWObjects (https://sourceforge.net/ 

projects/swobjects/files/). The demo site also includes a 

diagram explaining the four provenance levels and the types of 

data entailed in each level. 

To answer Q0, experiments performed in samples collected 

from patients with Alzheimer’s disease in a specific area of the 

brain, the Entorhinal cortex, must be selected from the RDF 

representation. The data necessary to answer to this question is 

completely entailed in the experimental provenance level and 

can be formulated in terms of the entities used to represent 

each step of the workflow involved in collecting a Sample. 

Making use of data from the statistical analysis provenance 

level, the same query Q0 can be amended to filter the list of 

experiments retrieved based on the statistical normalization 

software thus enabling an answer to Q1. To answer questions 

Q2 and Q3 data pertaining to the experiment provenance level 

must also be combined with information about the gene lists, 

such as the expression level for each gene. A common 

requirement to measure statistical significance of differentially 

expressed genes is the p-value that is associated with gene 

expression fold change. In Q2, this information is used to trim 

the list of over-expressed genes by indicating that fold change 

> 0 but only in cases where the p-value is < 0.001.  

One of the most significant advantages of representing gene 

lists in RDF is helping scientists enrich it with data from 

linked datasets such that questions like Q4 and Q5 may be 

answered. The dataset description provenance level enables 

the discovery of useful datasets for specific purposes, such as, 

e.g. using the HCLS Kb to discover diseases that may be 

associated with specific genes. Q4, detailed below, achieves 

that goal by first retrieving the same list of genes as in Q2 and, 

secondly, by selecting the most recently updated SPARQL 

service which includes assertions about both genes and 

diseases. The final section queries this service to retrieve the 

correlated diseases. 
 

SELECT DISTINCT  ?diseaseName ?geneLabel ?geneName WHERE {  

#Retrieve a list of overexpressed genes in the entorhinal cortex of AD 
patients  

{  

    ?experimentSet dct:isPartOf ?microarray_experiment ;  

                             biordf:has_input_value ?sampleList ;  

                             biordf:differentially_expressed_gene ?gene ;  

                             biordf:has_ouput_value ?foldChange .  

    ?sampleList  biordf:derives_from_region ?brainRegion ;  

                        biordf:patients_have_disease ?alzheimers .  

    ?gene  rdfs:label ?geneLabel ;  

                biordf:name   ?geneName .  

    ?foldChange rdf:value ?foldChangeValue ;  

                         stat:p_value ?pval .  

    #Apply filters to constrain the amount of results  

        FILTER (xsd:float(?foldChangeValue) > 0)  

        FILTER (xsd:float(?pval) < 0.001 )  

        FILTER (?brainRegion = neurolex:Entorhinal_cortex )     

        FILTER (?alzheimers = doid:DOID_10652 )  

}  

#Find most recently updated SPARQL endpoint that contains information 
about genes and diseases.  

{  



        ?source rdf:type void:Dataset ;  

        void:sparqlEndpoint ?srvc ;  

        dct:issued ?issued  ;  

        dct:subject diseasome:diseases ;  

        dct:subject diseasome:genes .  

OPTIONAL {  

        ?source1 rdf:type void:Dataset ;  

        void:sparqlEndpoint ?srvc2 ;  

        dct:issued ?issued2 ;  

        dct:subject diseasome:diseases ;   

        dct:subject diseasome:genes .   

        FILTER (?issued2 > ?issued)   

}  

FILTER (!BOUND(?srvc2))  

}  

#Get associated diseases from most recently updated Diseasome server.  

    SERVICE ?srvc2 {  

        ?diseasomeGene rdfs:label ?geneLabel .  

        ?disease diseasome:associatedGene ?diseasomeGene.  

        ?disease rdfs:label ?diseaseName .  

}  

}  

Finally, to answer Q6 data from the institutional 
provenance level we must limit the list of retrieved 
experiments to those that were performed at a specific 
institution. The queries presented here are executable through 
our demo at http://purl.org/net/biordfmicroarray/demo. Their 
time to execution ranges between 100 and 200 ms for local 
queries (Q1-Q3, Q6) and a few seconds (2-5s) for federated 
queries (Q4-Q5) executed using SWObjects. 

C. Availability 

The RDF representation was generated using JavaScript 

and the data was loaded into a public SPARQL endpoint 

(http://purl.org/net/biordfmicroarray/sparql). We elaborate and 

further expand the provenance queries in this paper at our 

demo site http://purl.org/net/biordfmicroarray/demo. A figure 

associating each of the four provenance levels with the data 

that they are concerned with is also made available at the 

demo site. The complete RDF/turtle representation can be 

downloaded from http://biordfmicroarray.googlecode.com/ 

files/all3_genelists_provenance.ttl. The JavaScript code to 

convert Excel spreadsheets into RDF is available at 

http://code.google.com/p/biordfmicroarray/ . 
 

IV. DISCUSSION 

A data model to explicitly make the content and context of 

gene lists (e.g., differentially expressed genes) available in 

RDF format was developed. In the process, four types of 

provenance were identified that were found necessary to 

characterize, discover, reproduce, compare and integrate gene 

lists with other data. Expressing provenance in RDF enables 

describing the data itself (i.e. its origin, version and URL 

location) in the same language as the elements represented 

therein. The power of this uniform access to data and metadata 

should not be underestimated. In practice, this means that 

SPARQL queries can express constraints both about the 

origins of the data and contents (or attributes) of the data as 

demonstrated by query Q4. In the case of Linked Open Data, 

the set of best practices for exposing data as RDF through a 

SPARQL endpoint, researchers often need to distinguish 

between multiple RDF renderings (i.e. representations) of the 

same data set or different versions of it. Different endpoints 

can be discovered by issuing queries that target the data 

sources themselves: When was the last RDF rendering created 

and by whom (or which project)?  Which 

ontologies/vocabularies were used? The same standardized 

SW mechanisms of reasoning and pattern matching can be 

applied to select a specific data source as the ones used to 

discover related facts across the data sources.  

The provenance data model developed for reporting 

microarray experiment results while capturing different types 

of provenance information was motivated by our user-defined 

queries. We have therefore applied a bottom-up approach that 

focused on describing the data first before mapping it to 

widely used ontologies. Although several provenance 

ontologies are available, some of them are upper level 

ontologies, such as Provenir, therefore lacking the specific 

terms required for describing how gene lists were derived. 

Other ontologies, such as the Provenance Vocabulary for 

Linked Data and proof markup language, were created for 

specific application domains, such as explaining reasoning 

results. Our bottom-up approach enabled us to identify and 

define the minimum set of provenance terms to answer a set of 

queries from different perspectives and shield the data model 

from depending on external vocabularies which are often 

subject to changes. For increased interoperability, mapping 

terms from our model to terms from a community provenance 

model, such as the OPM or others is straightforward. For 

example, our property biordf:has_input_value can be made a 

sub-property of the inverse of OPM property used, and 

biordf:derives_from_region can become a sub-property of 

OPM property wasDerivedFrom. 

Further down the pipeline of microarray studies, 

bioinformaticians will often need to combine knowledge about 

the genes derived from their microarray experiments in order 

to achieve a deeper understanding at a systems biology level. 

Although the number of genes that has to be taken into 

consideration while studying Alzheimer’s has been 

significantly reduced by many gene expression studies, a good 

number of genes (ranging from tens to hundreds) are yet to be 

processed. One approach becoming increasingly popular is the 

use of scientific workflow workbenches (such as Taverna and 

Kepler) to perform large scale data analysis. Many such 

workbenches [19-20] also record the workflow provenance 

information about, for example, what genes from which 

organism were processed and how the proteins encoded by the 

genes were discovered by querying various genomic 

databases. Combining this workflow provenance information 

and the set of microarray experiment-related provenance 

information by mapping both to a common community 

provenance model, such as OPM, the trustworthiness and 

reproducibility of experiment results would be increased 

throughout the whole experiment life cycle. McCusker et al. 

[21] has taken a first step towards by providing a tentative 

translation from MGED-TAB to the OPM.  



While we endorse the use of SW technologies as the 

standard machine-readable format, we acknowledge that most 

biologists are not familiar with SW and prefer to use formats 

such as Excel spreadsheets to work with gene list results. To 

this end, it would be useful to use a standardized user-friendly 

format (e.g., MAGE-TAB) for encoding gene lists and their 

context that could be easily converted into the SW format.  

 

V. CONCLUSION 

We describe and illustrate with a case study the beneficial 
role of Semantic Web technologies in ‘omic’ data 
representation by providing and querying a data model to 
capture provenance information related to reporting 
microarray experiment results. We have tackled not only the 
engineering aspect of the data integration problem, but also the 
more fundamental issues of federating data that begin with 
seemingly homogeneous data sources (microarray databases) 
and extends to heterogeneous data domains at multiple levels. 
This is also driven by the growing collaboration between a 
wide spectrum of scientific disciplines and communities such 
as is required for translational research. We have used a 
bottom-up approach that facilitated the identification of four 
provenance levels necessary to report microarray experiment 
results and shielded our data model from becoming dependent 
on constantly evolving ontologies. We have, however, 
discussed how some of the terms and relationships from 
existing provenance ontologies can be mapped to our model. 
Some issues found to be necessary in the integration of 
microarray data sources could also be considered relevant for 
the federation of data sources in general. As more ‘omics’ data 
are generated, the complexity and requirements for discovery-
based research increases. As a result, there is a growing 
demand for effective data provenance and integration at many 
levels that counts on the active involvement of scientists and 
informaticians. Our work represents a step in this direction. 
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