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Abstract. In this paper we discuss a kernel approach to learning in semantic
graphs. To scale up the performance to large data sets, we employ the Nyström ap-
proximation. We derive a kernel derived from semantic relations in a local neigh-
borhood of a node. One can apply our approach to problems in multi-relational
domains with several thousand graph nodes and more than a million potential
links. We apply the approach to DBpedia data extracted from the RDF-graph of
the Semantic Web’s Linked Open Data (LOD).

1 Introduction

In this paper we consider semantic domains that form directed labeled graphs where
nodes stand for concepts such as objects, categories or attributes and links describe
simple subject-predicate-object statements: a directed arc points from the subject node
(e.g., representing an object or a category), to an object node (e.g., representing an ob-
ject, a category or an attribute) (Figure 1). The link is labeled by the predicate. Examples
of such semantic graphs are the RDF (Resource Description Framework) graphs of the
Semantic Web [1], the underlying data structure in the YAGO ontology [2] and the se-
mantic graph format in [3]. We assume that the graph only contains links that are known
to exist.3 In this paper we consider the learning task of predicting links which are not
present in the semantic graph but which are likely, considering statistical patterns that
are implicit in the data. For example, we might predict the likelihood that Jack wants
to be friends with Jane or that Jack’s income is high or that Jack is a human being, and
not a parrot. Our approach assumes the definition of a kernel defined for all nodes that
form the population. We assume that the number of nodes in the population can be very
large and thereby we suggest the Nyström approximation to solve the scalability issue.
The Nystr̈om approximations scales quadratically in the number of statistical units in
the training set and scales linearly in the rank of the approximation. We show how the
Nyström approximations is applied to least squares multivariate prediction. As special
cases we obtain PCA regression, PCA matrix factorization and the reduced rank pe-
nalized regression (RRPP) algorithm used in the SUNS framework [4]. We then show
how a semantic graph kernel can be derived from features derived from a local neigh-
borhood of a node. Scalability is a major concern, in particular for applications to the
Semantic Web as the population and the number of features can become very large. In

3 A link, resp. the associated subject-predicate-object statement, is sometimes referred to as a
triple.



the presented approach, the scalability of the overall approach is guaranteed. First, we
can control the number of instances considered in the Nyström approximation. Second
we can control the rank of the approximation. Third, we can control the number of local
features that are used to derive the kernel. A special case of our approach was already
presented in [4] and [5]. A novel contribution here is that we discuss the approach as
a general kernel approach using the Nyström approximation. Another novelty is that
we apply our approach to DBpedia [6], which is based on information extracted from
Wikipedia. DBpedia is part of the Linked Open Data (LOD) cloud where the term
Linked Data is used to describe a method of exposing, sharing, and connecting data via
dereferenceable URIs on the Web [7].

The paper is organizes as follows. In the next section we discuss related work. In
Section 3 we review the kernel approximation based on the Nyström approximation
and we apply it to least-squares prediction. Section 4 defines our kernel approach to
learning in semantic graphs. Section 5 reports results based on DBpedia data. Section 6
presents our conclusions.

2 Related Work

Recently, there has been quite some work on the relationship between kernels and
graphs. Graph kernels evaluate the similarity between graphs and can be classified into
three classes: graph kernels based on walks and paths, graph kernels based on limited-
size subgraphs and graph kernels based on subtree patterns [8, 9]. It is not immediately
clear how those approaches can be used for link prediction. Link prediction on graphs
is quite related to semi-supervised learning as surveyed in [10] where the goal is to
predict node labels based on known node labels in a graph. Kernels for semi-supervised
learning have, for example, been derived from the spectrum of the Graph-Laplacian.
In [11, 12] approaches for Gaussian process based link prediction have been presented.
Link prediction in relational graphs has also been covered from the relational learning
and the ILP communities [13–15]. Kernels for semantically rich domains have been
developed by [16].

Most of the discussed kernel approaches cannot easily be applied to the rich se-
mantic domains considered here. In fact, many have been developed in the context of a
single object type and a single relation type. The experimental results on the semantic
kernels described in [16] are still quite limited.

3 Scalable Kernel Solutions Using the Nystr̈om Approximation

3.1 Defining the Population

A semantic graph typically consists of many different types of objects and many types
of relations. In our statistical approach we only make statements on a subset of those
nodes, which form the the statistical units or instances in the population. A statistical
unit is an object of a certain type, e.g., a person. The population is the set of statisti-
cal units under consideration. In general, the population is application dependent. It is
advantageous if the population is homogeneous. E.g., the set of all students in Munich



might be a good choice whereas the set that includes all students in Munich and all
professors in Berkeley might be problematic.

3.2 The Nystr̈om Approximation

We now assume that for any two instancesi andj in the population a kernelki,j is
defined. A subset of the population of sizeN , i.e., the sample, defines the training
set. LetK be the kernel matrix (i.e., Gram matrix) for the training instances. In many
applicationsN can be very large, therefore we now follow [17] and use the Nyström
approximation to scale up kernel computations to large data sets.

The Nystr̈om approximation is based on an approximation to eigen functions and
starts with the eigen decomposition

K = UDU> (1)

of the kernel matrix. The Nyström approximation to the kernel for two arbitrary in-
stancesi andj can be written as

ki,j ≈ k>.,i Ur diagr (1/dl) U>r k.,j

where diagr (1/dl) is a diagonal matrix containing the inverse of ther leading eigen-
values inD and whereUr contains the correspondingr columns ofU .4 Here,k.,i is a
vector of kernels between instancei and the training instances.

There are two special cases of interest. First, the vector of approximate kernels
between a statistical uniti and all units in the training data can be written as

k.,i ≈ UrU
>
r k.,i (2)

and the matrix of approximate kernels between all pairwise units in the training data is

K ≈ Ur diagr (dl) U>r . (3)

These modified kernels can now be used in kernel approaches such as SVM learning
or Gaussian process learning. In particular, the reduced rank approximation Equation 3
can greatly reduce the computational requirements [17].5

3.3 Example: Regularized Least Squares Solutions for Multivariate Prediction

We now assume that for an instancei we haveL targets or random variablesyi =
(yi,1, . . . , yi,L)> available. We want to train a model of the form̂yi = k>(., i)W where
W is anN × L weight matrix.

A regularized least squares cost function can be formulated as

trace(Y −KW )(Y −KW )> + λ traceW>KW

4 Based on this approximation the rank of any kernel matrix is less than or equal tor ≤ N .
5 We use the Nystr̈om approximation slightly differently from [17]. There, Equation 1 is used

on a submatrix ofK and Equation 2 is then used to approximateK.



Fig. 1. Example of an RDF graph displaying a social friendship network in which the income
of a person is an attribute. Concepts (resources) are represented by circular nodes and triples
are represented by labeled directed links from subject node to object node. The diamond-shaped
nodes stand for random variables which are in stateoneif the corresponding triples exist. Nodes
representing statistical units (here:Persons) have a darker rim.

whereY = (y1, . . . , yN )> and whereλ ≥ 0 is a regularization parameter. If we use
the Nystr̈om approximation for the kernels we obtain as least squares solution for the
weight matrix

WLS = U diagr

(
1

dl + λ

)
U>Y.

The prediction for the training data (i.e., in smoothing or transduction) is

Ŷ = U diagr

(
dl

dl + λ

)
U>Y

and in general
ŷi = k>(., i)WLS .

We now consider some special kernels. Assume that for each instancei, in addition
to the random variables of interestyi, we also have covariatesxi available. Covariates
might, for example, represent aggregated information. If the kernel can be written as an
inner product of the covariateskx

i,j = x>i xj , our Nystr̈om approximation is equivalent
to regularized PCA regression in that covariate space. Another interesting solution is
whenky

i,j = y>i yj in which case our Nyström approximation is equivalent to regular-
ized matrix reconstruction via PCA, often used in collaborative filtering. Note that in
the latter case the low rank Nyström approximation is not only a necessity to obtain a
scalable solution but is also necessary to obtain valid predictions at all: withλ → 0
and r = N we would obtain the trivial̂Y = Y . Finally, with kz

i,j = z>i zj where
zi = (αx>i , y>i )>, we obtain the reduced rank penalized regression (RRPP) algorithm
in the SUNS framework [5]. Here,α is a positive weighting factor balancing the influ-
ence of the two information sources.



4 Kernel for Semantic Graphs

So far the discussion has been quite general and the Nyström approximation can be used
for any kernel defined between instances in the population. As discussed in Section 2,
there are a number of interesting kernels defined for nodes in a graph but most of them
are not directly applicable to the rich domain of a semantic graph with many differ-
ent node types and many different relation types. An exception is [16], which defines
kernels exploiting rich ontological background knowledge.

We here present the kernel based on the SUNS framework [18]. The random vari-
ables represent the likelihood of links where the statistical unit is the subject or object.
Additional features describe aggregated information. Although features are explicitly
calculated, a kernel approach is still preferred since in the applications that we are con-
sidering the number of features can be quite large whereasN , the size of the sample,
can be controlled more easily.

4.1 The Random Variables or Targets in the Data Matrix

Figure 1 shows a simple semantic graph with nodesPerson, Jack, Joe, Jane, Highand
relation typestypeOf, knows, hasIncome. We now introduce for each potential triple a
triple nodedrawn as a diamond-shaped node in Figure 1. A triple node is in stateone
(true) if the triple is known to exist and is in statezero (false) if the triple is known
not to exist. Graphically, one only draws the triple nodes in stateone, i.e., the existing
triples.

We now associate some triples with statistical units. The idea is to assign a triple
to a statistical unit if the statistical unit appears in the triple. Let’s consider the statisti-
cal unitJane. Based on the triples she is participating in, we obtain(?personA, typeOf,
Person), (Joe, knows, ?personA), and(?personA, hasIncome, High)where?personAis
a variable that represents a statistical unit. The expressions form the random variables
(outputs) and define columns in the data matrix.6 By considering the remaining statisti-
cal unitsJackandJoewe generate the expressions (columns),(?personA, knows, Jane)
and(Jack, knows, ?personA). We will not add(Jane, knows, ?personA)since Jane con-
siders no one in the semantic graph to be her friend. We iterate this procedure for all
statistical units in the sample and add new expressions (i.e., columns in the data ma-
trix), if necessary. Note that expressions that are not represented in the sample will not
be considered.

In [4] the triples associated with a statistical unit were denoted asstatistical unit
node set(SUNS). The data matrix formed with theN statistical units as rows and the
random variables as columns is denoted asY . Note, thatY contains random variables
derived for multiple different predicates.

4.2 Non-random Covariates in the Data Matrix

The columns in the data matrix that we have derived so far represent truth values of
actual or potential triples. Those triples are treated as random variables in the analysis.

6 Don’t confuse a random variable representing the truth value of a statement with a variable in
a triple, representing an object.



If the machine learning algorithm predicts that a triple is very likely, we can enter this
triple in the semantic graph. We now add columns to the data matrix that provide addi-
tional information for the learning algorithm but which we treat as covariates or fixed
inputs.

First, we derive simplified relations from the semantic graph. More precisely, we
consider the expressions derived in the last subsection and replace constants by vari-
ables. For example, from(?personA, knows, Jane)we derive(?personA, knows, ?per-
sonB)and count how often this expression is true for a statistical unit?personA, i.e., we
count the number of friends of person?personA.

Second, we consider a simple type of aggregated covariate from outside a SUNS.
Consider first a binary triple(?personA, knows, Jane). If Jane is part of another bi-
nary triple, in the example,(?personA, hasIncome, High)then we form the expression
(?personA, knows, ?personB)∧ (?personB, hasIncome, High)and count how many rich
friends a person has. A large number of additional covariates are possible but so far we
restricted ourselves to these two types. The matrix formed with theN statistical units
as rows and the covariates as columns is denoted asX and the complete data matrix
becomes the matrix(X, Y ).

Covariates are of great importance, in particular if statistical units are rather discon-
nected. For example, to predict social status of two professors at different universities
in different countries, it might be relevant how many students they administer, but not
exactly which students, or it might be important that they are the dean of some depart-
ment, but not of which department. In social network terms: it might be relevant that
they play the same roles.

5 Experiments with DBpedia Data

5.1 DBpedia Data

DBpedia [6] is part of LOD and contains structured information extracted from Wikipedia.
At the time of writing this paper, it describes more than 3.4 million concepts, includ-
ing 312,000 persons, 413,000 places and 94,000 music albums. DBpedia does not only
serve as a “nucleus for the web of data”, but also holds great potential to be used in con-
junction with machine learning approaches. Yet, even though DBpedia already provides
a great value, it is still limited in the information it provides and in terms of quality. For
example, although there are many cities covered in DBpedia, most information, like
its most famous citizens and its most spectacular sights, is not very useful for machine
learning purposes. Here we report results using a population consisting of all members
of the German Bundestag to evaluate our approach. This population has been created
by collecting all triples that are returned by the SPARQL query

SELECT ?s ?p ?o WHERE {
?s ?p ?o .
?s skos:subject dbp-cat:Members_of_the_German_Bundestag

}



5.2 Data Quality

A great benefit of LOD data is that by one simple SPARQL query the sample is de-
fined. While DBpedia has great potential for machine learning, there are also chal-
lenges when these machine learning approaches are applied to DBpedia data. The first
issue is related to the problem of incomplete data. It is very common for subjects in
a DBpedia population to share only a subset of predicates. For instance, only 101
of 293 members of the German Bundestag represented in DBpedia have an entry for
the predicatedbp-ont:party or dbp-prop:party . Therefore, in order to han-
dle DBpedia data, a machine learning algorithm has to be able to deal with missing
or incomplete data. The second issue is related to noisy predicates. For predicates it
is often the case that there are semantical duplicates, e.g.dbp-prop:party and
dbp-ont:party . While duplicate predicates are not a big problem by default, they
can become a challenge when they are used inconsistently, which can greatly increase
the preprocessing effort. Third, even more serious than noisy predicates are noisy ob-
jects. E.g. the Christian Democratic Union of Germany was represented by the liter-
als"CDU" and"Christian Democratic Union" or the resourcesdbpedia:
Christian Democratic Union and
dbpedia: Christian Democratic Union (Germany) . Thus the true mem-
bers of the CDU would have been divided into four distinct subsets and this needs to
be resolved prior to learning. Finally, we have to consider the scale. The sample can get
quite large when all available DBpedia data in a population is used.

5.3 Predicting Party Membership

In the following experiments the learning challenge was to correctly predict the polit-
ical party for each subject, where the party is identified by the object of the predicate
dbp-prop:party . Duplicate predicates would bias the experiments as they are heav-
ily correlated with the target predicate. Therefore predicates likedbp-ont:party or
dbp-ont:Person/party were removed. Moreover, predicate-object pairs that are
very closely related to a party membership like(?s, skos:subject,
dbp-cat:Politicians of the Social Democratic Party of Germany)
or (?s, rdf:type, yago:GermanGreenPartyPoliticians) were also re-
moved. Rare features were sometimes pruned. In order to demonstrate the aforemen-
tioned challenges associated with DBpedia data, we conducted the following experi-
ments

– ORIG: The original data from DBpedia (version 3.5.1). After pruning, this data set
hadN = 293 units, i.e., rows and 804 columns.

– DISAMB: In this experiment the objects of the target predicate were manually
disambiguated solving the noisy objects problem. After the disambiguation exactly
one concept (resource) for each party (CDU, CSU, SPD, FDP, Alliance ’90/The
Greens, The Left, Centre Party) remained in the data set. Thus, for each statistical
unit we estimateL = 8 variables. Furthermore, in the original data set only 101
of 293 statistical units had an entry fordbp-prop:party dbp-ont:party .
Since machine learning algorithms benefit from a larger number of examples we



manually added the party for the remaining 192 units. After pruning, this data set
had 802 columns.

– AGE: In this experiment the age of each politician was added as a continuous fea-
ture, by subtracting the birth year (when available) from the year 2010. To prevent
that the age values dominated the remaining columns, age values were normalized.
After pruning this data set had 804 columns.

– WEIGHT: We used a weighting coefficient ofα = 0.4 to put less importance on
the covariates (see Section 3).

– STATE: The predicatesdbp-prop:birthPlace or dbp-ont:birthPlace
specify the city or village of birth. For the members with no entry here, we filled
in the entry manually. Naturally, the birthplace is not a useful attribute for our task,
whereas the state of the birthplace can be quite valuable, since in Germany, there are
clear local party preferences. Filling in the state information from the birthplace in-
formation can easily be done by exploiting geographical part-of-relationships with
OWL reasoning.

– TEXT: Finally associated textual information was exploited by tokenizing the ob-
jects of the predicatesrdf:comment anddbp-prop:abstract and by adding
one column for each occurring token. When a token was present for a particular sta-
tistical unit, the entry was set to one, else to zero. After pruning the data set had
2591 columns.

– ALL: In this experiment all previously described approaches were combined. Since
the number of attributes changed, we also changed the weighting factor toα = 0.2.
After pruning this data set had 2623 columns.

Except for ORIG, the basis for all experiments was the DISAMB data set. To eval-
uate how well the party membership is predicted, we performed leave-one-out cross-
validation by iterating over all subjects. In each iteration we set alldbp-prop:party
entries for the subject of the current iteration tozeroand used predicted estimates for
ranking. As evaluation measures we used NDCG and bpref [19], the latter being often
used in TREC tracks designed for evaluation environments with incomplete relevance
data.

Figure 2 shows the results for NDCG and bpref. As expected, the results obtained
from the raw data were worst with a score of 0.722. The effect of data cleaning from
disambiguation improved the score by 7 points. A small improvement in score can be
achieved by adding the age. This shows that age is a weak predictor of party member-
ship, at least in this Bundestag data set. Furthermore, an improvement in score can be
achieved by putting more weight on the quantity of interest, i.e., the party membership.
The textual description sometimes contains strong hints on party membership and the
score improves to 0.928. The state information is also quite relevant as an input, which
is well explained by the peculiarities of German politics. Finally, quite a high score of
0.963 is achieved by a combination of all methods.

6 Conclusions and Outlook

We discussed a kernel approach for learning in semantic graphs. To scale up the perfor-
mance to large data sets, we employed the Nyström approximation. Furthermore, we
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Fig. 2.Evaluation results for bpref and NDCG on the Bundestag population

presented a kernel for semantic graphs derived from a local neighborhood of a node
and applied the approach to learning on the RDF-graph of the Semantic Web’s Linked
Open data (LOD).

To evaluate our approach, we applied it to data extracted from DBpedia. Here the
data is quite noisy and considerable preprocessing is needed to yield good results. Also,
by including textual data the prediction results were considerably improved. This im-
provement can already be observed even if a simple keyword based representation is
being used without any sophisticated information extraction. Some of the data prepro-
cessing steps can easily be executed with ontological (OWL-) reasoning, such as the
generalization from city to state. In fact, materialization of facts derivable from logical
reasoning is recommended as a preprocessing step. Other preprocessing steps, such as
the calculation of age from the birthday and the current date, were done algorithmically.

In the DBpedia experiment, we estimated the membership in the 8 parties for each
member in the Bundestag, thusL = 8. Although some members of the Bundestag
have been in more than one party in their career, the collaborative coupling between the
random variables is not contributing very much to the predictive performance. In [5],
experiments in social networks are described withL = 14425 and a much stronger
collaborative effect. As part of ongoing work we are studying a life-science domain
with several hundred thousand covariates and withL greater than 3000.

Scalability of the overall approach is guaranteed. First, we can control the number
of instances considered in the Nyström approximation. Second we can control the rank
of the approximation. Third, we can control the number of local features that are used
to derive the kernel. In our experiments,M , the number of features, was always quite
high. In this case the most costly computation is the calculation of the kernel requiring
N2M operations.
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