
Abstract 
We think of match as an operator that takes two 
graph-like structures (e.g., database schemas or 
ontologies) and produces a mapping between 
elements of the two graphs that correspond se-
mantically to each other. The goal of this paper 
is to propose a new approach to matching, called 
semantic matching. As from its name, the key in-
tuition is to exploit the model-theoretic informa-
tion, which is codified in the nodes and the 
structure of graphs. The contributions of this pa-
per are (i) a rational reconstruction of the major 
matching problems and their articulation in 
terms of the more generic problem of matching 
graphs; (ii) the identification of semantic match-
ing as a new approach for performing generic 
matching; and (iii) a proposal of implementing 
semantic matching via SAT. 

1 Introduction 
The progress of information and communication tech-
nologies has made accessible a large amount of informa-
tion stored in different application-specific databases and 
web sites. The number of different information resources 
is rapidly increasing, and the problem of semantic het-
erogeneity is becoming more and more severe, see for 
instance [Halevy, 2001], [Washe et al., 2001], [Goh, 
1997], [Giunchiglia and Zaihrayeu, 2002]. One proposed 
solution is matching. Match is an operator that takes two 
graph-like structures (e.g., database schemas or ontolo-
gies) and produces a mapping between elements of the 
two graphs that correspond semantically to each other. So 
far, with the noticeable exception of [Serafini et al, 
2003], the key intuition underlying all the approaches to 
matching has been to map labels (of nodes) and to look 
for similarity (between labels) using syntax driven tech-
niques and syntactic similarity measures; see for instance 
[Do and Rahm, 2002], [Madhavan et al., 2001]. Thus for 
example, some of the most used techniques look for 
common substrings (e.g., ″phone″ and ″telephone″) or for 
strings with similar soundex (e.g., ″4U″ and ″for you″) or 
expand abbreviations (e.g., ″P.O″ and ″Post Office″). We 
say that all these approaches are different variations of 

syntactic matching. In syntactic matching semantics are 
not analyzed directly, but semantic correspondences are 
searched for only on the basis of syntactic features.  

In this paper we propose a novel approach, called se-
mantic matching, with the following main features: 
• We search for semantic correspondences by mapping 

meanings (concepts), and not labels, as in syntactic 
matching. As the rest of the paper makes clearer, when 
mapping concepts, it is not sufficient to consider the 
meanings of labels of the nodes, but also the positions 
that the nodes have in the graph. 

• We use semantic similarity relations between elements 
(concepts) instead of syntactic similarity relations. In 
particular, we consider relations, which relate the exten-
sions of the concepts under consideration (for instance, 
more/less general relations). 

The contributions of this paper are (i) a rational recon-
struction of the major matching problems and their ar-
ticulation in terms of the more generic problem of match-
ing graphs; (ii) the identification of semantic matching as 
a new approach for performing generic matching; and 
(iii) a proposal of using SAT as a possible way of imple-
menting semantic matching. It is important to notice that 
SAT is a correct and complete decision procedure for 
propositional logics. Using SAT allows us to find only 
and all possible mappings between elements. This is an-
other major advantage over syntactic matching ap-
proaches, which are based on heuristics. The SAT-based 
algorithm discussed in this paper is a minor modifica-
tion/extension of the work described in [Serafini et al, 
2003].  

The rest of the paper is organized as follows. Section 2 
introduces some well-known matching problems and 
shows how they can be stated in terms of the generic 
problem of matching graphs. Section 3 defines the notion 
of matching and discusses the essence of semantic match-
ing. Section 4 provides guidelines to the implementation 
of semantic matching. Section 5 overviews the related 
work. Section 6 reports some conclusions. 
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2 Matching Problems 
Major data and conceptual models representing informa-
tion sources across the WWW are database schemas, 
XML schemas, and ontologies.  

2.1 Relational DB schemas 
Let us consider the hypothetical relational database 
(RDB) BANK presented in Figure 1, storing information 
about the location of branches and of the staff that works 
at the BANK.  
BRANCH 

BN Street City Zip 
B8 Piazza Venezia Trento 38100 
B2 Piazza Cordusio Milano 20123 

STAFF 
SN F_Name L_Name Position Salary BN 
S31 John Dow CFO 170 B2 
S27 Eric  O’Neill CTO 130 B8 

Figure 1. RDB BANK 
We can represent the schema and data instances of the 
above database as a graph in two possible ways. In the 
first case, starting from the name (root), the schema is 
partitioned into relations and further down into attributes 
and data instances. See Figure 2. Arcs of Level 1 encode 
relations; arcs of Level 2 stand for attributes, and arcs of 
Level 3 specify data instances. Blank nodes stand for 
primary keys. Blank nodes with dashed circles stand for 
foreign keys. Notice that we know in advance that the 
maximum height of the tree is 3.  
 

 
 
 
 
 
 

Figure 2. Tree representation 1 of the RDB BANK 
In the second approach, as from [Buneman et al., 

1996], starting from the root, a database is partitioned 
into relations, then into tuples, and finally into attributes 
and data instances. See Figure 3. For lack of space not all 
attributes and their identifiers are presented in the dia-
gram. Notice that the maximum height of the tree is 4. 

The information about the structure of the database re-
sides only at arcs’ labels. Dashed arcs stand for primary 
keys. R1 and R2 denote relations of the database BANK. 
ROOT.RI.TJ.AK is a path to the K-th attribute of the J-th 
tuple of the I-th relation from the root of the tree. Data 
instances are presented as arcs at Level 4. Thus, the in-
stances of the element BRANCH are represented by tu-
ples: (″B8″, ″Piazza Venezia″, ″Trento″, ″38100″) and 
(″B2″, ″Piazza Cordusio″, ″Milano″, ″20123″). 

Figure 3. Tree representation 2 of the RDB BANK 
Which of the two representations is more preferable 

depends on the concrete task, but its worth to note that 
it’s always possible to transform one model into another. 

Database schemas are seldom trees. If referential con-
straints are taken into account, schemas become DAGs. If 
we further consider recursive references we have cycles, 
see Figure 4. Referential constraints are shown as dashed 
arrows. Bold arrows represent recursive references, 
which appear if, for instance, we add to the relation 
STAFF the attribute Manager that expresses administra-
tive relationships between employees.  

Figure 4. Graph representation of the RDB BANK 

2.2 OODB schemas 
Let us rebuild the relational database BANK example in 
terms of an object-oriented approach. Now, BANK con-
sists of the three classes, expressing the same data as 
above: 

BRANCH(Street, City, Zip) 
PERSON(F_Name, L_Name) 
STAFF:PERSON(Position, Salary, Manager). 

A graph representation of the given OODB schema is 
shown in Figure 5. Arcs with blank arrows stand for the 
use case generalization; dashed arrows play notationally 
the same role as associations in UML. 

Figure 5. Digraph representation of the OODB BANK 
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The object-oriented data model captures more seman-
tics than the relational data model. It explicitly expresses 
subsumption relations between elements, and admits spe-
cial types of arcs for part/whole relationships in terms of 
aggregation and composition.  

2.3 XML schemas  
Neither the OO data model, nor the relational data model 
captures all the features of semistructured or unstructured 
data [Buneman, 1997]. Semistructured data don’t possess 
regular structure; the structure could be partial or even im-
plicit. Missing or duplicated fields are allowed. Semistruc-
tured data could be schemaless, or have a schema that poses 
only loose constraints on data. Typical examples are markup 
languages, e.g. HTML or XML.  

XML schemas can be represented as DAGs. The graph 
in Figure 2 could also be obtained from an XML schema. 
Often, XML schemas represent hierarchical data models. 
In this case the only relationships between the elements 
are {is-a}. A DAG is obtained through the ID/IDREF 
mechanism. Attributes in XML are used to represent ex-
tra information about data. There are no strict rules tell-
ing us when data should be represented as elements, or as 
attributes. 

2.4 Concept Hierarchies 
A concept hierarchy is a way of defining a conceptuali-
zation of an application domain in terms of concepts and 
relationships expressed in a formal language. Concept 
hierarchies usually support {is-a} relations. Traditional 
examples of concept hierarchies are classifications, for 
instance, parts of Yahoo and Google electronic catalogs. 
Figure 6 presents a part of Google web directory devoted 
to business. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Google web directory 
The concept hierarchy shown in Figure 6 consists of 11 

concepts, and 10 subsumption relations, one per arc. 

2.5 Ontologies  
By an ontology we mean here a way of defining a conceptu-
alization of an application domain in terms of concepts, at-
tributes, and relations expressed in a formal language. Rela-
tions can be defined by the user, but there are some pre-
defined relationships with known semantics, i.e., {is-a; part-

of; instance-of}. A concept hierarchy is an ontology without 
attributes and only with {is-a} relations between elements.  

One example of ontology can be constructed by com-
plicating the concept hierarchy shown in Figure 6, by 
adding attributes to the concept Association, see Figure 
7. Attributes of the concept Associations are BN, City, 
Street, Zip, while data instances are B8 and B2. Data in-
stances have fixed attributes values: instance B8 has 
BN=″B8″, City=″Trento″, Street=″Piazza Venezia″, etc.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Example of ontology Business 

3 Matching 
All the data and conceptual models discussed in the previ-
ous section can be represented as graphs. Therefore, the 
problem of matching heterogeneous and autonomous infor-
mation resources can be decomposed in two steps:  

1. extract graphs from the data or conceptual models,  
2. match the resulting graphs.  
Notice that this allows for the statement and solution 

of a more generic matching problem, very much along 
the lines of what done in Cupid [Madhavan et al., 2001], 
and COMA [Do and Rahm, 2002]. However, as already 
discussed in some detail in Section 2, each of the five 
matching problems presented there, has different proper-
ties and it is still an open problem whether we will be 
able to develop a general purpose matcher, and exploit 
most (all?) the problem and domain dependent analysis in 
step (1). 

Let us define the notion of matching graphs more pre-
cisely. Mapping element is a 4-tuple < mID, Ni

1, Nj
2, R >, 

i=1...h; j=1..k; where mID is a unique identifier of the 
given mapping element; Ni

1 is the i-th node of the first 
graph, h is the number of nodes in the first graph; Nj

2 is 
the j-th node of the second graph, k is the number of 
nodes in the second graph; and R specifies a similarity 
relation of the given nodes. A Mapping is a set of map-
ping elements. Matching is the process of discovering 
mappings between two graphs through the application of 
a matching algorithm. There exist two approaches to 
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graph matching, namely exact matching and inexact or 
approximate matching. Both of them can be stated as 
subgraph matching problems: find all occurrences of a 
pattern graph P of m nodes as a subgraph of a graph G of 
n nodes, m≤ n. In the case of exact matching we look for 
subgraphs S of G that are identical to P. In inexact 
matching some errors are acceptable. For obvious reasons 
we are interested in inexact matching.  

We classify matching into syntactic and semantic 
matching depending on how matching elements are com-
puted and on the kind of similarity relation R used. 
• In syntactic matching the key intuition is to map labels 

(of nodes) and to look for the similarity using syntax 
driven techniques and syntactic similarity measures. 
Thus, in the case of syntactic matching, mapping ele-
ments are computed as 4-tuples < mID, Li

1, Lj
2, R >, 

where Li
1 is the label at the i-th node of the first graph; 

Lj
2 is the label at the j-th node of the second graph; and 

R specifies a similarity relation in the form of a coeffi-
cient, which measures the similarity between the labels 
of the given nodes. Typical examples of R are coeffi-
cients in [0,1], for instance, similarity coefficients 
[Madhavan et al., 2001]. Similarity coefficients usually 
measure the closeness between the two elements 
linguistically and structurally. For instance, based on 
linguistic analysis, the similarity coefficient between 
elements "telephone" and "phone" from the two 
hypothetical schemas could be 0,7. 

• As from its name, in semantic matching the key intuition 
is to map meanings (concepts). Thus, in the case of se-
mantic matching, mapping elements are computed as 4-
tuples < mID, Ci

1, Cj
2, R >, where Ci

1 is the concept of the 
i-th node of the first graph; Cj

2 is the concept of the j-th 
node of the second graph; and R specifies a similarity re-
lation in the form of a semantic relation between the ex-
tensions of concepts at the given nodes. Possible R’s be-
tween nodes are equality (=), overlapping (∩), mismatch 
(⊥), or more general/specific (⊆, ⊇).  

These ideas are schematically represented in Figure 8. 
It is important to notice that all past approaches to match-
ing we are aware of, with the exception of [Serafini et al, 
2003], are based on syntactic matching.  

 
 
 
 
 
 
 

Figure 8. Matching problems 
One of the key differences between syntactic and se-

mantic matching is that in syntactic matching, when we 
match two nodes, we only consider the labels attached to 
them, independently of the position of the nodes in the 
graph. In semantic matching, instead, when we match 

two nodes, the concepts we analyse depend not only on 
the concept attached to the node (the concept denoted by 
the label of the node), but also on the position of the node 
in the graph. Let us consider the example in Figure 9. 
Numbers in circles are the unique identifiers of the nodes 
under consideration. A stands for the label at a node; A′ 
stands for the concept denoted by A; Ci stands for the 
concept at the node i (in the following we sometimes 
confuse concepts with their extensions).  

 
 
 
 
 

 
Figure 9. Syntactic vs. semantic matching 

Let us consider for instance, the analysis carried out 
when the node numbered 5 is submitted to matching 
(against a node in another graph). In syntactic matching 
the matcher tries to match the label at node 5, namely C. 
In semantic matching, instead, the matcher tries to match 
the concept at node 5, namely C5, which is that subset of 
the extension of A′ which is also in the extension of C′. 
Thus, C5 = A′∩C′. A semantic matcher will therefore try 
to match A′∩C′ and not (!) C.  

Let us consider some more examples, which make the 
consequences of the observation described in the previ-
ous paragraph clearer. For any example we also report 
the results produced by the state of the art matcher, Cu-
pid [Madhavan et al., 2001], which exploits very sophis-
ticated syntactic matching techniques. Notationally in the 
following we write A1 to mean that the string A occurs in 
the graph on the left, and A2 to mean that A occurs in the 
graph on the right. We use the same notation also for 
nodes of graphs, concepts denoted by labels, and con-
cepts at nodes. Thus for instance, 51 stands for the node 5 
in the graph on the left, A′1 is the concept denoted by the 
label A1, while C51 is the concept at node 51. 
Analysis of siblings. Let us consider Figure 10. Structur-
ally the graphs shown in Figure 10 differ in the order of 
siblings. Suppose that we want to match node 51 with 
node 22. 
 
 
 
 
 
 

Figure 10. Analysis of siblings. Case 1 
Cupid correctly processes this situation, and as a re-

sult, the similarity coefficient between labels at the given 
nodes equals to 0,8. This is because A1=A2, C1=C2 and 
we have the same structures on both sides. A semantic 
matching approach compares concepts A′1∩C′1 with 
A′2∩C′2 and produces C51 = C22. 
Analysis of ancestors. Let us consider Figure 11. Sup-
pose that we want to match nodes 51 and 12. 
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Figure 11. Analysis of ancestors. Case 1 
Cupid does not find a similarity coefficient between 

the nodes under consideration, due to the significant 
differences in structure of the given graphs. In semantic 
matching, the concept denoted by the label at node 51 is 
C′1, while the concept at node 51 is C51=A′1∩C′1. The con-
cept at the node 12 is C12 =C′2. By comparing the concepts 
denoted by the labels at nodes 51 and 12 we have that, 
being identical, they denote the same concept, namely 
C′1=C′2. Thus, the concept at node 51 is a subset of the 
concept at node 12, namely C51 ⊆ C12. 

Let us complicate the example shown in Figure 11 by 
allowing for an arbitrary distance between ancestors, see 
Figure 12. The asterisk means that an arbitrary number of 
nodes are allowed between nodes 12 and 52. Suppose that 
we want to match nodes 51 and 52. 
 
 
 
 
 
 

Figure 12. Analysis of ancestors. Case 2 
Cupid finds out that the similarity coefficient between 

labels C1 and C2 is 0,86. This is because of the identity of 
labels (A1=A2, C1=C2), and due to the fact that nodes 51 
and 52 are leaves. Notice how Cupid treats very differ-
ently the two situations represented here and in the ex-
ample above, even if, from a semantic point of view, they 
are similar. Following semantic matching, the concept at 
node 51 is C51 = A′1∩C′1; while the concept at node 52 is 
C52 = A′2∩*∩C′2. Since we have that A′1=A′2 and C′1=C′2, 
then C52 ⊆ C51. 
Enriched analysis of siblings. Suppose that we want to 
match nodes 21 and 22, see Figure 13. 
 
 
 
 
 
 

Figure 13. Analysis of siblings. Case 2. 
Cupid without thesaurus doesn’t find a match; with the 

use of thesaurus it finds out that the similarity coefficient 
between nodes with labels Benelux1 and Belgium2 is 0,68. 
This is mainly because of the entry in the thesaurus 
specifying Belgium as a part of Benelux, and due to the 
fact that the nodes with labels Benelux1 and Belgium2 are 
leaves. Following semantic matching, both concepts Bel-
gium′1 and Benelux′2 are subsets of the concept World′1,2. 
Let us suppose that an oracle, for instance WordNet, 
states that Benelux is a name standing for Belgium, Neth-

erlands and Luxembourg. Therefore, we treat C21 in Fig-
ure 14 as Benelux′1 ∩ Netherlands′1 ∩ Luxembourg′1 = 
Belgium. Thus, C21 = C22.  
Analysis of attributes. Let us consider Figure 14. On the 
left we have a graph, which represents an ontology 
World, where State and Square are attributes of the con-
cept Europe. State has two sets of items corresponding to 
Italy and Belgium. On the right we have a graph, which 
represents the concept hierarchy World, where the con-
cept Italy is populated with a set of items about Italy. 
Attributes can be matched with attributes, but also with 
concepts. Suppose that we want to match nodes 71 and 42. 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 14. Analysis of attributes 
Cupid does not find a match, due to the significant dif-

ferences in structure of the given graphs. Following se-
mantic matching, in our case, we can notice that we can 
substitute the path World1:Europe1:State1:Italy1 with It-
aly1 (by taking the proper subset of items relating to It-
aly) and matching it with Italy2. In this case we obtain C71 
= C42 

4 Implementing Semantic Matching  
There are two levels of granularity while performing se-
mantic (and also syntactic matching) matching: element-
level and structure-level. Element-level matching tech-
niques compute mapping elements between individual 
labels/concepts at nodes; structure-level techniques com-
pute mapping elements between subgraphs. 

4.1 Element-level  Semantic Matching 
Element-level semantic techniques analyze individual la-
bels/concepts at nodes. At the element-level we can exploit 
all the techniques discussed in the literature, see for instance 
[Do and Rahm, 2002], [Melnik et al., 2002], [Rahm and 
Bernstein, 2001]. The main difference here is that, instead 
of a syntactic similarity measure, these techniques must be 
modified to return a semantic relation R, as defined in Sec-
tion 3. We distinguish between weak semantics and strong 
semantics element-level techniques. Weak semantics tech-
niques are syntax driven techniques: examples are tech-
niques, which consider labels as strings, or analyze data 
types, or soundex of schema elements. Let us consider some 
examples. 
Analysis of strings. String analysis looks for common pre-
fixes or suffixes and calculates the distance between two 
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strings. For example, the fact that the string "phone" is a 
substring of the string "telephone" can be used to infer that 
"phone" and "telephone" are synonyms. Before analyzing 
strings, a matcher could perform some preliminary parsing, 
e.g., extract tokens, expand abbreviations, delete articles and 
then match tokens. The analysis of strings discovers only 
equality between concepts. 
Analysis of data types. These techniques analyze the data 
types of the elements to be compared and are usually per-
formed in combination with string analysis. For example, 
the elements "phone" and "telephone" are supposed to have 
the same data type, namely "string" and therefore can be 
found equal. However, "phone" could also be specified as 
an "integer" data type. In this case a mismatch is found. As 
another example the integer "Quantity" is found to be a sub-
set of the real "Qty". This kind of analysis can produce any 
kind of semantic relation. 
Analysis of soundex. These techniques analyze elements’ 
names from how they sound. For example, elements "for 
you" and "4 U" are different in spelling, but similar in soun-
dex. This analysis can discover only equality between con-
cepts. 

Strong semantics techniques exploit, at the element- 
level, the semantics of labels. These techniques are based 
on the use of tools, which explicitly codify semantic in-
formation, e.g. thesauruses [Madhavan et al., 2001], 
WordNet [Miller, 1995] or combinations of them [Cas-
tano et al., 2000]. Notice that these techniques are also 
used in syntactic matching. In this latter case, however, 
the semantic information is lost before moving to struc-
ture-level matching and approximately codified in 
syntactic relations. 
Precompiled thesaurus. A precompiled thesaurus usually 
stores entries with synonym and hypernym relations. For 
example, the elements "e-mail" and "email" are treated as 
synonyms from the thesaurus look up: syn key - "e-
mail:email"=1. Precompiled thesauruses (most of them) 
identify equivalence and more general/specific relations. In 
some cases domain ontologies are used as precompiled the-
sauruses [Mena et al., 1996]. 
WordNet. WordNet is an electronic lexical database for 
English (and other languages), where various senses 
(namely, possible meanings of a word or expression) of 
words are put together into sets of synonyms (synsets). Syn-
sets in turn are organized as hierarchy. Following [Serafini 
et al, 2003] we can define the semantic relations in terms of 
senses. Equality: one concept is equal to another if there is 
at least one sense of the first concept, which is a synonym of 
the second. Overlapping: one concept is overlapped with the 
other if there are some senses in common. Mismatch: two 
concepts are mismatched if they have no sense in common. 
More general / specific: One concept is more general than 
the other iff there exists at least one sense of the first con-
cept that has a sense of the other as a hyponym or as a 
meronym. One concept is less general than the other iff 
there exists at least one sense of the first concept that has a 

sense of the other concept as a hypernym or as a holonym. 
For example, according to WordNet, the concept "hat" is a 
holonym for the concept "brim", which means that "brim" is 
less general than "hat". 

4.2 Structure-level  Semantic Matching  
The approach we propose is to translate the matching 
problem, namely the two graphs and our mapping queries 
into a propositional formula and then to check it for its 
validity. By mapping query we mean here the pair of 
nodes that we think will match and the semantic relation 
between them. We check validity by using SAT. Notice 
that SAT is a correct and complete decision for proposi-
tional satisfiability and therefore will exhaustively check 
for all possible mappings. Being complete, SAT auto-
matically implements all the examples described in the 
previous section, and more. This is another advantage 
over syntactic matching, whose existing implementations 
are based only on heuristics. 

Our SAT based approach to semantic matching incor-
porates six steps. We describe below its intended behav-
ior by running these six steps on the example shown in 
Figure 11 and by matching nodes 51 and 12 (steps 2-5 are 
taken from [Serafini et al, 2003]). 
1. Extract the two graphs. Notice that during this step, in 

the case of DB, XML or OODB schemas, it is necessary 
to extract useful semantic information, for instance in the 
form of ontologies. There are various techniques for do-
ing this, see for instance [Mena et al., 1996]. The result is 
the graph in Figure 11. 

2. Compute element-level semantic matching. For each 
node, compute semantic relations holding among all the 
concepts denoted by labels at nodes under consideration. 
In this case A′1 has no semantic relation with C′2 while 
we have that C′1 = C′2. 

3. Compute concepts at nodes. Starting from the root of 
the graph, attach to each node the concepts of all the 
nodes above it. Thus, we attach C11 = A′1 to node 11; C51 = 
A′1∩C′1 to node 51; C12 = C′2 to node 12. As it turns out we 
have that C51 ⊆ C12. 

4. Construct the propositional formula, representing the 
matching problem. In this step we translate all the seman-
tic relations computed in step 2 into propositional formu-
las. This is done according to the following transition 
rules:  

 
 
 
 

 
Subset translates into implication; equality into equiva-
lence; disjointness into the negation of conjunction. In 
the case of Figure 11 we have that C′1 ≡ C′2 is an axiom. 
Furthermore, since we want to prove that C51 ⊆ C12, our 
goal is to prove that ((A′1 ∧ C′1) → C′2). Thus, our target 
formula is ((C′1 ≡ C′2) → (A′1 ∧ C′1 → C′2)). 

 A′1 ⊇ A′2 ⇒ A′2 → A′1 

 A′1 ⊆ A′2 ⇒ A′1 → A′2 

 A′1 = A′2 ⇒ A′1 ≡ A′2 

 A′1 ⊥ A′2 ⇒ ¬(A′1 ∧ A′2) 



5. Run SAT. In order to prove that ((C′1 ≡ C′2) → (A′1 ∧ C′1 

→ C′2)) is valid, we prove that its negation is unsatisfi-
abile, namely that a SAT solver run on the following 
formula (C′1 ≡ C′2) ∧¬ ((A′1 ∧ C′1) → C′2) fails. A quick 
analysis shows that SAT will return FALSE. 

6. Iterations. Iterations are performed re-running SAT. We 
need iterations, for instance, when matching results are 
not good enough, for instance no matching is found or a 
form of matching is found, which is too weak, and so on1. 
The idea is to exploit the results obtained during the pre-
vious run of SAT to tune the matching and improve the 
quality of the final outcome. Let us consider Figure 15. 

 
 
 
 
 
 

Figure 15. Not good enough answer 
Suppose that we have found out that C21 ∩ C22 ≠ ∅, and 

that we want to improve this result. Suppose that an ora-
cle tells us that A′1 = F′2∪ G′2. In this case the graph on 
the left in Figure 15 can be transformed into the two 
graphs in Figure 16. 
 
 
 
 
 
 

Figure 16. Extraction of additional semantic information 
After this additional analysis we can infer that C21 = C22. 

Another motivation for multiple iterations is to use the 
result of a previous match in order to speed up the search 
of new matches. Consider the following example. 
 
 
 
 
 
 
 
 

Figure 17. Iterations 
Suppose that F′1 ⊆ B′2. Having found that C41 ⊆ C42, we 

can automatically infer that C51 ⊆ C52, without rerunning 
SAT, for obvious symmetry reasons. 

5 Related Work 
At present, there exists a line of semi-automated schema 
matching and ontology integration systems, see for in-
                                                 
1 [Giunchiglia and Zaihrayeu, 2002] provides a long discussion 

about the importance of dealing with the notion of "good enough 
answer" in information coordination in peer-to-peer systems. 

stance [Madhavan et al., 2001], [Do and Rahm, 2002], 
[Li and Clifton, 2000], [Castano et al., 2000], [Arens et 
al., 1996], [Mena et al., 1996], [Doan et al., 2002], etc. 
Most of them implement syntactic matching. A good sur-
vey, up to 2001, is provided in [Rahm and Bernstein, 
2001]. The classification given in this survey distin-
guishes between individual implementations of match 
and combinations of matchers. Individual matchers com-
prise instance- and schema-level, element- and structure-
level, linguistic- and constrained-based matching tech-
niques. Individual matchers can be used in different 
ways, e.g. simultaneously (hybrid matchers), see [Li and 
Clifton, 2000], [Castano et al., 2000], [Madhavan et al., 
2001] or in series (composite matchers), see for instance 
[Doan et al., 2002], [Do and Rahm, 2002]. 

The idea of generic (syntactic) matching was first pro-
posed by Phil Bernstein and implemented in Cupid sys-
tem [Madhavan et al., 2001]. Cupid implements a com-
plicated hybrid match algorithm comprising linguistic 
and structural schema matching techniques, and com-
putes normalized similarity coefficients with the assis-
tance of a precompiled thesaurus. COMA [Do and Rahm, 
2002] is a generic schema matching tool, which imple-
ments more recent composite generic matchers. With 
respect to Cupid, the main innovation seems to be a more 
flexible architecture. COMA provides an extensible li-
brary of matching algorithms; a framework for combin-
ing obtained results, and a platform for the evaluation of 
the effectiveness of the different matchers.  

A lot of state of the art syntactic matching techniques 
exploiting weak semantic element-level matching tech-
niques have been implemented. For instance, in COMA, 
schemas are internally encoded as DAGs, where the ele-
ments are the paths, which are analyzed using string 
comparison techniques. Similar ideas are exploited in 
Similarity Flooding (SF) [Melnik et al., 2002]. SF is a 
hybrid matching algorithm based on the ideas of similar-
ity propagation. Schemas are presented as directed la-
beled graphs; the algorithm manipulates them in an itera-
tive fix-point computation to produce mappings between 
the nodes of the input graphs. The technique uses a syn-
tactic string comparison mechanism of the vertices’ 
names to obtain an initial mapping, which is further re-
fined within the fix-point computation.  

Some work has also been done in strong semantics 
element-level matching. For example, [Castano et al., 
2000] utilizes a common thesaurus, while [Madhavan et 
al., 2001] has a precompiled thesaurus. In MOMIS [Cas-
tano et al., 2000] element-level matching using a com-
mon thesaurus is carried out through a calculation of the 
name, structural and global affinity coefficients. The the-
saurus presents a set of intensional and extensional rela-
tions, which depict intra- and inter-schema knowledge 
about classes, and attributes of the input schemas. All 
these systems implement syntactic matching and, when 
moving from element-level to structure-level matching, 
don’t exploit the semantic information residing in the 
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graph structure, and just translate the element-level se-
mantic information into affinity levels. 

As far as we know the only example where element-
level and a simplified version of structure- level strong 
semantics matching have been applied is CTXmatch 
[Serafini et al, 2003]. In this work SAT is used as the 
basic inference engine for structure-level matching. The 
main problem of CTXmatch is that its rather limited in 
scope (it applies only to concept hierarchies), and it is 
hard to see the general lessons behind this work. For in-
stance, the authors have made no attempt to do a thor-
ough comparison of their approach with the other match-
ing techniques, or to highlight its strengths and weak-
nesses. This paper provides the basics for a better under-
standing of the work on CTXmatch. 

6 Conclusions and Future Work 
In this paper we have stated and analyzed the major match-
ing problems e.g., matching database schemas, XML sche-
mas, conceptual hierarchies and ontologies and shown how 
all these problems can be defined as a more generic problem 
of matching graphs. We have identified semantic matching 
as a new approach for performing generic matching, and 
discussed some of its key properties. Finally, we have iden-
tified SAT as a possible way of implementing semantic 
matching, and proposed an iterative semantic matching ap-
proach based on SAT. 

This is only very preliminary work, some of the main 
issues we need to work on are: develop an efficient im-
plementation of the system, do a thorough testing of the 
system, also against the other state of the art matching 
systems, study how to take into account attributes and 
instances, analyze how to extract semantics from sche-
mas (also taking into account integrity constraints), and 
so on. 
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