
Engaging Prolog with RDF

Borys Omelayenko
Department of Computer Science

Vrije Universiteit, De Boelelaan 1081, 1081hv,
Amsterdam, the Netherlands

borys@cs.vu.nl

Abstract

Prolog has been often used to represent the axioms
and inference over RDF data models often by con-
verting all the data to plain-text Prolog facts and
programs. In this paper we present thePRODEF
infrastructure for using Prolog for inferencing over
RDF data on the Web by representing Prolog pro-
grams in RDF, allowing them to be distributed over
the Web and even incomplete, and represent rea-
soning results in a form suitable for further auto-
matic processing.

1 Introduction

RDF and RDF Schema lack the means for representing ax-
ioms and rules, which are still necessary to build any kind of
applications and different approaches originating from differ-
ent motivations and requirements have been proposed. The
same time Prolog[Bratko, 1990] has been extensively used
to inference over data models represented in RDF,1 however,
mostly RDF and Prolog have been connected in an ad-hoc
manner, primarily by converting everything to plain-text Pro-
log facts and programs.

We intend to build the infrastructure depicted in Figure 1,
where a special wrapper connects the Prolog engine to the
Web. It parses a Prolog program represented in RDF and
downloads the RDF data modules to be processed with the
program. The program itself is distributed to several loca-
tions and the predicates used in one location may be defined
in other places. The predicates, especially resource-critical or
performing some specific function, may even be implemented
in other languages and accessible as web services. Finally, the
inference results are represented in RDF for further automatic
processing.

We believe that such an infrastructure should possess the
following basic properties:

1. The language should have clear semantics, sufficient and
stable tool support, and existing expertise in terms of
available literature, courses, and skills

1http://www.google.com/search?q=using+
prolog+rdf

Infrastructure

RDF

RDF

RDF

PRoDeF wrapper

RDF RDF

Prolog engine
Data

Program
Predicates in other locations

Predicates as
Web Services

Inference
results

Figure 1: The infrastructure.

2. The Prolog programs should be available on the Web in a
distributed manner possibly decomposed into pieces and
represented in RDF according to a certain RDF Schema

3. RDF data should be interpreted in Prolog

4. Program execution should assume that some parts of the
program may require some time to download from dif-
ferent locations or being not available at the moment

5. A clear algorithm for converting plain-text Prolog pro-
grams to and from their RDF representation should be
provided

6. The reasoning results should be represented in RDFand
should allow updating the data

7. The rule language should allow representing the con-
straints at the RDF Schema level and smoothly link them
to instance data .

We try to meet these requirements in the Prolog wrapper
discussed in this Chapter.

1.1 Where are the Limits of Ontology Languages?
The ontology languages for the Semantic Web incorporate
certain means for representing axioms that can be then used
without any additional rule language.

RDF and RDF Schema contain the axioms needed
to form the object-attribute language for represent-
ing the conceptual models: rdfs:subClassOf and
rdfs:subPropertyOf are used to organize classes

and properties into hierarchies,rdfs:domain and
rdfs:range specify the attachment of properties to
classes. This set of axioms is often difficult to use in practice,
e.g. the conjunctive semantics of multiple occurrences of
rdfs:domain or rdfs:range means that a property
may be attached to an intersection of one or more classes,
and not a union (disjunctive semantics). This poses some
problems whenever a property has to be attached to several
classes.

In OWL RDF Schema is extended and several groups of
axioms are introduced. These are:

Equality axioms sameClassAs ,
samePropertyAs , sameIndividualAs and
differentIndividualFrom to denote that two
classes, properties or individual are equivalent;

Property characteristics are introduced to de-
fine property characteristics inverseOf ,
TransitiveProperty , SymmetricProperty
to define inverse, transitive and symmetric properties;
allValuesFrom and someValuesFrom to define
property range restrictions;

Cardinality constraints of properties.

This set of axioms allows modelling numerous frequently
needed constraints. For example thebossOf relation is of-
ten used to represent organizational structures. To model its
transitivity in RDF Schema one needs to create and interpret
a special rule, while it can be directly modelled in OWL with
the TransitiveProperty property. However, in many
organizations the set of bosses of an employee who can ac-
tually give him the orders is limited to two levels: the imme-
diate boss and his/her immediate boss, and not a single step
further. This axiom can not be modelled in OWL directly and
a rule is needed to model this two-steps transitivity.

Another sort of examples include the axioms using value
constraints, e.g. to classify some offers according to price
where cheap offers would assume0 EUR < price <
500 EUR.

1.2 Rule Languages for RDF
Many applications require rules and axioms that can not be di-
rectly represented in RDF Schema or OWL. However, RDF
and RDF Schema do not possess any rule language, that is
caused by numerous difficulties that are expected in standard-
ization of such a language at present time. However, this need
has been widely understood in the Semantic Web community
and several approaches for such a rule language have been
proposed.

Triple [Sintek and Decker, 2001] is proposed as an RDF
query and inference language, providing full support for re-
sources and their namespaces, models represented with sets
of RDF triples, reification, RDF data transformation, and an
expressive rule language for RDF. The language is intended
to be used with a Horn-based inference engine.

The RuleML2 initiative aims at defining a shared rule
markup language to specify forward (bottom-up) and back-
ward (top-down) rules in XML. The language being devel-

2http://www.dfki.uni-kl.de/ruleml/

oped within the initiative is essentially an XML serialization
for the rules, and it specifies the rules in a generic form of
a head and a body consisting of atomic predicates with pa-
rameters that can be also interpreted in Prolog. RuleML is
probably the only rule language for RDF that defines an RDF
syntax for the rules themselves.

However, there are several differences in the goals pursued
in RuleML andPRODEF. These are:

RDF facts. RuleML focuses at a universal representation of
the rule on the (Semantic) Web and thus makes no as-
sumptions about the structure and arity of the facts,
while any inference engine dealing with RDF naturally
deals with binary RDF facts only;

Implementation. RuleML is not linked to a specific infer-
ence engine and thus needs to provide its own inter-
pretation of the rules together with a linkage to in-
ference engines. PRODEF follows the opposite ap-
proach tightly connecting the RDF serialization to stan-
dard Prolog semantics. From the engine implementation
side, PRODEF relies on the decades-long experiences
in making Prolog engines;

RDF Schema interpretation. The RDF serialization used
in RuleML makes no commitment to RDF Schema and
usesrdf:Bag s andrdf:Seq uences to represent the
rules that are not representable in RDF Schema.

The RuleML initiative has been hosting a workshop on rule
languages for the Semantic Web where a number of initiatives
have been presented.3

Squish4 also known as RDQL is somewhat similar to SQL
but is further elaborated to query RDF triples. This similarity
to SQL allows seamless integration with database back-ends.
However, querying in Squish is bounded to plain RDF, with-
out any support for RDF Schema or high-level languages.

The Sesame RDF querying engine[Broekstraet al., 2002]
uses the RDF Query Language RQL.5 Similar to Squish,
RQL statements contain the select-from-where construct,
however, an RQL interpreter is supposed to understand RDF
Schema axioms: transitivity of the subclass-of relation, its
connection tordf:type , etc.

A comparison of different RDF query languages is pub-
lished on the W3C web site6 together with query samples and
may serve as an interesting information source.

The Object Constraint Language OCL7 is the expression
language for the Unified Modeling Language (UML) that al-
lows specifying constraints about the objects, links, and prop-
erty values of UML models. OCL is a pure expression lan-
guage and any OCL expression is guaranteed not to change
anything in the model. Whenever an OCL expression is eval-
uated, it simply delivers a value. OCL is a modelling lan-

3http://www.soi.city.ac.uk/˜msch/conf/
ruleml/

4http://swordfish.rdfweb.org/rdfquery/
5http://sesame.aidministrator.nl/

publications/rql-tutorial.html
6http://www.w3.org/2001/11/

13-RDF-Query-Rules/
7www.omg.org/docs/ad/97-08-08.pdf

Language Requirements from Section??
1:Exp. 2:Web 3:RDF 4:Exec. 6:Res.

Triple – – + – –
RuleML – +/– – – –
RQL + – + – (planned)
Squish – – – – –
PAL +/– – – – –
OCL +/– – – – –
Prolog + +? +? +? +?

? in PRODEF

Table 1: An estimate of the popularity of each of the rule
language proposals for RDF, as queried on 7 January 2003

Query string Papers in CiteSeer Google results
RDF and Triple 4 282
RDF and OCL 2 591
RDF and RuleML 11 803
RDF and Prolog 31 16,100

Table 2: An estimate of the popularity of each of the rule
language proposals for RDF, as queried on 7 January 2003

guage rather than a programming language and it is not pos-
sible to write program logic or flow-control in OCL. As a side
effect, not everything in OCL is promised to be directly exe-
cutable.

The Prot́eǵe axiom language PAL8 is used together with
the Prot́eǵe editor9 to specify knowledge base constraints.
The syntax of PAL is a variant of the Knowledge Interchange
Format (KIF) and it supports KIF connectives but not all of
KIF predicates and statements. PAL is not really targeted to-
wards RDF and RDF Schema.

The RDF parser for SWI Prolog is a very relevant and pop-
ular initiative on using Prolog with RDF. The parser is capa-
ble of converting RDF documents into Prolog facts and then
utilize Prolog for reasoning, but it does not address RDF rep-
resentation of Prolog programs themselves.

Table 1 represents a summary showing the features pos-
sessed by the languages in respect to the desired features
listed in Section??. As we can see none of the languages
fulfills all of them with RQL being the closest.

Interesting to mention the estimate of the popularity of the
rule and query languages. We queried the Web for relevant
documents as presented in Table 2. The table illustrates that
Prolog has been frequently used with RDF, however, with a
relatively small amount of publications made on that. Ob-
viously, these results are a subject of various distortions and
they do not indicate more than they do. However, it is obvi-
ous that none of the newly proposed languages has the tool
support able to compete with the decades-long experience in
Prolog tool development.

8http://protege.stanford.edu/plugins/
paltabs/pal-documentation/

9http://protege.stanford.edu/

2 The Usage Scenario
Consider the prototypical scenario shown in Figure 2 that de-
picts an RDF document that has a certain constrainta at-
tached to it with thegoal property. It refers to the defini-
tion of a made in another file as aPRODEF program. To
verify the document over the constraint a Prolog parser needs
to access the definition ofa, that is, in turn, defined overb
andc , wherec is again defined in another file. In this way
a parser needs to go along therdfs:isDefinedBy links
attached to the predicates and extract their definitions from
different locations on the Web. At certain moment all the
predicates would be collected, defined in terms ofl triple
ando triple ’s, and the constraint can be verified.

3 The Ontology for PRODEF
The ontology forPRODEF represents the syntactic structure
of Prolog programs and is depicted in Figure 3. In this on-
tology we do not try to represent the execution semantics of
the programs, but treat program text as data and encode it as
data, leaving its interpretation to a Prolog engine.

The modules of Prolog code are modelled with the class
PrologModule that contains module’s logical name rep-
resented with therdf:id attribute and physical location
of the module encoded with therdfs:isDefinedBy at-
tribute.10 A module may export several predicates linked with
theexport property, call several directives, e.g.consult ,
as mentioned in thecalls property, and contain rule
definitions . PrologModule s are instantiated with
RDF files with program code located somewhere on the Web.

The classPredicateName represents a predicatename
that requires certainnumberOfParameters . The name
tag is targeted at a human user while therdf:id ’s of the
PredicateName instances represent their identifiers used
by the parser. The ontology includes several pre-defined in-
stances ofPredicateName reserved foro triple and
l triple that correspond to the fact names reserved in
PRODEF to represent RDF data, andbagof , setof and
forall that correspond to the special Prolog constructs.
ThePredicateName ’s represent the predicate names with-
out any connection to their possible use with different param-
eters.

These are represented with the
ClauseWithParameters class that connects a
predicate name to a list ofparameter s. The parame-
ters are organized as a list of instances of theParameter
class, where each instance corresponds to oneparameter
(a variable or a constant) and points to the next parameter in
the list.

For example, an instance ofPredicateName may look
like the following:

<PredicateName rdf:id="MyPredicate"
name="myPredicate" numberOfParameters="3"/>

and correspond tomyPredicate/3 ,11 and an instance of
ClauseWithParameters may look like this:

10rdfs:isDefinedBy belongs to RDF and RDF Schema and
are not presented in the figure.

11Some of the conventions on encoding predicate names in Prolog
that are lifted inPRODEF as described later

Linking Prolog Programs on the
Web

Data.rdf

Data.rdf a
goal

isDefinedBy

Other_rules.rdf

c(Z):- …

a_in_Prolog.rdf

a(X,X):-b(X),c(Y).
b(X):- …

isDefinedBy

Missing
isDefinedBy
means ‘here’

Product
price

55€

supplier Supplier

HP

name

Figure 2: The usage scenario forPRODEF: a data module namedData.rdf contains two objects: objectProduct with prop-
ertiesPrince andsupplier linking it to the second objectSupplier with propertyname. This data module has to comply
the constraints represented by thegoal predicate nameda. In turn,a is defined in another file nameda in Prolog.rdf as
represented by the RDF Schema propertyisDefinedBy . The definition ofa consists of two predicatesb defined in the same
file asa, andc defined in another file namedOther rules.rdf .

<ClauseWithParameters rdf:id="CLAUSE03"
predicate="MyPredicate"
parameter="PAR01"/>

<Parameter rdf:id="PAR01"
nextParameter="PAR02"
parameter="VAR01"/>

<Parameter rdf:id="PAR02"
parameter="CONST01"/>

<Variable rdf:id="A"
name="A"/>

<Constant rdf:id="CONST00"
value="This is a string constant"/>

and correspond tomyPredicate(A,’This is a
string constant’) .

Similar to the predicates, the RDF data triples are mod-
elled as the instances ofClauseWithParameters .
Figure 5 shows the relation between the standard RDF
modelling of RDF triples and the one used inPRODEF.
A certain triple Product01, price, 55 EUR (e.g.
triple #23) is modelled in RDF with an instance of
rdf:Statement with the property rdf:Predicate
pointing to the property name, and inPRODEF – with
an instance of ClauseWithParameters with the
property predicate . The rdf:Subject is mod-
elled in PRODEF with the first Parameter linked
to ClauseWithParameters with the property
parameters . The rdf:Object is modelled with
the secondParameter linked to the previous one with the
nextParameter property.

However, the modelling and interpretation of RDF triples
is primarily done with the supporting tools and not by a hu-
man user. Accordingly, the different ways of modelling the
triples in RDF andPRODEF may not affect the utility of the

rdf:Statement
rdf:Subject

rdf:Predicate rdf:Object

ClauseWithParameters

Product01price 55 EUR

parameters

Parameter

nextParameter

Parameter

23:

PredicateName

predicate

rdf:Property rdf:Resource rdf:Resource

Figure 5: The way RDF statements are aligned toPRODEF
clauses.

ontology.
Figure 4 illustrates how a piece of a Prolog program may

be encoded inPRODEF. The figure contains the sample code
defining transitivesubClassOf predicate and the tree illus-
trating its RDF representation inPRODEF. The tree contains
two branches:RULE000 and RULE001 corresponding to
the two (disjunctive) definitions ofsubClassOf and point
to thePiR:predicate namesubClassOf . RULE000
comes with the listPAR000 of PiR:parameters , con-
taining PiR:parameter X andPiR:nextParameter
Y. The PiR:body of the rule consists of the clause
CLS000 pointing to the nameo triple and its pa-
rameters X, Y, and constant ’...#subClassOf’ .
In a similar way RULE001 has its PiR:body clause
CLS001 with PiR:parameters X , Z, and constant
’...#subClassOf’ , and the PiR:nextClause
CLS002 pointing to PiR:predicate subClassOf

C
la

us
eW

ith
Pa

ra
m

et
er

s

,
 ;

P
ar

am
et

er

, =
=

\=
=

>
...

P
re

di
ca

te
N

am
e

in
te

ge
r

lit
er

al

C
on

st
an

t

lit
er

al

V
ar

ia
bl

e

lit
er

al

ba
go

f
se

to
f

H
ea

dP
ar

am
et

er

P
ro

lo
gM

od
ul

e

R
ul

e

o_
tr

ip
le

l_
tr

ip
le

B
ag

s

fi
nd

al
l

co
nn

ec
to

r

op
er

at
or

nu
m

be
rO

fP
ar

am
et

er
s

na
m

e

va
lu

e
na

m
e

io
io

ne
xt

C
la

us
e

pa
ra

m
et

er
s

pr
ed

ic
at

e

ca
lls

*

de
fin

iti
on

s*

ex
po

rt
*

ne
xt

P
ar

am
et

er

pa
ra

m
et

er
pa

ra
m

et
er

pa
ra

m
et

er

bo
dy

pa
ra

m
et

er
s

pr
ed

ic
at

e

io
io

is
a

go
al

io

is
a

Figure 3: The ontology for representing Prolog programs in RDF

C
L

S0
01

C
L

S0
02

o_
tr

ip
le

PA
R

00
7

R
U

L
E

00
0

C
L

S0
00

su
bC

la
ss

O
f

PA
R

00
0

PA
R

00
3

C
O

N
ST

00
0

PA
R

00
4

PA
R

00
6

Y

PA
R

00
1

Y
P

A
R

00
8

C
O

N
ST

00
1

PA
R

00
9

R
U

L
E

00
1

PA
R

00
5

Y

X

PA
R

01
0

Z
PA

R
01

1

X

Y

X

PA
R

00
2

X

Z
...

#s
ub

C
la

ss
O

f
...

.#
su

bC
la

ss
O

f

P
iR

:n
ex

tC
la

us
e

P
iR

:p
re

di
ca

te

P
iR

:p
ar

am
et

er
s

P
iR

:b
od

y

P
iR

:p
re

di
ca

te

P
iR

:p
ar

am
et

er
s

P
iR

:p
ar

am
et

er
P

iR
:n

ex
tP

ar
am

et
er

P
iR

:p
ar

am
et

er
P

iR
:p

ar
am

et
er

P
iR

:p
ar

am
et

er
P

iR
:n

ex
tP

ar
am

et
er

P
iR

:b
od

y

P
iR

:p
re

di
ca

te

P
iR

:p
ar

am
et

er
s

P
iR

:p
ar

am
et

er

P
iR

:p
ar

am
et

er
P

iR
:n

ex
tP

ar
am

et
er

P
iR

:p
ar

am
et

er
P

iR
:n

ex
tP

ar
am

et
er

P
iR

:p
ar

am
et

er

P
iR

:n
ex

tP
ar

am
et

er

P
iR

:p
ar

am
et

er

P
iR

:p
ar

am
et

er
P

iR
:n

ex
tP

ar
am

et
er

P
iR

:p
ar

am
et

er
P

iR
:n

ex
tP

ar
am

et
er

P
iR

:p
re

di
ca

te

P
iR

:p
ar

am
et

er
s

P
iR

:p
re

di
ca

te

P
iR

:p
ar

am
et

er
s

P
iR

:p
ar

am
et

er
va

lu
e

va
lu

e

su
bC
la
ss
Of
(X
,Y
)
:-

 \
_t
ri
pl
e(
X,
'h
tt
p:
//
ww
w.
w3
.o
rg
/T
R/
19
99
/P
R-
rd
f-
sc
he
ma
-1
99
90
30
3\
#s
ub
Cl
as
sO
f'
,Y
).

su
bC
la
ss
Of
(X
,Y
)
:-

o\
_t
ri
pl
e(
X,
'h
tt
p:
//
ww
w.
w3
.o
rg
/T
R/
19
99
/P
R-
rd
f-

sc
he
ma
-1
99
90
30
3\
#s
ub
Cl
as
sO
f'
,Z
),
su
bC
la
ss
Of
(Z
,Y
).

su
bC
la
ss
Of
(X
,Y
)
:-

 o
_t
ri
pl
e(
X,
'h
tt
p:
//
ww
w.
w3
.o
rg
/T
R/
19
99
/P
R-
rd

f-
sc
he
ma
-1
99
90
30
3#
su
bC
la
ss
Of
',
Y)
.

su
bC
la
ss
Of
(X
,Y
)
:-

 o
_t
ri
pl
e(
X,
'h
tt
p:
//
ww
w.
w3
.o
rg
/T
R/
19
99
/P
R-
rd

f-
sc
he
ma
-1
99
90
30
3#
su
bC
la
ss
Of
',
Z)
,s

ub
Cl
as
sO
f(
Z,
Y)
.

Figure 4: An example of a Prolog program being encoded in RDF

and parametersZ andY.

3.1 RDF facts

The facts used by the rule language should not be abstract and
disconnected but need to be grounded to RDF statements.

The facts in Prolog are represented with statements of an
arbitrary arity indicating that one or more string-valued con-
cepts are in a certain relation to each other.

For example, the statementprice(’Product’,’55
EUR’) denotes that something called ‘Product’ is in relation
‘price’ to something called ‘55 EUR’.

In RDF the facts are represented with the RDF triples.
Each triple of the form(object,property,value) de-
notes that two objects,object andvalue are in relation
property to each other.

For example, the previous statement can be re-written
as RDF triple(’Product’,price,’55 EUR’) , which
may be encoded in RDF/XML as the following:

<rdf:Description rdf:about="Product"
price="55 EUR"/>

In RDF only binary facts are allowed and a thus only
binary facts need to be represented to Prolog. We
interpreted them in a uniform way: each RDF triple
(object, property, value) where value takes
rdfs:Literal strings is represented with Prolog fact
l triple(object,property,value) , a triple with
an rdf:Resource value is translated into Prolog fact
o triple(object,property,value) . No other
facts are allowed.

This interpretation is similar to the one used in SWI-
Prolog12 where the result of importing an RDF file is a list of
rdf(Subject, Predicate, Object) triples, where
Subject is either a plain resource (an atom), or one of
the termseach(URI) or prefix(URI) with the obvi-
ous meaning.Predicate is either a plain atom for explic-
itly non-qualified names or a termNameSpace:Name. If
NameSpace is the defined RDF name space it is returned as
the atomrdf . Finally, anObject is represented by its URI,
aPredicate or a term has the formatliteral(Value)
if they take literal values.

3.2 Names for Predicates and Variables

Historically, Prolog imposes certain constraints on the names
for predicates and variables that originate from the plain-text
encoding used in Prolog programs. In standard Prolog predi-
cate names are represented with the identifiers starting with a
small letter, and variable names start with a capital letter. This
way of name encoding looks a bit archaic from the XML and
RDF perspective.

We encode both predicates and variables as RDF ob-
jects whoserdf:ID ’s correspond to their identifiers (or
names). These objects are easily distinguished because
they are defined as the instances of a certain class, either
PredicateName , Variable or a Constant . Accord-
ingly, we lift the restriction on the case for the first letter, and

12http://www.swi-prolog.org/packages/rdf2pl.
html

allow the use of different namespaces as the qualifiers to dis-
tinguish different predicates with the same names on the Web.

Opposite to the predicates, the variables are used only lo-
cally within a single rule definition and may not be accessed
from the outside.

Predicate names make some sense only if there is a link
to the location where they are actually defined. We use
the rdfs:isDefinedBy property of a resource to denote
the file where the predicate is actually defined.[?] defines
rdfs:isDefinedBy as ‘an instance ofrdf:Property
that is used to indicate a resource defining the subject re-
source. This property may be used to indicate an RDF vocab-
ulary in which a resource is described’ and thus is perfectly
suitable for this purpose.

3.3 Namespaces

In XML and RDF namespaces are used as qualifiers for the
names allowing two equivalent names to be distinguished
globally by having different qualifiers. We use the names-
paces as parts of predicate and variable names. Essentially
the namespaces for the variables that are used only within the
predicate definitions are not that important as for the predi-
cates that may be accessed globally.

4 The Execution ofPRODEF Modules on the
Web

The Prolog programs on the Web are executed in a different
way than in classical Prolog systems and the inference results
are produced for further automatic processing rather than di-
rect human consumption.

4.1 Modules and Goals

Prolog programs are decomposed into modules that are im-
ported by the engine by executing the directiveconsult . In
the Web scenario the modules may well be distributed all over
the Web and consulting a module would require prior down-
loading of the correspondent RDF file. Accordingly, instead
of a local file nameconsult need to receive an URL of the
module.

In PRODEF each RDF data module contains two parts:
RDF data itself and a possible annotation of therdf:RDF
tag with the specialpir:goal property linking it to the goal
description, a set of axioms that are applicable to the data
module:
<rdf:RDF pir:goal="http://...goal.rdf">
here goes RDF data
</rdf:RDF>

The goal descriptions are special objects that define the ax-
ioms, the applicable data modules, and the interpretation of
the axioms. It consists of (Figure 6):

axioms pointing to the axiom with thename property and
its definition with therdf:isDefinedBy property.
The axioms are subclassed intoPositiveAxiom s and
NegativeAxiom s to specify whether the predicate is
a positive test those results represent correct data, or a
negative test that results in the incorrect data.

A
xi

om

lit
er

al

D
at

as
et

lit
er

al
Po

si
tiv

eA
xi

om
R

ep
os

ito
ry

N
eg

at
iv

eA
xi

om

G
oa

l

L
oc

at
io

n

na
m

e
ur

l
is

a
is

a
is

a

ax
io

m
s*

da
ta

se
ts

*

is
a

Figure 6: The structure of a goal.

datasets that are applicable to the axioms. Each dataset
may consist of several locations pointed with theirurl s,
or a query made in a repository.

Quite often it happens that a certain location with a piece
of a program is not accessible at the moment. What should
if the definition of a certain predicate can not be found? A
possible solution path is to provide the Prolog engine with
a parameter specifying server’s behavior: to wait, to ignore
the predicate, or to fail. This failure is then included in the
reasoning results.

4.2 Reasoning Results
The Prolog engine and the wrapper return two types of infor-
mation:

The list of failed locations that could not be accessed and
the data or program modules could not be downloaded;

Prolog inference result: success , failure , yes , or
no ;

The list of solutions in form of tuples (x1, ..., xn) that
correspond to the goal predicate with arguments
(X1, ..., Xn) returned in case ofsuccess .

We naturally represent the solutions as a bag of RDF ob-
jects, each of which containsn properties with the names
X1, ..., Xn and the valuesx1, ..., xn.

If a goal is defined as a conjunction of several predicates
goal(X1, ..., Xn) : −P1(X1, ..., Xm), ..., Pk(X1, ..., Xm)
where eachPi receives some or all of then arguments of
goal, then we may represent each resulting object as a set
of objectsP1, ..., Pk, each of which corresponds to one of
the predicates defining the goal. It may then make sense to
explicitly represent these predicates in the reasoning results
and process them further separately.

Accordingly, the Prolog interpreter receives a parameter
‘detail level of the results’1, 2, ...,∞ that specifies the num-
ber of objects representing each result, where∞ forces the
results to be fully decomposed. However, further elaboration
of this scheme is rather a subject of further research.

5 Summary
In the paper we propose a solution for the problem of repre-
senting Prolog programs on the (Semantic) Web and dealing
with distributed data modules in RDF.

A number of questions remain open:

• How the language should be restricted (or better to say,
which extensions to Prolog should be prohibited). Pri-
marily this refers to the problems of batch execution of
the programs that may not use any graphic user interface
nor console output;

• The definition of an interface betweenPRODEF and the
predicates implemented with the other languages and
available as web services;

• A number of issues concerning distributed program ex-
ecution remain open.

Extra information together with the ontologies, exam-
ples and occasional tool support is available at thePRODEF
homepage.13

References
[Bratko, 1990] Ivan Bratko.Prolog Programming for Artifi-

cial Intelligence. Addison-Wesley, 1990.

[Broekstraet al., 2002] Jeen Broekstra, Arjohn Kampman,
and Frank van Harmelen. Sesame: A Generic Architec-
ture for Storing and Querying RDF and RDF Schema. In
Ian Horroks and James Hendler, editors,Proceedings of
the First International Semantic Web Conference (ISWC-
2002), number 2342 in LNCS, pages 54–68, Sardinia,
Italy, June 9-12 2002. Springer-Verlag.

[Sintek and Decker, 2001] Michael Sintek and Stefan
Decker. TRIPLE - An RDF Query, Inference, and Trans-
formation Language. InProceedings of the Workshop
on Deductive Databases and Knowledge Management
(DDLP-2001), October 20-22 2001.

13http://www.cs.vu.nl/˜borys/PiR/

