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Abstract 
Abstract:  We discuss the development of an environment 
for formal knowledge engineering.  The Sigma system is an 
advance over previously developed systems in that it 
integrates a number of modern ontology development tools, 
which has motivated a number of research issues.  Primary 
components include an ontology browsing and editing 
environment, a first order logic inference system and a 
natural language to logic translator.  Although largely 
independent of any particular ontology, it supports a number 
of publicly available formal ontologies. 
 

        Introduction  

 Human knowledge is complex, and human language is 
very expressive.  Computer systems that process natural 
language have been limited to a shallow level of 
understanding by the very complexity of the information 
that they are expected to handle.  Conversely, systems that 
manage information in databases have been left to reason 
either in very narrow and pre-determined ways, or to 
perform processing tasks that must be interpreted by 
humans. 
 It is desirable to employ computer languages for 
representing knowledge that are as expressive as possible, 
and as close to the expressiveness of human language.  
Expressiveness does have a computational burden.  In the 
opinion of the author, the best compromise available for 
many knowledge representation efforts is first order logic.  
While there are other choices, such as description logic and 
higher order logic, they represent departures from a middle 
ground.  First order logic is undecidable, but can be made 
tractable for certain kinds of reasoning, which will be 
detailed later.  Description logic (Baader, et al, 2003) has 
some very attractive formal properties, but is significantly 
less expressive than first order logic, and therefore limits 
the knowledge engineer’s ability to express the semantic 
content of statements found in normal human discourse.  
Higher order logic (Carreno et al, 2002) on the other hand 
is much harder to reason with. 
 The Sigma system was designed to integrate several 
different kinds of tools for working with knowledge in first 
order logic. 

Browsing and Editing 
The Sigma system contains several different sorts of 

browsers for viewing formal knowledge bases.  The most 
basic component is a term browser, which presents all the 
statements in which a particular term appears.  The 
statements are sorted by argument position and then the 
appearance of the term in rules and non-rule statements are 
then shown.  All the statements are hyperlinked to the terms 
that appear in them. 

Two types of tree browser are provided.  One provides 
an automatic graph layout.  Another shows a textual 
hierarchy.  The user can chose the term to start with, the 
number of “levels” that should be presented from the term, 
and the binary relation to chose as the predicate that links 
the different nodes in the graph.  For example, if the user 
asks for a graph of the term IntentionalProcess and for 
the subclass relation, the system will go “up” the graph to 
display the term Process, and down the graph to display 
the terms Keeping, Guiding, Maintaining etc.  The user 
can ask for more levels up or down the graph.  Note that 
any relation can be chosen so for example a presentation of 
partonomies, or attribute hierarchies is also supported by 
choosing the relations part and subAttribute 
respectively. 

The editing system is currently rather rudimentary, 
consisting of the ability to type formulae and have some 
simple syntax and other error checking performed.  We 
plan to offer a frame-based editing system similar to, or 
incorporating open-source components from, the Protégé 
(Gennari et al, 2002) system. 

We have developed some more sophisticated tools for 
collaborative knowledge engineering.  The System for 
Collaborative Open Ontology Production (SCOOP) (Pease 
& Li, 2003) supports an automated workflow process for 
development of ontologies and resolution of conflicts 
among ontologies.  The SCOOP system employs a theorem 
prover to detect inconsistencies among ontologies. 

SCOOP addresses several types of inconsistencies.  The 
first we term vertical inconsistency.  This refers to when a 



set of ontologies are loaded and one ontology has a 
contradiction with another ontology on which it depends.  
Inconsistency of this type is never allowed, because from a 
contradictory knowledge base, any proposition can be 
concluded to be true.  SCOOP enforces a workflow process 
that requires a resolution to such a situation. 

The second kind of inconsistency we term horizontal 
inconsistency.  This refers to a situation in which 
knowledge products created by different knowledge 
engineers, and which do not have a mutual dependency, are 
mutually contradictory.  SCOOP alerts developers to such a 
situation, but does not require that it be eliminated.  It is 
possible for two knowledge bases to represent different 
perspectives, which are contradictory, but locally valid. 

We employ the KIF (Genesereth, 1991) language and 
have a translator to and from DAML (Hendler & 
McGuinness, 2000).  A translator to and from Protégé 
(Gennari et al, 2002) is partially completed at this time. 

Language Generation 
 Each statement can also be presented as a natural 
language paraphrase similar to (Sevcenko, 2003).  Note 
that we also use Sevcenko’s language templates for English 
and Czech.  Each term in an ontology can be given a 
natural language presentation form, indexed by the human 
language.  For example, the SUMO term 
DiseaseOrSyndrome can be presented as “ disease or 
syndrome”  and an Italian presentation would be shown as 
"malattia o sindrome".  Combined with the English 
understanding mechanisms described below, this gives us a 
very rudimentary language translation capability. 
 Although presentation of terms is straightforward, 
presentation of statements is more complicated, and 
roughly patterned after C-language printf statements.  For 
example the relation “ part” , which states that one object is 
a part of another, has the corresponding language 
generation template “ %1 is %n a part of %2” .  The first 
argument to the logical relation is substituted for %1 etc.  
Note that this substitution is recursive, so that complex 
statements with nested formulae can be translated 
effectively.  The %n signifies that if the statement is 
negated, that the negation operator for the appropriate 
human language should be inserted in that position. 
 We currently have language templates for English, 
Czech, German and Italian.  Some work has been done on 
Hindi, Telugu, Tagalog and Russian. 

Natural Language Understanding 
 We take a restricted language approach to natural 
language understanding.  Deep understanding of 
unrestricted human languages is too hard with present 
technology.  Our approach is to create a restricted version 
of English, which is grammatical but more limited than true 
natural language.  Statements must be present tense 

singular.  Although different tense and number can be 
accepted, the system paraphrases such sentences into a 
present tense singular form.  Ambiguous word choices 
default to the most popular sense of the word, with an 
escape mechanism for the user to select a different sense.  
Anaphoric references are handled with a simple mechanical 
algorithm.  Some kinds of quantification (every, some, all) 
can be handled. 
 The current system is capable of taking simple English 
sentences and translating them into KIF, using terms from 
our SUMO upper ontology (described below).  We have 
mapped all 100,000 WordNet (Miller, et al, 1993) word 
senses (synsets) to SUMO, one at a time, by hand over the 
period of a year (Niles & Pease, 2003).  This endows our 
natural language translation system with a very large 
vocabulary.    

Our approach is presented more fully in (Murray, Pease 
& Sams, 2003). 

Inference 
 One basic issue is that of allowing variables in the 
predicate position. While the general case of this results in 
expressions being beyond first order logic, there is a 
slightly more restricted case, which is first order. A 
statement with a variable in the predicate position is only 
higher order if a quantifer ranges of all possible relations, 
rather than the finite set of relations in a particular 
knowledge base.  Since prepending another relation in front 
of every statement makes everything first order for such a 
restricted practical case, this therefore must mean that the 
statement wasn’t really higher-order in the first place. 
  There is also an issue with prohibiting statements as 
arguments to relations. When arguments to relations are 
statements, then such a statement is higher order. We could 
either have a quote operator or define a Statement class and 
require all predicates have their argument types defined 
(which would allow us to know in advance whether an 
argument is a Statement, and therefore needs to be 
implicitly quoted). A statement that has this issue is 
(believes John (likes Bob Mary)) 

Currently, such statements are quoted, and therefore 
become opaque first-order objects rather than statements. 

Another issue is row variables, for use in variable arity 
relations.  One proposed version of KIF (Hayes & Menzel, 
2001) has what are alternately called row, or sequence 
variables. They are denoted by the ’@’ symbol in KIF 
statements. They are analogous to the lisp @REST 
variable. This is not first order if the number of arguments 
it can "swallow up" is infinite. However, if row variables 
have a definite number of arguments, it can be treated like a 
macro, and becomes first order.  For example, 
(=> 
   (and 
      (subrelation ?REL1 ?REL2) 
      (holds ?REL1 @ROW)) 
   (holds ?REL2 @ROW)) 



 
would become 
 
(=> 
   (and 
      (subrelation ?REL1 ?REL2) 
      (holds ?REL1 ?ARG1)) 
   (holds ?REL2 ?ARG1)) 
 
(=> 
   (and 
      (subrelation ?REL1 ?REL2) 
      (holds ?REL1 ?ARG1 ?ARG2)) 
   (holds ?REL2 ?ARG1 ?ARG2)) 
 
etc. 
 Also note that this "macro" style expansion has the 
problem that unlike the true semantics of row variables, 
that it is not infinite.  If the macro processor only expands 
to five variables, there is a problem if the knowledge 
engineer uses a relation with six.  Because of that, Sigma’s 
syntax checker must prohibit relations with more arguments 
than the row variable preprocessor expands to. 

Default reasoning 
 
Given the example KB: 
 
(=> 
  (instance ?X Bird) 
  (canFly ?X)) 
 
(=> 
  (instance ?X Penguin) 
  (not  
    (canFly ?X))) 
 
(subclass Penguin Bird) 
 
We would like the second rule to override the first.  The 
general case of default reasoning is very difficult 
(Schlechta, 1997).  However, we believe that there is an 
easy way to address the most common case and get the 
utility we need.  Given a relation 
 
(exception <formula-specific> <formula2-general>) 
 
we can implement a macro that modifies the first formula 
above to exclude the exception specified and generate the 
KB 
 
(=> 
  (and 
    (instance ?X Bird) 
    (not (instance ?X Penguin)) 
  (canFly ?X)) 
 
(=> 
  (instance ?X Penguin) 
  (not  
    (canFly ?X))) 
 
(subclass Penguin Bird) 
 

 Of course, this is only easy in the specific case where 
two rules have opposite conclusions and the antecedent of 
one subsumes the other.  It’s possible that in easy cases we 
might be able to have Sigma even generate the 
(exception... clause that the macro will use. 
 The algorithm for the macro simply would be, given the 
(exception... statement, to negate the antecedent of the 
<formula-specific> and add it as a conjunction to the 
<formula2-general>.  Like other macros, this has 
implications for proof presentation that are also unresolved. 

Proof Presentation 
 Sigma includes several options for proof presentation.  
Despite the fact that most textbooks present proofs as linear 
structures, proofs are trees.  The same sub-proof may be 
used several times in reaching different intermediate 
conclusions.  While this is a byproduct of automated 
reasoning, it is rarely useful to the human user.  Therefore, 
Sigma eliminates redundant paths of reasoning in order to 
create a linear proof. 
 Sigma also has options for how it presents multiple 
proofs.  Often, the same proof, with the same proof steps, 
can be reached via a different search order.  This means 
that although two tree-structured proofs may be different, 
they may work out to be identical when redundant paths are 
removed and a linear proof structure generated.  Sigma 
supports an option for hiding such duplicate proofs. 
 On additional option is to suppress proofs that may have 
different steps but which lead to the same answer.  
Sometime it is useful to a knowledge engineer to see these 
alternate proofs, and sometime not. 

Reasoning with Equality 
 One problem in a first order theorem prover with 
procedural attachments for arithmetic is that the equality 
operator masks normal unification and inference.  Currently 
Sigma converts the SUMO term ’equal’ to ’=’ when sending 
assertions and queries to the theorem prover and then 
converts back for proof formatting.  We are experimenting 
with changing the name to ’eval’ and mapping that string to 
the theorem prover’s '='. 
 Our current idea is to have three predicates, one, which 
handles evaluation, one, which handles inference, and 
another, which combines the two. 
 
equalAsserted eval 
 
 
       equal 
 
The following examples of assertions and queries should 
make clear how this will work. 
 
assert:    
(equal (CardinalityFn Continent) 7) 
macro expands to:   
(eval (CardinalityFn Continent) 7) 
(equalAssigned (CardinalityFn Continent) 7) 



 
query:   
(eval (CardinalityFn Continent) ?X) 
result:   
(CardinalityFn Continent) 
 
query:  
(equalAssigned (CardinalityFn Continent) ?X) 
result:   
7 
 
query:    
(equal (CardinalityFn Continent) ?X) 

macro expands to:  
(eval (CardinalityFn Continent) ?X) 
(equalAssigned (CardinalityFn Continent) ?X) 

result:  
(CardinalityFn Continent) 
7 
 
query:   
(eval (AdditionFn 2 3) ?X) 

result:   
5 
 
query:   
(equalAssigned (AdditionFn 2 3) ?X) 
result:   
[no] 
 
query:   
(equal (AdditionFn 2 3) ?X) 

macro expands to:  
(eval (AdditionFn 2 3) ?X) 
(equalAssigned (AdditionFn 2 3) ?X) 

result:   
5 
 
The formal semantics of the macro is 
 
(=> 
  (equal ?X ?Y) 
  (eval ?X ?Y)) 
 
(=>  
  (equal ?X ?Y) 
  (equalAssigned ?X ?Y)) 

Ontology 
 The Sigma system has been designed to be as 
independent of a particular ontology as possible, but there 
are many features that are available when a standard 
ontology is used.  Current features are primarily to do with 
error checking.  Knowing a standard method for defining 
argument type restrictions, class-subclass relations and 

documentation allows us to alert the user when such 
statements are conflicting or not present. 
 We employ the Suggested Upper Merged Ontology 
(SUMO) (Niles & Pease, 2001) as the system’s standard 
ontology.  SUMO has been released to the public for free 
since its first version in December of 2000.  Now in its 47th 
version, the SUMO has been reviewed by hundreds of 
people and subject to formal validation with a theorem 
prover, to ensure that it is free of contradictions.  The 
SUMO contains roughly 1000 terms and 4000 statements, 
of which 750 are rules.  As mentioned above, it has been 
mapped by hand to the WordNet lexicon, which has acted 
as an additional check on completeness and coverage.  
 A number of domain ontologies have been created that 
extend SUMO and can be used in the Sigma system.  They 
include  

• A Quality of Service ontology, covering computer 
systems and networks 

• An ecommerce services ontology 
• An ontology of biological viruses 
• A financial ontology 
• An ontology of terrain features 
• Ontologies of weapons of mass destruction and 

terrorism 
• An ontology of government and governmental 

organizations 
• Taxonomies of the periodic table of the elements 

and industry types 

Related Work 
 There have been a number of ontology editing 
environments created including Ontolingua (Farquhar et al, 
1996), Ontosaurus (Swartout et al, 1996), Protégé (Gennari 
et al, 2002), and Cyc (Lenat, 1995).  Ontosaurus and Cyc 
both have inference components.  Cyc is the only system to 
contain a standard ontology.  Cyc also contains a natural 
language component although little or no public 
information about that work is available.  
 The GKB editor (Paley et al, 1997) is an example of a 
graphical ontology editor.  SNARK (Stickel et al, 1994), 
and Otter (Kalman, 2001) are examples of theorem provers.  
Many theorem provers have been tested on the 
CADE/TPTP (Sutcliffe et al, 2002) competitions.  
However, limited efforts have been made to apply formal 
first order theorem proving to expert system and common 
sense reasoning on large knowledge bases.  The Sigma 
system brings all these types of components together, and 
in the process, addresses a number of research issues that 
have not been evident in use of these separate components. 

Acknowledgements 
The author would like to thank Randy Schulz for his efforts 
on early versions of this system. 



References 
Baader, F., Calvanese, D., McGuinness, Nardi, D., and 
Patel-Schneider, P., (eds). (2003) The Description Logic 
Handbook Theory, Implementation and Applications, 574 
pp. ISBN: 0521781760 
 
Carreno, V., Munoz, C., and Tahar, S., (eds.) (2002). 
Theorem Proving in Higher Order Logics.  Proceedings of 
the 15th International Conference, TPHOLs 2002, 
Hampton, VA, USA, August 20-23, 2002.  Springer-
Verlag. 
 
Farquhar, A., Fikes, R., and Rice, J., (1996). The 
Ontolingua Server: a Tool for Collaborative Ontology 
Construction.  Proceedings of Tenth Knowledge 
Acquisition for Knowledge-Based Systems Workshop.  
Available at 
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/farquhar/farquha
r.html#RTFToC15  
 
Gennari, J., M. A. Musen, R. W. Fergerson, W. E. Grosso, 
M. Crubézy, H. Eriksson, N. F. Noy, S. W. Tu (2002). The 
Evolution of Protégé: An Environment for Knowledge-
Based Systems Development. Stanford SMI technical 
report SMI-2002-0943 .http://smi-web.stanford.edu/pubs 
/SMI_Abstracts/SMI-2002-0943.html 
 
Genesereth, M., (1991). ``Knowledge Interchange Format'', 
In Proceedings of the Second International Conference on 
the Principles of Knowledge Representation and Reasoning, 
Allen, J., Fikes, R., Sandewall, E. (eds), Morgan Kaufman 
Publishers, pp 238-249. 
 
Hayes, P., and Menzel, C., (2001). A Semantics for 
Knowledge Interchange Format, in Working Notes of the 
IJCAI-2001 Workshop on the IEEE Standard Upper 
Ontology. 
 
Hendler, J., and McGuinness, D., (2000), The DARPA 
Agent Markup Language, IEEE Intelligent Systems, 15 (6) 
(November), 67-73. Available: 
http://www.ksl.stanford.edu/people/dlm/papers/ieee-
daml01-abstract.html 
 
Kalman, J. K. (2001) Automated Reasoning with OTTER. 
Rinton Press. 
 
Lenat, D. (1995). "Cyc: A Large-Scale Investment in 
Knowledge Infrastructure." Communications of the ACM 
38, no. 11 (November). 
 
MacGregor, R., (1991). The Evolving Technology of 
Classification-Based Knowledge Representation Systems. 
In Principles of Semantic Networks: Explorations in the 
Representation of Knowledge, ed J. Sowa, 385-400. San 
Francisco, Calif., Morgan Kaufmann 
 

Miller, G., Beckwith, R., Fellbaum, C., Gross, D., and 
Miller, K.  “ Introduction to WordNet:  An On-line Lexical 
Database.”   1993. 
 
Murray, W., Pease, A., and Sams, M. (2003).  Applying 
Formal Methods and Representations in a Natural 
Language Tutor to Teach Tactical Reasoning.  To appear. 
 
Niles, I & Pease A., (2001)  “ Towards A Standard Upper 
Ontology.”    In  Proceedings of Formal Ontology in 
Information Systems (FOIS 2001), October 17-19, 
Ogunquit, Maine, USA, pp 2-9. See also 
http://ontology.teknowledge.com  
 
Niles, I., & Pease, A.,  (2003).  Mapping WordNet to the 
SUMO Ontology.  To appear.  See also 
http://ontology.teknowledge.com:8080/rsigma/nilesWordN
et.pdf 
 
Paley, S.M., Lowrance, J.D., and Karp, P.D. (1997) "A 
Generic Knowledge-Base Browser and Editor," In 
Proceedings of the 1997 National Conference on Artificial 
Intelligence, Providence, RI. 
 
Pease, A., and Li, J., (2003). Agent-Mediated Knowledge 
Engineering Collaboration, in Proceedings of the AAAI 
Spring Symposium on Agent Mediated Knowledge 
Management.  Stanford, CA March 24-26.  To appear. 
 
Pease, A., Niles, I., Li, J., (2002), The Suggested Upper 
Merged Ontology: A Large Ontology for the Semantic Web 
and its Applications, in Working Notes of the AAAI-2002 
Workshop on Ontologies and the Semantic Web. 
http://projects.teknowledge.com/AAAI-2002/Pease.ps 
 
Schlechta, K., (1997). Nonmonotonic Logics: Basic 
Concepts, Results, and Techniques (Lecture Notes in 
Artificial Intelligence) by Karl 243 pp. Springer Verlag 
pub. ISBN: 3540624821 
 
Stickel, M., R. Waldinger, M. Lowry, T. Pressburger, and I. 
Underwood. (1994) Deductive composition of astronomical 
software from subroutine libraries. Proceedings of the 
Twelfth International Conference on Automated Deduction 
(CADE-12), Nancy, France, June 1994, 341-355. See also 
http://www.ai.sri.com/~stickel/snark.html. 
 
Sutcliffe G., Suttner C.B., Pelletier F.J. (2002), The IJCAR 
ATP System Competition, Journal of Automated Reasoning 
28(3), pp.307-320.  
 
Swartout, B., Patil, R., Knight, K. and Russ, T. (1996). 
Ontosaurus: a tool for browsing and editing ontologies, 
Gaines, B.R. and Musen, M.A., Ed. Proceedings of Tenth 
Knowledge Acquisition Workshop. pp.69-1-69-12 
(http://ksi.cpsc.ucalgary.ca/KAW/KAW96/swartout/ontosa
urus_demo.html) 


