
The Sigma Ontology Development Environment

Adam Pease
Teknowledge

1800 Embarcadero Rd
Palo Alto CA 94303

650 424-0500
650 493-2645

apease@teknowledge.com
keywords: natural language, ontology

Abstract
Abstract: We discuss the development of an environment
for formal knowledge engineering. The Sigma system is an
advance over previously developed systems in that it
integrates a number of modern ontology development tools,
which has motivated a number of research issues. Primary
components include an ontology browsing and editing
environment, a first order logic inference system and a
natural language to logic translator. Although largely
independent of any particular ontology, it supports a number
of publicly available formal ontologies.

 Introduction

 Human knowledge is complex, and human language is
very expressive. Computer systems that process natural
language have been limited to a shallow level of
understanding by the very complexity of the information
that they are expected to handle. Conversely, systems that
manage information in databases have been left to reason
either in very narrow and pre-determined ways, or to
perform processing tasks that must be interpreted by
humans.
 It is desirable to employ computer languages for
representing knowledge that are as expressive as possible,
and as close to the expressiveness of human language.
Expressiveness does have a computational burden. In the
opinion of the author, the best compromise available for
many knowledge representation efforts is first order logic.
While there are other choices, such as description logic and
higher order logic, they represent departures from a middle
ground. First order logic is undecidable, but can be made
tractable for certain kinds of reasoning, which will be
detailed later. Description logic (Baader, et al, 2003) has
some very attractive formal properties, but is significantly
less expressive than first order logic, and therefore limits
the knowledge engineer’s ability to express the semantic
content of statements found in normal human discourse.
Higher order logic (Carreno et al, 2002) on the other hand
is much harder to reason with.
 The Sigma system was designed to integrate several
different kinds of tools for working with knowledge in first
order logic.

Browsing and Editing
The Sigma system contains several different sorts of

browsers for viewing formal knowledge bases. The most
basic component is a term browser, which presents all the
statements in which a particular term appears. The
statements are sorted by argument position and then the
appearance of the term in rules and non-rule statements are
then shown. All the statements are hyperlinked to the terms
that appear in them.

Two types of tree browser are provided. One provides
an automatic graph layout. Another shows a textual
hierarchy. The user can chose the term to start with, the
number of “levels” that should be presented from the term,
and the binary relation to chose as the predicate that links
the different nodes in the graph. For example, if the user
asks for a graph of the term IntentionalProcess and for
the subclass relation, the system will go “up” the graph to
display the term Process, and down the graph to display
the terms Keeping, Guiding, Maintaining etc. The user
can ask for more levels up or down the graph. Note that
any relation can be chosen so for example a presentation of
partonomies, or attribute hierarchies is also supported by
choosing the relations part and subAttribute
respectively.

The editing system is currently rather rudimentary,
consisting of the ability to type formulae and have some
simple syntax and other error checking performed. We
plan to offer a frame-based editing system similar to, or
incorporating open-source components from, the Protégé
(Gennari et al, 2002) system.

We have developed some more sophisticated tools for
collaborative knowledge engineering. The System for
Collaborative Open Ontology Production (SCOOP) (Pease
& Li, 2003) supports an automated workflow process for
development of ontologies and resolution of conflicts
among ontologies. The SCOOP system employs a theorem
prover to detect inconsistencies among ontologies.

SCOOP addresses several types of inconsistencies. The
first we term vertical inconsistency. This refers to when a

set of ontologies are loaded and one ontology has a
contradiction with another ontology on which it depends.
Inconsistency of this type is never allowed, because from a
contradictory knowledge base, any proposition can be
concluded to be true. SCOOP enforces a workflow process
that requires a resolution to such a situation.

The second kind of inconsistency we term horizontal
inconsistency. This refers to a situation in which
knowledge products created by different knowledge
engineers, and which do not have a mutual dependency, are
mutually contradictory. SCOOP alerts developers to such a
situation, but does not require that it be eliminated. It is
possible for two knowledge bases to represent different
perspectives, which are contradictory, but locally valid.

We employ the KIF (Genesereth, 1991) language and
have a translator to and from DAML (Hendler &
McGuinness, 2000). A translator to and from Protégé
(Gennari et al, 2002) is partially completed at this time.

Language Generation
 Each statement can also be presented as a natural
language paraphrase similar to (Sevcenko, 2003). Note
that we also use Sevcenko’s language templates for English
and Czech. Each term in an ontology can be given a
natural language presentation form, indexed by the human
language. For example, the SUMO term
DiseaseOrSyndrome can be presented as “ disease or
syndrome” and an Italian presentation would be shown as
"malattia o sindrome". Combined with the English
understanding mechanisms described below, this gives us a
very rudimentary language translation capability.
 Although presentation of terms is straightforward,
presentation of statements is more complicated, and
roughly patterned after C-language printf statements. For
example the relation “ part” , which states that one object is
a part of another, has the corresponding language
generation template “ %1 is %n a part of %2” . The first
argument to the logical relation is substituted for %1 etc.
Note that this substitution is recursive, so that complex
statements with nested formulae can be translated
effectively. The %n signifies that if the statement is
negated, that the negation operator for the appropriate
human language should be inserted in that position.
 We currently have language templates for English,
Czech, German and Italian. Some work has been done on
Hindi, Telugu, Tagalog and Russian.

Natural Language Understanding
 We take a restricted language approach to natural
language understanding. Deep understanding of
unrestricted human languages is too hard with present
technology. Our approach is to create a restricted version
of English, which is grammatical but more limited than true
natural language. Statements must be present tense

singular. Although different tense and number can be
accepted, the system paraphrases such sentences into a
present tense singular form. Ambiguous word choices
default to the most popular sense of the word, with an
escape mechanism for the user to select a different sense.
Anaphoric references are handled with a simple mechanical
algorithm. Some kinds of quantification (every, some, all)
can be handled.
 The current system is capable of taking simple English
sentences and translating them into KIF, using terms from
our SUMO upper ontology (described below). We have
mapped all 100,000 WordNet (Miller, et al, 1993) word
senses (synsets) to SUMO, one at a time, by hand over the
period of a year (Niles & Pease, 2003). This endows our
natural language translation system with a very large
vocabulary.

Our approach is presented more fully in (Murray, Pease
& Sams, 2003).

Inference
 One basic issue is that of allowing variables in the
predicate position. While the general case of this results in
expressions being beyond first order logic, there is a
slightly more restricted case, which is first order. A
statement with a variable in the predicate position is only
higher order if a quantifer ranges of all possible relations,
rather than the finite set of relations in a particular
knowledge base. Since prepending another relation in front
of every statement makes everything first order for such a
restricted practical case, this therefore must mean that the
statement wasn’t really higher-order in the first place.
 There is also an issue with prohibiting statements as
arguments to relations. When arguments to relations are
statements, then such a statement is higher order. We could
either have a quote operator or define a Statement class and
require all predicates have their argument types defined
(which would allow us to know in advance whether an
argument is a Statement, and therefore needs to be
implicitly quoted). A statement that has this issue is
(believes John (likes Bob Mary))

Currently, such statements are quoted, and therefore
become opaque first-order objects rather than statements.

Another issue is row variables, for use in variable arity
relations. One proposed version of KIF (Hayes & Menzel,
2001) has what are alternately called row, or sequence
variables. They are denoted by the ’@’ symbol in KIF
statements. They are analogous to the lisp @REST
variable. This is not first order if the number of arguments
it can "swallow up" is infinite. However, if row variables
have a definite number of arguments, it can be treated like a
macro, and becomes first order. For example,
(=>
 (and
 (subrelation ?REL1 ?REL2)
 (holds ?REL1 @ROW))
 (holds ?REL2 @ROW))

would become

(=>
 (and
 (subrelation ?REL1 ?REL2)
 (holds ?REL1 ?ARG1))
 (holds ?REL2 ?ARG1))

(=>
 (and
 (subrelation ?REL1 ?REL2)
 (holds ?REL1 ?ARG1 ?ARG2))
 (holds ?REL2 ?ARG1 ?ARG2))

etc.
 Also note that this "macro" style expansion has the
problem that unlike the true semantics of row variables,
that it is not infinite. If the macro processor only expands
to five variables, there is a problem if the knowledge
engineer uses a relation with six. Because of that, Sigma’s
syntax checker must prohibit relations with more arguments
than the row variable preprocessor expands to.

Default reasoning

Given the example KB:

(=>
 (instance ?X Bird)
 (canFly ?X))

(=>
 (instance ?X Penguin)
 (not
 (canFly ?X)))

(subclass Penguin Bird)

We would like the second rule to override the first. The
general case of default reasoning is very difficult
(Schlechta, 1997). However, we believe that there is an
easy way to address the most common case and get the
utility we need. Given a relation

(exception <formula-specific> <formula2-general>)

we can implement a macro that modifies the first formula
above to exclude the exception specified and generate the
KB

(=>
 (and
 (instance ?X Bird)
 (not (instance ?X Penguin))
 (canFly ?X))

(=>
 (instance ?X Penguin)
 (not
 (canFly ?X)))

(subclass Penguin Bird)

 Of course, this is only easy in the specific case where
two rules have opposite conclusions and the antecedent of
one subsumes the other. It’s possible that in easy cases we
might be able to have Sigma even generate the
(exception... clause that the macro will use.
 The algorithm for the macro simply would be, given the
(exception... statement, to negate the antecedent of the
<formula-specific> and add it as a conjunction to the
<formula2-general>. Like other macros, this has
implications for proof presentation that are also unresolved.

Proof Presentation
 Sigma includes several options for proof presentation.
Despite the fact that most textbooks present proofs as linear
structures, proofs are trees. The same sub-proof may be
used several times in reaching different intermediate
conclusions. While this is a byproduct of automated
reasoning, it is rarely useful to the human user. Therefore,
Sigma eliminates redundant paths of reasoning in order to
create a linear proof.
 Sigma also has options for how it presents multiple
proofs. Often, the same proof, with the same proof steps,
can be reached via a different search order. This means
that although two tree-structured proofs may be different,
they may work out to be identical when redundant paths are
removed and a linear proof structure generated. Sigma
supports an option for hiding such duplicate proofs.
 On additional option is to suppress proofs that may have
different steps but which lead to the same answer.
Sometime it is useful to a knowledge engineer to see these
alternate proofs, and sometime not.

Reasoning with Equality
 One problem in a first order theorem prover with
procedural attachments for arithmetic is that the equality
operator masks normal unification and inference. Currently
Sigma converts the SUMO term ’equal’ to ’=’ when sending
assertions and queries to the theorem prover and then
converts back for proof formatting. We are experimenting
with changing the name to ’eval’ and mapping that string to
the theorem prover’s '='.
 Our current idea is to have three predicates, one, which
handles evaluation, one, which handles inference, and
another, which combines the two.

equalAsserted eval

 equal

The following examples of assertions and queries should
make clear how this will work.

assert:
(equal (CardinalityFn Continent) 7)
macro expands to:
(eval (CardinalityFn Continent) 7)
(equalAssigned (CardinalityFn Continent) 7)

query:
(eval (CardinalityFn Continent) ?X)
result:
(CardinalityFn Continent)

query:
(equalAssigned (CardinalityFn Continent) ?X)
result:
7

query:
(equal (CardinalityFn Continent) ?X)

macro expands to:
(eval (CardinalityFn Continent) ?X)
(equalAssigned (CardinalityFn Continent) ?X)

result:
(CardinalityFn Continent)
7

query:
(eval (AdditionFn 2 3) ?X)

result:
5

query:
(equalAssigned (AdditionFn 2 3) ?X)
result:
[no]

query:
(equal (AdditionFn 2 3) ?X)

macro expands to:
(eval (AdditionFn 2 3) ?X)
(equalAssigned (AdditionFn 2 3) ?X)

result:
5

The formal semantics of the macro is

(=>
 (equal ?X ?Y)
 (eval ?X ?Y))

(=>
 (equal ?X ?Y)
 (equalAssigned ?X ?Y))

Ontology
 The Sigma system has been designed to be as
independent of a particular ontology as possible, but there
are many features that are available when a standard
ontology is used. Current features are primarily to do with
error checking. Knowing a standard method for defining
argument type restrictions, class-subclass relations and

documentation allows us to alert the user when such
statements are conflicting or not present.
 We employ the Suggested Upper Merged Ontology
(SUMO) (Niles & Pease, 2001) as the system’s standard
ontology. SUMO has been released to the public for free
since its first version in December of 2000. Now in its 47th
version, the SUMO has been reviewed by hundreds of
people and subject to formal validation with a theorem
prover, to ensure that it is free of contradictions. The
SUMO contains roughly 1000 terms and 4000 statements,
of which 750 are rules. As mentioned above, it has been
mapped by hand to the WordNet lexicon, which has acted
as an additional check on completeness and coverage.
 A number of domain ontologies have been created that
extend SUMO and can be used in the Sigma system. They
include

• A Quality of Service ontology, covering computer
systems and networks

• An ecommerce services ontology
• An ontology of biological viruses
• A financial ontology
• An ontology of terrain features
• Ontologies of weapons of mass destruction and

terrorism
• An ontology of government and governmental

organizations
• Taxonomies of the periodic table of the elements

and industry types

Related Work
 There have been a number of ontology editing
environments created including Ontolingua (Farquhar et al,
1996), Ontosaurus (Swartout et al, 1996), Protégé (Gennari
et al, 2002), and Cyc (Lenat, 1995). Ontosaurus and Cyc
both have inference components. Cyc is the only system to
contain a standard ontology. Cyc also contains a natural
language component although little or no public
information about that work is available.
 The GKB editor (Paley et al, 1997) is an example of a
graphical ontology editor. SNARK (Stickel et al, 1994),
and Otter (Kalman, 2001) are examples of theorem provers.
Many theorem provers have been tested on the
CADE/TPTP (Sutcliffe et al, 2002) competitions.
However, limited efforts have been made to apply formal
first order theorem proving to expert system and common
sense reasoning on large knowledge bases. The Sigma
system brings all these types of components together, and
in the process, addresses a number of research issues that
have not been evident in use of these separate components.

Acknowledgements
The author would like to thank Randy Schulz for his efforts
on early versions of this system.

References
Baader, F., Calvanese, D., McGuinness, Nardi, D., and
Patel-Schneider, P., (eds). (2003) The Description Logic
Handbook Theory, Implementation and Applications, 574
pp. ISBN: 0521781760

Carreno, V., Munoz, C., and Tahar, S., (eds.) (2002).
Theorem Proving in Higher Order Logics. Proceedings of
the 15th International Conference, TPHOLs 2002,
Hampton, VA, USA, August 20-23, 2002. Springer-
Verlag.

Farquhar, A., Fikes, R., and Rice, J., (1996). The
Ontolingua Server: a Tool for Collaborative Ontology
Construction. Proceedings of Tenth Knowledge
Acquisition for Knowledge-Based Systems Workshop.
Available at
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/farquhar/farquha
r.html#RTFToC15

Gennari, J., M. A. Musen, R. W. Fergerson, W. E. Grosso,
M. Crubézy, H. Eriksson, N. F. Noy, S. W. Tu (2002). The
Evolution of Protégé: An Environment for Knowledge-
Based Systems Development. Stanford SMI technical
report SMI-2002-0943 .http://smi-web.stanford.edu/pubs
/SMI_Abstracts/SMI-2002-0943.html

Genesereth, M., (1991). ``Knowledge Interchange Format'',
In Proceedings of the Second International Conference on
the Principles of Knowledge Representation and Reasoning,
Allen, J., Fikes, R., Sandewall, E. (eds), Morgan Kaufman
Publishers, pp 238-249.

Hayes, P., and Menzel, C., (2001). A Semantics for
Knowledge Interchange Format, in Working Notes of the
IJCAI-2001 Workshop on the IEEE Standard Upper
Ontology.

Hendler, J., and McGuinness, D., (2000), The DARPA
Agent Markup Language, IEEE Intelligent Systems, 15 (6)
(November), 67-73. Available:
http://www.ksl.stanford.edu/people/dlm/papers/ieee-
daml01-abstract.html

Kalman, J. K. (2001) Automated Reasoning with OTTER.
Rinton Press.

Lenat, D. (1995). "Cyc: A Large-Scale Investment in
Knowledge Infrastructure." Communications of the ACM
38, no. 11 (November).

MacGregor, R., (1991). The Evolving Technology of
Classification-Based Knowledge Representation Systems.
In Principles of Semantic Networks: Explorations in the
Representation of Knowledge, ed J. Sowa, 385-400. San
Francisco, Calif., Morgan Kaufmann

Miller, G., Beckwith, R., Fellbaum, C., Gross, D., and
Miller, K. “ Introduction to WordNet: An On-line Lexical
Database.” 1993.

Murray, W., Pease, A., and Sams, M. (2003). Applying
Formal Methods and Representations in a Natural
Language Tutor to Teach Tactical Reasoning. To appear.

Niles, I & Pease A., (2001) “ Towards A Standard Upper
Ontology.” In Proceedings of Formal Ontology in
Information Systems (FOIS 2001), October 17-19,
Ogunquit, Maine, USA, pp 2-9. See also
http://ontology.teknowledge.com

Niles, I., & Pease, A., (2003). Mapping WordNet to the
SUMO Ontology. To appear. See also
http://ontology.teknowledge.com:8080/rsigma/nilesWordN
et.pdf

Paley, S.M., Lowrance, J.D., and Karp, P.D. (1997) "A
Generic Knowledge-Base Browser and Editor," In
Proceedings of the 1997 National Conference on Artificial
Intelligence, Providence, RI.

Pease, A., and Li, J., (2003). Agent-Mediated Knowledge
Engineering Collaboration, in Proceedings of the AAAI
Spring Symposium on Agent Mediated Knowledge
Management. Stanford, CA March 24-26. To appear.

Pease, A., Niles, I., Li, J., (2002), The Suggested Upper
Merged Ontology: A Large Ontology for the Semantic Web
and its Applications, in Working Notes of the AAAI-2002
Workshop on Ontologies and the Semantic Web.
http://projects.teknowledge.com/AAAI-2002/Pease.ps

Schlechta, K., (1997). Nonmonotonic Logics: Basic
Concepts, Results, and Techniques (Lecture Notes in
Artificial Intelligence) by Karl 243 pp. Springer Verlag
pub. ISBN: 3540624821

Stickel, M., R. Waldinger, M. Lowry, T. Pressburger, and I.
Underwood. (1994) Deductive composition of astronomical
software from subroutine libraries. Proceedings of the
Twelfth International Conference on Automated Deduction
(CADE-12), Nancy, France, June 1994, 341-355. See also
http://www.ai.sri.com/~stickel/snark.html.

Sutcliffe G., Suttner C.B., Pelletier F.J. (2002), The IJCAR
ATP System Competition, Journal of Automated Reasoning
28(3), pp.307-320.

Swartout, B., Patil, R., Knight, K. and Russ, T. (1996).
Ontosaurus: a tool for browsing and editing ontologies,
Gaines, B.R. and Musen, M.A., Ed. Proceedings of Tenth
Knowledge Acquisition Workshop. pp.69-1-69-12
(http://ksi.cpsc.ucalgary.ca/KAW/KAW96/swartout/ontosa
urus_demo.html)

