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Abstract

We have produced an ontology specifying a model
of computer attacks. Our ontology is based upon
an analysis of over 4,000 classes of computer
intrusions and their corresponding attack strategies
and is categorized according to: system component
targeted, means of attack, consequence of attack
and location of attacker. We argue that any tax-
onomic characteristics used to define a computer
attack be limited in scope to those features that
are observable and measurable at the target of the
attack. We present our model as a target-centric
ontology that is to be refined and expanded over
time. We state the benefits of forgoing dependence
upon taxonomies, in favor of ontologies, for the
classification of computer attacks and intrusions.
We have specified our ontology using DAML+OIL
and have prototyped it using DAMLJessKB. We
present our model as a target-centric ontology and
illustrate the benefits of utilizing an ontology in lieu
of a taxonomy, by presenting a use case scenario of
a distributed intrusion detection system.

1 Introduction

Based upon empirical evidence we have produced a model of
computer attacks categorized by: the system component tar-
geted, the means and consequence of attack, and the location
of the attacker. Our model is represented as a target-centric
ontology, where the structural properties of the classification
scheme is in terms of features that are observable and measur-
able by the target of the attack or some software system acting
on the target’s behalf. In turn, this ontology is used to facilitate
the reasoning process of detecting and mitigating computer in-
trusions.

Traditionally, the characterization and classification of com-
puter attacks and other intrusive behaviors have been limited to
taxonomies. Taxonomies, however, lack the necessary and es-
sential constructs needed to enable an intrusion detection sys-
tem (IDS) to reason over an instance that is representative of
the domain of a computer attack. Alternatively, ontologies
provide powerful constructs that include machine interpretable
definitions of the concepts within a domain and the relations
between them. Ontologies, therefore, provide software sys-
tems with the ability to share a common understanding of the
information at issue, in turn empowering the software system

with a greater ability to reason over and analyze this informa-
tion.

As detailed by Allen, et al. [2], and McHugh [22], the taxo-
nomic characterization of intrusive behavior has typically been
from the attacker’s point of view, each suggesting that alterna-
tive taxonomies need to be developed. Allen et al., state that
intrusion detection is an immature discipline and has yet to es-
tablish a commonly accepted framework. McHugh suggests
classifying attacks according to protocol layer or, as an alter-
native, whether or not a completed protocol handshake is re-
quired. Likewise, Guha [10] suggests an analysis of each layer
of the TCP/IP protocol stack to serve as the foundation for an
attack taxonomy.

As an alternative to a taxonomy, we propose a data model
implemented with an ontology representation language such
as the Resource Description Framework Schema (RDFS) [26]
or the DARPA Agent Markup Language + Ontology Infer-
ence Layer (DAML+OIL) [1]. We illustrate the benefits of
using ontologies by presenting an implementation of our on-
tology being utilized by a distributed intrusion detection sys-
tem. Accordingly, we have specified our target-centric ontol-
ogy in DAML+OIL and have implemented it using DAML-
JessKB [17], an extension to the Java Expert System Shell [7].

Because IDS’s are either adjacent to or co-located with the
target of an attack it is imperative that any classification scheme
used to represent an attack be target-centric, where each taxo-
nomic character is comprised of properties and features that are
observable by the target of the attack. Consequently, our ontol-
ogy only defines properties and attributes that are observable
and measurable by the target of an attack. As a basis for estab-
lishing our a posteriori target-centric attack ontology, we eval-
uated and analyzed over 4,000 computer vulnerabilities and the
corresponding attack strategies employed to exploit them.

The remainder of this paper is organized as follows: Sec-
tion 2 presents related work in the form of alternative attack
taxonomies as well as presenting related work in the area of
ontologies for intrusion detection. Section 3 presents the char-
acteristics of a sufficient taxonomy. Section 4 details the moti-
vation for abandoning taxonomies in favor of ontologies. Our
target-centric attack taxonomy is presented in Section 5. Sec-
tion 6 details our implementation and Section 7 provides an ex-
ample scenario illustrating the utility of the ontology within a
distributed intrusion detection system. We conclude with Sec-
tion 8.

2 Related Work
As previously stated, most of the existing research in the area of
the classification of computer attacks is limited to taxonomies.



Because a taxonomy is contained within an ontology we ad-
dress the research in the area of defining intrusion taxonomies
before we address ontologies. Accordingly, this section is sub-
divided, with Subsection 2.1 presenting related work in the area
of taxonomies for intrusion detection and Subsection 2.2 pre-
senting related work in the area of ontologies for intrusion de-
tection.

2.1 Related Work: Taxonomies
There are numerous attack taxonomies proposed for use in in-
trusion detection research.

In [19] Landwehr et al., present a taxonomy categorized ac-
cording to genesis (how), time of introduction (when) and lo-
cation (where). They include sub-categories of: validation er-
rors, boundary condition errors and serialization errors, which
we incorporate into our ontology as the means of an attack.

During the 1998 and 1999 DARPA Off Line Intrusion De-
tection System Evaluations [12] [21] [15] Weber provided a
taxonomy defining the categories of consequence, to include
Denial of Service, Remote to Local and User to Root, which
we incorporate into our work.

Lindqvist and Jonsson [20] state that they “focus on the ex-
ternal observations of attacks and breaches which the system
owner can make”. Our effort is consistent with their focus.

2.2 Related Work: Ontologies
There is little, if any, published research formally defining on-
tologies for use in Intrusion Detection.

Raskin et al. [25], introduce and advocate the use of ontolo-
gies for information security. In arguing the case for using on-
tologies, they state that an ontology organizes and systematizes
all of the phenomena (intrusive behavior) at any level of detail,
consequently reducing a large diversity of items to a smaller
list of properties.

In commenting on the IETF’s IDMEF, Kemmerer and Vigna
[14] state “it is a but a first step, however additional effort is
needed to provide a common ontology that lets IDS sensors
agree on what they observe”.

3 Characteristics of a Sufficient Taxonomy
At this point, a clear understanding of the definition, purpose
and objective of a taxonomy is in order. Accordingly, a taxon-
omy is a classification system where the classification scheme
conforms to a systematic arrangement into groups or categories
according to established criteria [31]. Glass and Vessey [9]
contend that taxonomies provide a set of unifying constructs
so that the area of interest can be systemically described and
aspects of relevance may be interpreted. The overarching goal
of any taxonomy, therefore, is to supply some predictive value
during the analysis of an unknown specimen, while the classi-
fications within the taxonomy offer an explanatory value.

According to Simpson [27] classifications may be created
either a priori or a posteriori. An a priori classification is
created non-empirically whereas an a posteriori classification
is created by empirical evidence derived from some data set.
Simpson defines a taxonomic character as a feature, attribute or
characteristic that is divisible into at least two contrasting states
and used for constructing classifications. He further states that
taxonomic characters should be observable from the object in
question.

Amoroso [3], Lindqvist, et al. [20] and Krusl [18] each have
identified what they believe to be the requisite properties of a

sufficient and acceptable taxonomy for computer security. Col-
lectively, they have identified the following properties as es-
sential to a taxonomy: Mutually Exclusive, Exhaustive, Unam-
biguous, Repeatable, Accepted, Useful, Comprehensible, Con-
forming, Objective, Deterministic and Specific. Accordingly,
as an ontology subsumes a taxonomy these characteristics form
the underpinnings of our work.

4 From Taxonomies to Ontologies: The case for
ontologies in Intrusion Detection

Ning et al. [23], propose a hierarchical model for attack speci-
fication and event abstraction using three concepts essential to
their approach: System View, Misuse Signature and View Def-
inition. Their model is based upon a thorough examination of
attack characteristics and attributes, and is encoded within the
logic of their proposed system. Consequently, this model is not
readily interchangeable and reusable by other systems.

The Intrusion Detection Working Group of Internet Engi-
neering Task Force (IETF) has proposed the Intrusion Detec-
tion Message Exchange Requirements [33] which, in addition
to defining the requirements for the Intrusion Detection Mes-
sage Exchange Format, also specifies the architecture of an
IDS. The Intrusion Detection Message Exchange Format Data
Model (IDMEF) and accompanying Extensible Markup Lan-
guage Document Type Definition [4] is a profound effort to
establish an industry wide data model which defines computer
intrusions. The IDMEF, however, has its shortcomings. Specif-
ically, it uses XML which is limited to a syntactic representa-
tion of the data model and does not convey the semantics, re-
lationships, attributes and characteristics of the objects which
it represents.. This limitation requires that each individual IDS
interpret and implement the data model programmaticaly.

According to Davis et al. [5], knowledge representation is
a surrogate or substitute for an object under study. In turn,
the surrogate enables an entity, such as a software system, to
reason about the object. Knowledge representation is also a set
of ontological commitments specifying the terms that describe
the essence of the object. In other words, meta-data or data
about data describing their relationships.

Frame Based Systems are an important thread in knowledge
representation. According to Koller et al. [16], Frame Based
Systems provide an excellent representation for the organiza-
tional structure of complex domains. Frame Based Languages,
which support Frame Based Systems, include RDF, and are
used to represent ontologies. According to Welty et al. [32], an
ontology, at its deepest level, subsumes a taxonomy. Similarly,
Noy and McGuinness [24] state the process of developing an
ontology includes arranging classes in a taxonomic hierarchy.

In applying ontologies to the problem of intrusion detection,
the power and utility of the ontology is not realized by the sim-
ple representation of the attributes of the attack. Instead, the
power and utility of the ontology is realized by the fact that
we can express the relationships between collected data and
use those relationships to deduce that the particular data
represents an attack of a particular type. Moreover, spec-
ifying an ontological representation decouples the data model
defining an intrusion from the logic of the intrusion detection
system. The decoupling of the data model from the IDS logic
enables non-homogeneous IDS’s to share data without a prior
agreement as to the semantics of the data. To effect this shar-
ing, an instance of the ontology is shared between IDS’s in the
form of a set of DAML+OIL (or RDF) statements. If the re-



cipient does not understand some aspect of the data, it obtains
the ontology in order to interpret and use the data as intended
by its originator.

Ontologies therefore, unlike taxonomies, provide powerful
constructs that include machine interpretable definitions of the
concepts within a specific domain and the relations between
them. In our case the domain is that of a particular computer
or a software system acting on the computer’s behalf in order
to detect attacks and intrusions. Ontologies may be utilized
to not only provide an IDS with the ability to share a com-
mon understanding of the information at issue but also further
enable the IDS with improved capacity to reason over and an-
alyze instances of data representing an intrusion. Moreover,
within an ontology, characteristics such as cardinality, range
and exclusion may be specified and the notion of inheritance is
supported.

5 Target-Centric Ontology Attributes of the
Class Intrusion

In constructing our ontology, we relied upon an empirical anal-
ysis [30] of the features and attributes, and their interrelation-
ships, of over 4,000 classes of computer attacks and intrusions.
Figure 1, presents a high level view of our ontology. The at-
tributes of each class and subclass (denoted by ellipses) are not
shown because it would make the illustration unwieldy.

At the top most level we define the class Host. Host has the
properties Current State which is defined by the class System
Component and Victim of which is defined by the class Attack.
As defined in Section 4 the property, also called the predicate,
defines the relationship between a subject and an object.

The System Component class is comprised of the following
subclasses:

1. Network. This class is inclusive of the network lay-
ers of the protocol stack. We have focused on TCP/IP
therefore we only consider IP, TCP, and UDP subclasses.
For example, and as will be later demonstrated, the TCP
subclass includes the properties TCP MAX which defines
the maximum number of TCP connections, WAIT STATE
defining the number of connections waiting on the fi-
nal ack of the three-way handshake to establish a TCP
connection, THRESHOLD specifying the allowable ratio
between maximum connections and partially established
connections and EXCEED T a boolean value indicating
that the allowable ratio has been exceeded. It should be
noted that these are only four of several network proper-
ties.

2. System. This includes attributes representing the operat-
ing system of the host. It includes attributes represent-
ing overall memory usage (MEM TOTAL, MEM FREE,
MEM SWAP) and CPU usage (LOAD AVG). The class
also contains attributes reflective of the number of current
users, disk usage, the number of installed kernel modules,
and change in state of the interrupt descriptor and system
call tables.

3. Process. This class contains attributes representing par-
ticular processes that are to be monitored. These at-
tributes include the current value of the instruction pointer
(INS P), the current top of the stack (T STACK), a
scalar value computed from the stream of system calls
(CALL V), and the number of child processes (N CHILD).

The class Attack has the properties Directed to, Effected by,
and Resulting in. This construction is predicated upon the no-
tion that an attack consists of some input which is directed to
some system component and results in some consequence. Ac-
cordingly, the classes System Component, Input, and Conse-
quence are the corresponding objects. The class Consequence
is comprised of several subclasses which include:

1. Denial of Service. The attack results in a Denial of Ser-
vice to the users of the system. The denial of service may
be because the system was placed into an unstable state
or all of the system resources may be consumed by mean-
ingless functions.

2. User Access. The attack results in the attacker having ac-
cess to services on the target system at an unprivileged
level.

3. Root Access. The attack results in the attacker being
granted privileged access to the system, consequently hav-
ing complete control of the system.

4. Probe. This type of an attack is the result of scanning or
other activity wherein a profile of the system is disclosed.

Finally, the class Input has the the attributes Received from
and Causing where Causing defines the relationship between
the Means of attack and some input. We define the following
subclasses for Means of attack:

1. Input Validation Error. An input validation error exists if
some malformed input is received by a hardware or soft-
ware component and is not properly bounded or checked.
This class is further sub-classed as:

(a) Buffer Overflow. The classic buffer overflow results
from an overflow of a static-sized data structure.

(b) Boundary Condition Error. A process attempts to
read or write beyond a valid address boundary or a
system resource is exhausted.

(c) Malformed Input. A process accepts syntactically in-
correct input, extraneous input fields, or the process
lacks the ability to handle field-value correlation er-
rors.

2. Logic Exploits. Logic exploits are exploited software
and hardware vulnerabilities such as race conditions or
undefined states that lead to performance degradation
and/or system compromise. Logic exploits are further
subclasssed as follows:

(a) Exception Condition. An error resulting from the
failure to handle an exception condition generated by
a functional module or device.

(b) Race Condition. An error occurring during a timing
window between two operations.

(c) Serialization Error. An error that results from the im-
proper serialization of operations.

(d) Atomicity Error. An error occurring when a
partially-modified data structure is used by another
process; An error occurring because some process
terminated with partially modified data where the
modification should have been atomic.

6 Implementation
There are several reasoning systems that are compatible with
DAML+OIL. According to their functionality, reasoning sys-
tems can be classified into two types, backward-chaining
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Figure 1: Target Centric Ontology

and forward-chaining. Backward-chaining reasoners pro-
cess queries and return proofs for the answers they provide.
Forward-chaining reasoners process assertions substantiated
by proofs, and draw conclusions. Available reasoning systems
include: Stanford’s Java Theorem Prover [6], Drexel’s DAML-
JessKB [17] and the Renamed ABox and Concept Expression
Reasoner [11].

We have prototyped the logic portion of our system using the
DAMLJessKB [17] reasoning system, an extension to the Java
Expert System Shell (JESS) [7]. JESS is a Java implementation
of the C Language Integrated Production System (CLIPS) [8].
DAMLJessKB is employed to reason over instances of our data
model that are considered to be suspicious. These suspicious
instances are constrained according to our target-centric ontol-
ogy and asserted into the knowledge base.

Upon initialization of DAMLJessKB we converted the
DAML+OIL statements representing the ontology into N-
Triples and assert them into a knowledge base as rules. The
assertions are of the form:
(assert
(PropertyValue (predicate) (subject) (object)))

Once asserted, DAMLJessKB generates additional rules which
include all of the chains of implication derived from the ontol-
ogy.

The following series of figures illustrate the DAML+OIL en-
coding of selected classes, subclasses and their respective prop-
erties, of our ontology.

Figure 2 lists the DAML+OIL statements defining the class
Attack and it properties Directed To, Resulting In and Effected
By. These properties correspond to the edges between the node
labeled Target and the nodes labeled System Component, Input
and Consequence respectively, in Figure 1.

<rdfs:Class rdf:about=
"&IntrOnt;Attack"

rdfs:label="Consequence">
<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>

</rdfs:Class>

<rdf:Property rdf:about="&IntrOnt;Directed_To"
rdfs:label="Directed_To">

<rdfs:domain rdf:resource="&IntrOnt;Attack"/>
<rdfs:range rdf:resource="&IntrOnt;SysComp"/>

</rdf:Property>

<rdf:Property rdf:about="&IntrOnt;Resulting_In"
rdfs:label="Resutling_In">

<rdfs:domain rdf:resource="&IntrOnt;Attack"/>
<rdfs:range rdf:resource="&IntrOnt;Conseq"/>

</rdf:Property>

<rdf:Property rdf:about="&IntrOnt;Effected_By"
rdfs:label="Effected_By">

<rdfs:domain rdf:resource="&IntrOnt;Attack"/>
<rdfs:range rdf:resource="&IntrOnt;Input"/>

</rdf:Property>

Figure 2: DAML+OIL Statements Defining the Class Attack
and its Properties: Directed To, Resulting In and Effected By

Figure 3 presents the DAML+OIL notation for the class Sys-
tem Component, its subclass Network, and Network’s subclass
TCP. Figure 4 lists the DAML+OIL notation for some of the
attributes of the class TCP.

Figure 5 details the specification of the class Consequence
while Figures 6 and 7 show similar details for the specification
of the classes Denial of Service and Syn Flood. The Syn Flood
class, which is not shown in Figure 1 illustrating our ontology,
is a subclass of both Denial of Service and TCP and, as stated



<daml:Class rdf:about="&IntrOnt;SysComp"
rdfs:label="State">

<rdfs:subClassOf rdf:resource="&rdfs;
Resource"/>

</daml:Class>

<daml:Class rdf:about="&IntrOnt;
Network"

rdfs:label="Network">
<rdfs:subClassOf rdf:resource="&IntrOnt;

SysComp"/>
</daml:Class>

<daml:Class rdf:about="&IntrOnt;TCP"
rdfs:label="Network">

<rdfs:subClassOf rdf:resource="&IntrOnt;
Network"/>

</daml:Class>

Figure 3: DAML+OIL Statements Specifying the Class Sys-
tem Component and its Subclass, Network and TCP

rdf:Property rdf:about="&IntrOnt;TCP_Max"
rdfs:label="TCP_Max">

<rdfs:domain rdf:resource="&IntrOnt;Network"/>
<rdfs:range rdf:resource="&rdfs;

nonNegativeInteger"/>
</rdf:Property>

<rdf:Property rdf:about="&IntrOnt;Wait_State"
rdfs:label="Wait_State">

<rdfs:domain rdf:resource="&IntrOnt;Network"/>
<rdfs:range rdf:resource=

"&rdfs;nonNegativeInteger"/>
</rdf:Property>

<rdf:Property rdf:about="&IntrOnt;Threshold"
rdfs:label="Threshold">

<rdfs:domain rdf:resource="&IntrOnt;Network"/>
<rdfs:range rdf:resource=

"&rdfs;nonNegativeInteger"/>
</rdf:Property>

<rdf:Property rdf:about="&IntrOnt;Exceed_T"
rdfs:label="Exceed_T">

<rdfs:domain rdf:resource="&IntrOnt;Network"/>
<rdfs:range rdf:resource="&IntrOnt;BooleanValue"/>
</rdf:Property>

Figure 4: DAML+OIL Notation Specifying Attributes of the
TCP Subclass

<rdfs:Class rdf:about="&IntrOnt;Conseq"
rdfs:label="Conseq">

<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>
</rdfs:Class>

Figure 5: DAML+OIL Specification of the Class Consequence

<rdfs:Class rdf:about="&IntrOnt;DoS"
rdfs:label="DoS">

<rdfs:subClassOf rdf:resource="&IntrOnt;Conseq"/>
</rdfs:Class>

Figure 6: DAML+OIL Statements Specifying the Denial of
Service Subclass

in the DAML+OIL notation, will only be instantiated when the
threshold of pending TCP connections is exceeded.

6.1 Querying the Knowledge Base
Once the ontology is asserted into the knowledge base and all
of the derived rules resulting from the chains of implication are

<daml:Class rdf:about="&IntrOnt;Syn_Flood"
rdfs:label="Syn_Flood">
<rdfs:subClassOf rdf:resource="&IntrOnt;DoS"/>

<rdfs:subClassOf rdf:resource="&IntrOnt;TCP">
<daml:Restriction>

<daml:onProperty rdf:resource=
"&IntrOnt;Exceed_T"/>

<daml:hasValue rdf:resource="#true"/>
</daml:Restriction>

</rdfs:subClassOf>
</daml:Class>

Figure 7: DAML+OIL Statements Specifying the SynFlood
Subclass

generated, the knowledge base is ready to receive instances of
the ontology. Instances are asserted and de-asserted into/from
the knowledge base as temporal events dictate. To query the
knowledge base for the existence of an attack or intrusion, the
query could be so granular that it requests an attack of a specific
type, such as a Syn Flood:
(defrule isSynFlood

(PropertyValue
(p http://www.w3.org/1999/02/22-rdf-syntax-ns#type)
(s ?var)
(o http://security.umbc.edu/IntrOnt#SynFlood))

=>

(printout t ‘‘A SynFlood attack has occurred.’’ crlf
‘‘with event number: ‘‘ ?var))

The query could be of a medium level of granularity, asking
for all attacks of a specific class, such as denial of service. Ac-
cordingly, the following query will return all instances of an
attack of the class Denial of Service.
(defrule isDOS

(PropertyValue
(p http://www.w3.org/1999/02/22-rdf-syntax-ns#type)
(s ?var)
(o http://security.umbc.edu/IntrOnt#DoS))

=>

(printout t ‘‘A DoS attack has occurred.’’ crlf
‘‘with ID number: ‘‘ ?var))

Finally, the following rule will return instances of any attack,
where the event numbers that are returned by the query need to
be iterated over in order to discern the specific type of attack:
(defrule isConseq

(PropertyValue
(p http://www.w3.org/1999/02/22-rdf-syntax-ns#type)
(s ?var)
(o http://security.umbc.edu/IntrOnt#Conseq))

=>

(printout t ‘‘An attack has occurred.’’ crlf
‘‘with ID number: ‘‘ ?var))

These varying levels of granularity are possible because of
DAML+OIL’s notion of classes, subclasses, and the relation-
ships that holds between them. The variable ?var, contained in
each of the queries, is instantiated with the subject whenever
a predicate and object from a matching triple is located in the
knowledge base.

7 Using the Ontology to Detect a Distributed
Attack

The following example of a distributed attack illustrates the
utility of our ontology.



The Mitnick attack is multi-phased; consisting of a Denial of
Service attack, TCP sequence number prediction and IP spoof-
ing. When this attack first occurred a Syn Flood was used to
effect the denial of service, however any denial of service at-
tack would have sufficed.

In the following example, which is illustrated in figure 8,
Host B is the ultimate target and Host A is trusted by Host B.

The attack is structured as follows:

1. The attacker initiates a Syn/Flood attack against Host A
to prevent Host A from responding to Host B.

2. The attacker sends multiple TCP packets to the target,
Host B in order to be able to predict the values of TCP
sequence numbers generated by Host B.

3. The attacker then pretends to be Host A, by spoofing Host
A’s IP address, and sends a Syn packet to Host B in order
to establish a TCP session between Host A and Host B.

4. Host B responds with a SYN/ACK to Host A. The at-
tacker does not see this packet. Host A, since its in-
put queue is full due to number of half open connections
caused by the Syn/Flood attack, cannot send a RST mes-
sage to Host B in response to the spurious Syn message.

5. Using the calculated TCP sequence number of Host B
(recall that the attacker did not see the Syn/ACK mes-
sage sent from Host B to Host A) the attacker sends an
Ack with the predicted TCP sequence number packet in
response to the Syn/Ack packet sent to Host A.

6. Host B is now in a state where it believes that a TCP ses-
sion has been established with a trusted host Host A. The
attacker now has a one way session with the target, Host
B, and can issue commands to the target.
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Figure 8: Illustration of the Mitnick Attack

It should be noted that an intrusion detection system running
exclusively at either host will not detect this multi-phased and
distributed attack. At best, Host A’s IDS would see a relatively
short lived Syn Flood attack, and Host B’s IDS might observe
an attempt to infer TCP sequence numbers, although this may
not stand out from other non-intrusive but ill-formed TCP con-
nection attempts.

The following explains the utility of our ontology, as well
as the importance of forming coalitions of IDSs. In our IDS
model, we form coalitions of IDS services each of which is re-
sponsible for specific parts of an enterprise or domain. For ex-
ample, one IDS service may be responsible for a specific host,
while another is responsible for a group of hosts, while yet
still another is responsible for monitoring network traffic. The
IDS’s all share a common ontology and utilize a secure com-
munications infrastructure that has been optimized for IDS’s.
We present such a infrastructure in [13, 28, 29].

Consider the case of the instance of the Syn Flood attack
presented in Section 6 and that it was directed against Host A
in our example scenario. As the IDS responsible for Host A is
continually monitoring for anomalous behavior, asserting and
de-asserting data as necessary, it will detect the occurrence of
an inordinate number of partially established TCP connections,
and transmit the instance of the Syn Flood to the other IDS’s in
its coalition.

That instance is repeated below:

<IntrOnt:Intrusion rdf:about="&IntrOnt;00035"
IntrOnt:IP_Address="130.85.112.231">
<IntrOnt:resulting_in

rdf:resource="&IntrOnt;00038"/>
</IntrOnt:Intrusion>

<IntrOnt:Syn_Flood rdf:about="&IntrOnt;00038"
IntrOnt:Exceed_T="true"
IntrOnt:int_time="20021212 154312"/>

This instance is converted into a set of N-Triples and asserted
into the knowledge base of each IDS in the coalition. Those
sameN-Triples will be de-asserted when the responsible IDS
transmits a message stating that the particular host is no longer
the victim of a Syn Flood attack. This situation, especially in
conjunction with Host B being subjected to a series of probes
meant to determine its TCP sequencing, could be the prelude
to a distributed attack the current connections and pending con-
nections are also asserted into the knowledge base.

The following is a set DAML+OIL statements describing
connections:

<IntrOnt:Connection rdf:about="&IntrOnt;00038"
IntrOnt:IP_Address="130.85.112.231"
IntrOnt:conn_time="20021212 154417"/>

<IntrOnt:Connection rdf:about="&IntrOnt;00101"
IntrOnt:IP_Address="202.85.191.121"
IntrOnt:conn_time="20021212 151221"/>

<IntrOnt:Connection rdf:about="&IntrOnt;00102"
IntrOnt:IP_Address="68.54.101.78"
IntrOnt:conn_time="20021212 150152"/>

In order to detect an Mitnick type attack, we include the fol-
lowing DAML+OIL statements that partially specify an ontol-
ogy of the Mitnick attack (the class is identified as P Mitnick
for partial):

<daml:Class rdf:about="&Intrusion;P_Mitnick"
rdfs:label="P_Mitnick">
<daml:intersectionOf rdf:parseType=

’’daml:collection’’>
<daml:Class rdf:about="&IntrOnt;DoS"/>
<daml:Class rdf:about="&IntrOnt;Connection"/>

</daml:intersectionOf>
</daml:Class>



The ontology is partial because the Mitnick attack has the ad-
ditional property that the connection time with the victim must
be greater than or equal to the time of the denial of service at-
tack. An instance of this ontology will be instantiated provided
that there exists an instance of a denial of service attack that has
the same unique identifier as that of an established connection.
In fact there will be an instance created in each case where this
condition holds. In our prototype, we check each instance to
determine if the time of the connection is greater than or equal
the time of the attack.

The following rules are used to check each instance:

(defrule isMitnick

(PropertyValue
(p http://security.umbc.edu/IntrOnt#P\_Mitnick )
(s ?eventNumber) (o "true"))

(PropertyValue
(p http://security.umbc.edu/IntrOnt#Int_time)
(s ?eventNumber) (o ?Int_Time))

(PropertyValue
(p http://security.umbc.edu/IntrOnt#Conn_time)
(s ?eventNumber) (o ?Conn_Time))

=>
(if (>= ?Conn_Time ?Int_Time) then
(printout t ‘‘event number: ‘‘
?eventnumber ‘‘ is a Mitnick Attack: crlf)))

this rule will fire and event number 00038, the instance of the
intersection of the connection and the denial of service attack,
will be displayed.

At this point it is important to review the sequence of events
leading up to the discovery of the Mitnick attack. Recall, that
the IDS responsible for the victim of the Syn Flood attack
queried its knowledge base for an instance of a DoS denial of
service attack. The query returned an instance of a Syn Flood
which was instantiated solely on the condition that the Exced T
property of the Network class was true.

The instance (its properties) of the Syn Flood attack was
transmitted in the form of a set of DAML+OIL statements to
the other IDS’s in the coalition. In turn, these IDS’s converted
the DAML+OIL statements to a set of N-Triples and asserted
them into their respective knowledge bases. As a Syn Flood
is a precursor to a more insidious attack, instances of estab-
lished and pending connections were asserted into the knowl-
edge base. As the state of the knowledge base is dynamic due
to the assertions and de-assertions, the rule set of each IDS is
continually applied to the knowledge base.

The ontology specifying the Mitnick class states that it is
the intersection of both the DoS and Connection classes. Be-
cause each IDS instantiates an instance when this constraints
imposed by intersection is true, we need to examine each in-
stance to ensure that �����������
	�������
�������������	�������������
������ .

8 Conclusion and Future Work
We have analyzed vulnerability and intrusion data derived from
CERT advisories and NIST’s ICAT meta-base resulting in the
identification of the components (network, kernel, application
and other) most frequently attacked. We have also identified
the most common means and consequences of the attack as
well as the location of the attacker. Our analysis shows that
non-kernel space (non operating system) applications, running
as either root or user, are the most frequently attacked and are
attacked remotely. The most common means of attack are ex-
ploits. According to the CERT advisories issued in response

to severe vulnerabilities, root access is the most common con-
sequence of an exploit whereas the ICAT data shows denial of
service to be the most common consequence.

Our analysis was conducted in order to identify the observ-
able and measurable properties of computer attacks and intru-
sions. Accordingly, we have developed a target-centric on-
tology characterized by System Component, Means of Attack,
Consequences of Attack and Location of Attacker. We have
stated the case for replacing simple taxonomies with ontolo-
gies for use in IDS’s and have presented an initial ontology
specifying the class Intrusion. Our ontology is available at:
http://security.cs.umbc.edu/Intrusion.

We have prototyped our ontology using the DAMLJessKB,
which has some limitations. We intend to either modify
DAMLJessKB in order to make it a full and complete reasoner
or use Stanford’s Java Theorem Prover [6] or Rename ABox
and Concept Expression Reasoner [11].
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