
Engineering a complex ontology with time

Jorge Santos
GECAD - Knowledge Engineering and

Decision Support Research Group
Instituto Superior de Engenharia do Porto
Departamento de Engenharia Informática

4200-072 Porto - Portugal

Steffen Staab
Universität Karlsruhe (TH)

Institut AIFB
D-76128 Karlsruhe - Germany

Abstract

Because it is difficult to engineer a complex on-
tology with time, we here consider a method that
allows for factorizing the complexity of the en-
gineering process, FONTE (Factorizing ONTology
Engineering complexity). FONTE divides the engi-
neering task into building a time-less domain on-
tology and a temporal theory independently from
each other. FONTE provides an operator 
 that as-
sembles the two independently developed ontolo-
gies into the targeted ontology. We investigate the
quality of the proposed operator 
 by applying it
to a practical case study, viz. the engineering of an
ontology about researchers including temporal in-
teractions.

1 Introduction
In recent years, we have seen a surge of ontologies and on-
tology technology with many ontologies now being avail-
able on the Web. At the same time one could observe
that most ontologies (e.g., consider the DAML ontology li-
brary at http://www.daml.org/ontologies/)engi-
neered exhibit only rather simple structures, viz. taxonomies
and frame-like links between concepts.

This observation might indicate that such — comparatively
— simple structures are sufficient for the large majority of
ontology-based systems. According to our own experiences
about ontologies for knowledge portals [?] and power sys-
tems [Santos et al., 2001], however, one frequently needs in-
tricate concept descriptions and interactions — in particular
ones about time and space.

Because of intense (and fruitfully ongoing) research, many
practical theories about time are now well understood. While
the same can be said about the engineering of concept hi-
erarchies and concept frames, the issue of how to engineer
complex ontologies with intricate interactions based on time
has not been researched very deeply, yet, rendering the engi-
neering of a new complex domain ontology with time a labor
intensive, one-off experience with little methodology.

0Jorge Santos was supported by a Marie-Curie Fellowship for a
research visit to University of Karlsruhe. Most of the work presented
here, has been developed during this research stay.

In this paper, we present our ontology engineering method-
ology, FONTE (Factorizing ONTology Engineering complex-
ity), that pursues a ‘divide-and-conquer’ strategy for engi-
neering complex ontologies with time. FONTE divides a tar-
geted ontology that is complex and that includes time into
two building blocks, viz. a temporal theory and a time-less
domain ontology. Each one of the two subontologies can be
built independently allowing for a factorization of complex-
ity. The targeted ontology is then build by assembling the
time-less domain ontology and the temporal theory by the op-
erator
.

Thereby, the assembling operator 
 is very different from
existing operators for merging or aligning ontologies [Noy
and Musen, 2000; Rahm and Bernstein, 2001]. Merging on-
tologies is a process that intends to join different ontologies
about overlapping domains into a new one and most of its
problems and techniques are related to the identification of
similar concepts through structure analysis (e.g. graph anal-
ysis, path length, common nodes or/and edges and lexical
analysis). For instance, car from ontology 1, O1.car, and
auto from ontology 2 O2.auto may be defined to be identi-
cal in the merging process because of results of the struc-
ture analysis. To formalize the merging and aligning process,
Wiederhold proposed a general algebra for composing large
applications through merging ontologies of related domains
[Wiederhold, 1994] and actually, the operations proposed (In-
tersection, Union and Difference) are about the similarities
and differences of two ontologies.

In contrast, the result of 
 needs rather to be seen in anal-
ogy to the Cartesian product of two entities. For instance, car
from ontology 1, O1.car, with its frame O1.licensedInState is
assembled by 
 with ontology 2 and its O2.timeInterval in a
way such that every car in the result ontology has a lifetime
as well as multiple O1.licensedInState-frames with different,
mutually exclusive life spans.

 is operationalized by an iterative, interactive process.

It starts off with a human assembly — in the sense just ex-
plained — between an ontology O1, the time-less domain
ontology, and an ontology O2, the temporal theory. It is then
propelled by a set of rules and a set of constraints. The set
of rules drives a semi-automatic process proposing combina-
tions. The set of constraints narrows down the set of plausible
proposals to valid ones.

We have applied the methodology FONTE with its opera-



tor 
 to a case study, where O1 is a time-less ontology about
a semantic web research community and O2 is a temporal
ontology. We have investigated how many assembling steps
were proposed and evaluated their adequacy. The study re-
sults suggest that indeed FONTE provided a way to factorize
the complexity of building large applications leading to more
reliable and cheaper final products.

The rest of the paper is organized as follows. In Sections 2
and 3, we sketch the temporal ontology and the time-less do-
main ontology we have used for our case study, respectively.
In Section 4 we describe the semi-automatic process of as-
sembling two ontologies by 
, with some emphasis on the
tool support developed to drive the process. Then we give an
evaluation of our sample case in Section 5.

2 Temporal Ontology
The temporal ontology used for our case study (see Figure 1
for the depiction of an excerpt) embodies many concepts like
Instant or Period routinely found in ‘standard’ ontologies
like Time-DAML [Hobbs, 2002] or SUMO [Niles and Pease,
2001]. As argued by [Vila and Schwalb, 1996] a temporal
representation requires the characterization of time itself and
temporal incidence, which are represented in our temporal
ontology by TemporalEntity and Eventuality, respectively.

We defined a further notion TimedThing that bridges be-
tween temporal concepts and the domain concepts that will
be used during the assemble process. In particular, we have
included the notion of Role as a core concept. While there
are concepts that give identity to their instances (i.e. they
are semantically rigid), e.g. while the identity of a particu-
lar person depends on being an instance of Person, the iden-
tity of the same person does not change when it ends being a
student and starts being a professor. Thus, the notion of Role
is important when connecting a temporal theory, e.g. Allen’s
interval calculus, with a concrete domain, e.g. an ontology
about researchers (cf., e.g., [Lehmann, 1996; Sowa, 1996;
Guarino and Welty, 2000; Steimann, 2000]).1

Some of the choices for the temporal ontology that we
made were driven by modelling objectives particular to the
knowledge portal application that we had in mind when per-
forming the case study. For instance, our objective was to
have a 3-dimensional model of the world with time as an ex-
tra variable. For future applications an ontology engineer may
prefer a 4-dimensional view, leading to a somewhat different
temporal ontology and, thus, to an overall different target on-
tology in the end (cf. [Hayes et al., 2002]). The scope of this
paper is to show a factorization of complexity into two sub-
ontologies and a re-assembly into a target ontology in a way
that is independent of such underlying concerns.
Temporal Entities In the temporal ontology we used for
the case study there are two subclasses of TemporalEntity:
Instant and Period . The relations before, after and equality
can hold between Instants, respectively represented by the
symbols:�, �, =, allowing to define an algebra based on
points [Vilain and Kautz, 1986]. It is assumed that the before

1The reader may note that we could not directly use a ‘standard’
temporal ontology like Time-DAML or SUMO as they do not in-
clude the notion of role.

TimeRoot

Eventuality

TemporalEntity

TimedThing

Role

TimedConcept

TimedRelation

Instant

Period

Event

Process

begin end

duringAt

atTime

roleOf

roleOf

starts finishes duringAt

x y

x y
pred

isa(x,y)

pred(x,y)

Figure 1: Excerpt of temporal ontology used in case study

and after are strict linear, namely irreflexive, asymmetric,
transitive and linear. The thirteen binary relations proposed
in the Allen’s interval algebra [Allen, 1983] can be defined in
a straightforward way based on the previous three relations
[Freksa, 1992].

While begin and end are relations from TemporalEntity to
Instant, for convenience it is stated that start and end of an
Instant is itself. Also, there are no null duration periods and
each period is unique.

Processes and Events. There are two subclasses of
Eventuality: Process and Event, in order to be possible to
express continuous and instantaneous eventualities, respec-
tively. Event have a relation atTime to Instant while Process
have a relation duringAt to Period . The relations starts
and finishes allows to state what can start or finish one pro-
cess, that relations can be useful when modelling a reasoning
mechanism like Event Calculus [Kowalski and Sergot, 1986].

Roles. A role can have roles but can not be role of itself
(R1) and that roleOf relation it is transitive (R2). Guarino
distinguishes roles from natural types based on the lack of
semantic rigidity of the first, hence, it is possible to derive that
a role is timely bounded to the concept from which inherits
identity (R3).

8x : ? roleOf (x; x): (R1)

8x; y; z : roleOf (x; z) 

roleOf (x; y) ^ roleOf (y; z): (R2)

8o; x; y; p1; p2 : containedBy(p1; p2) 

(isa(y;Role) _ isa(y;TimedConcept)) ^
isa(x;Role) ^ roleOf (x; y) ^

hasRoleDuringAt(o; x; p1) ^

hasRoleDuringAt(o; y; p2): (R3)

2



3 Case Study Example: The SWRC Ontology

The assemble process may be used either for development
of ontologies with time from the scratch as well as for re-
engineering existing ones in order to include time. For
our case study we have used the SWRC (Semantic Web
Research Community) ontology (http://ontobroker.
semanticweb.org/ontos/swrc.html) that served
as a seed ontology for the knowledge portal of OntoWeb.

SWRC comprises 55 concepts, 151 relations and 25 ax-
ioms. The results presented in the section 5 are based on re-
engineering the complete SWRC. Here we present an excerpt
that is also used in order to elucidate the assembling process
with 
.

The SWRC ontology contains different types of axioms,
namely, transitive, inverse, symmetric and general, being that,
any axiom that does not fall in the first three types is called
’general’.

isa(Student ; Person)
isa(Employee; Person)
isa(Male; Person)
isa(Graduate; Student)

studiesAt(Student ;University)
member(Person; Project)
isAbout(Project ;Topic)

8p; t : isAbout(p; t)$ dealsWithIn(t; p) (I1.1)

8pers; top : worksOn(pers; top) (A1.1)
9proj : instOf (pers; Person) ^ (A1.2)
instOf (proj; Project) ^ (A1.3)
instOf (top;Topic) ^ (A1.4)
isAbout(proj; top) ^ (A1.5)
member(pers; proj) (A1.6)

Figure 2: Excerpt of SWRC ontology

4 The Assembly Process

The assembly process comprises two main building blocks.
First, the specification of temporal aspects for a time-less do-
main ontology remains dependent on the conceptualization of
the ontology engineer. Therefore, it is very important that the
engineer may interactively influence the process. Second, in
order to facilitate and accelerate the assembly of time-less do-
main concepts with temporal notions, the interactive process
is supported by heuristics asking and pointing the engineer.

The assembling process runs as depicted in Figure 3: It
starts by an Initial Setup. Some basic operations are
performed, namely loading the ontologies to be assembled,
loading a set of rules to drive the process and initializing some
process parameters. The rules and parameters are defined
separately from the tool in order to allow for adaptations to
the particular needs of different temporal ontologies. How-
ever the rules and parameters do not change when a new do-
main ontology is to be assembled. The Target Ontology
initially corresponds to the union of the time-less domain on-
tology, O1, and the temporal theory, O2.

In the Analyze Structure step a set of tests are per-
formed that restrict the set of possible task instances to plau-
sible ones, which are then proposed by insertion into the
Task List. As more information becomes available in

Ontology 2

Validate

USER:

Iterate

Conclude

Process

Initial

Setup

Load

Update

Execute Task

Analyze

Structure

Read

Tasks

Add

Tasks

Task

List

Task

History

Update

Allow Undo

Target

Ontology

Create

USER:

Create or

accept

Process Flow

Data Flow

Rules for

Assemble

Create

new

task

Accept

proposed

task

Parameters
Ontology 1

Figure 3: Assembly main process

subsequent iterations, the usefulness of results provided by
the structure analysis improves.

In every iteration the engineer decides whether to accept an
automatically proposed task instance from the Task List.
Alternatively, the user may take the initiative and assemble
a new task instance from scratch. Then a set of logical tests
(Validate) are performed in order to detect the existence
of any knowledge anomalies (e.g. circularity or redundancy
[Preece and Shinghal, 1994]). In contrast, the acceptance of a
proposed task instance does not require further checks as the
checks are tested for validity before the user sees them.

By the Execute Task step the corresponding changes
are made to the target ontology. Thereafter, the
user decides either to pursue another iteration or to
go to Conclude Process and accept the current
Target Ontology as the final version.

4.1 Data Structures
In the remainder of Section 4, we first present the principal
data structures we use for defining the heuristics, before we
elaborate on its application in three subsections for assem-
bling concepts, frame-like relations and axioms, respectively
(Sections 4.2 to 4.4).
Task. We have already informally used the notion of task
in order to refer to an action template (i.e. a generic task)
that may be instantiated and executed in order to modify a
current target ontology. A task is defined by its procedure
and a task question. The task code uses a set of keywords
with the commonly expected semantics of structured pro-
gramming (e.g. if, then, else) and some special key-
words, do and propose, the semantics of which we provide
subsequently.
Task instance. A task instance is fully identified by its head

3



(i.e. by its task name and some instantiated arguments). A
task instance is either either proposed by the application of
the assembly rules in the Analyze Structure step or by
instantiation of a generic task of the ontology engineer (both
ways operationalizing
). For instance, consider the task in-
stance
create-role-of(Student,Person),

which defines the concept Student to become a role of
Person.
Task question. Before the execution of a task, the system
asks a task question in natural language to the engineer in
order to determine if the proposal should really be accepted
or not and in order to ask for additional constraints that the
user might want to add. The task question is defined by a
List of words and parameters used to compose a sentence in
natural language.

For instance, the following task question exists for the pre-
vious example

create-role-of(#arg1,#arg2):
[’Define’,#arg1,’as role of’,#arg2,’?’]

It implies that the question ”Define Student as role of Per-
son?” would be posed before executing the example task in-
stance.

In order to manage various task instances, the assembling
algorithm uses the following data structures:
Task List. This is a list of tuples (TaskIn-
stance,ListOfTriggers,Weight) storing proposed task
instances together with the triggers that raised their proposal
and their weight according to which they are ranked on the
task list. Thereby, TaskInstance has been defined before;
ListOfTriggers denotes the list of items that have triggered
the proposal. A trigger is a pair fTriggerType,TriggerIdg
where TriggerType has one of the values concept, relation or
axiom and the TriggerId is the item identifier. For instance,
the pair fconcept, Persong is a valid trigger. The list is use-
ful for queries about what proposals by a specific item or a
certain TriggerType;
Weight. Since competing task instances may be proposed,
Weight is used to reflect the strength of the proposal on the
TaskList.
Task History is the list of all tasks that were previously per-
formed. This list is useful to allow the undo operation and to
provide statistics about the assembly process.
do(TaskInstance). The function do executes a task instance
and creates a corresponding entry on the History List.
propose(TaskInstance,Trigger,Weight). The function
propose creates a proposal and asserts the corresponding
tuple in the Task List.

4.2 Assembly of Concepts
As mentioned before system proposals are generated based
on rules and constraints. Typically, in the initial phase only
few interactions between the initially time-less domain on-
tology and the temporal theory are known and, hence, few
proposals are generated. Furthermore, the assembling of
concepts with temporal attributes needs to fulfill fewer con-
straints than the assembly of relations and far less than the

assembly of axioms. Thus, proposals for modifications with
concepts are typically made first — and elaborated in this
subsection.

For the running example here, we assume that
a user defines and executes a task instance of
assemble-concepts that subclasses a concept C1,
viz. person, from a C2, viz. TimedConcept:

procedure assemble-concepts(C1,C2)
if (C2=’TimedConcept’ or C2=’Role’)

do(create-relation(isa(C1,C2)))
assemble-related-concepts(C1)
assemble-related-relations(C1)
assemble-related-axioms(C1)

end-if
end-procedure

The corresponding procedure assemble-concepts
creates a new isa relation between the Person and
TimedConcept and then proposes further assembling tasks
for related concepts, relations and axioms. Tracing the
changes that may be proposed to related concepts in
assemble-related-concepts, we find that it pro-
poses the definition of Employee, Student and Male as pos-
sible roles of Person.2

procedure assemble-related-concepts(C)
foreach S do
%check if S is a sub-concept of C
if(isa(S,C))

W=calculate-weight(S,C)
%T is the trigger for this proposal
T=(concept,C)
propose(create-role-of(S,C),T,W)

end-if
end-do

end-procedure

Later, if definition of Student as role becomes accepted,
recursively Graduate will be proposed to become a role of
Student utilizing create-role-of:

procedure create-role-of(S,C)
%delete isa(S,C) if true; if not, no effect

do(delete-relation(isa(S,C)))
do(create-relation(roleOf(S,C)))
assert(temporal-role-constraint(S,C))
do(assemble-concepts(S,’Role’))

end-procedure

with temporal-role-constraint(S,C)defined by

8o; p1; p2 : containedBy(p1; p2) 
instOfDuringAt(o; S; p1) ^
instOfDuringAt(o; C; p2): (C1.1)

Assuming that Male were not accepted as role of Person in
the further course of assembly, the result depicted in Figure 4
would be obtained.

The reader may note that this result crucially depends on
our temporal theory, but that rules could be easily modified to
accommodate other theories (e.g., ones without roles).

2The character ‘%’ indicates a line remark.

4



isa(Person;TimedConcept)
isa(Male; Person)
isa(Student;Role)
isa(Employee;Role)
isa(Graduate;Role)
roleOf (Student ; Person)
roleOf (Employee; Person)
roleOf (Graduate; Student)

TimedThing

Person

TimedConcept

Graduate

Role

Student

roleOf

roleOf

Employee

roleOf

Male

Figure 4: Result of assembly of concepts with time

4.3 Assembly of Relations
From the assembly of concepts there follow proposals for the
modification of relations. For instance, when we assume that
Person and Project were previously modified to become sub-
concepts of TimedConcept and Process respectively, it be-
comes plausible that also the relation that links them, viz.
member(Person; Project), should incur changes.

The changes occur in analogy to the tasks defined for the
assembly of concepts. In addition however, there arise fur-
ther possibilities in order to constrain the life-time of the
actual relationship by the life-time of the participating con-
cept instances. Thus, member(Person; Project) is replaced
by member(Person; Project ; Period) and — maybe — further
contraints on the time period as added by the engineer.

4.4 Assembly of Axioms
The temporal constraints on concepts, relations and their in-
stances also requires the corresponding consistent modifica-
tions of axioms. With axioms we here refer to general propo-
sitions in first-order horn logics with function symbols.

For instance, let us consider the axiom defined in Fig-
ure 2 by lines A1.1 through A1.6 and let us name it
axiomWorksOn. axiomWorksOn defines that a Person who
works in a Project that is dealing with a Topic, worksOn this
topic.

In order to assemble time into the axiom representation we
must consider the constraints available for the instances of
participating concepts and, furthermore, the ontology engi-
neer must define which one of these constraints is used in
which way. For instance, for the relation worksOn it may
be adequate to say that the Person worksOn the Topic as
long as he is a member of the Project and as long as the
Project isAbout the Topic, i.e. intersecting the lifetimes of
relations in lines A1.5 and A1.6. For an analogous structure
where knowsAbout(pers,top) appears in the head instead of
worksOn(pers,top), however, the conclusion might be that a
Person knowsAbout a Topic ever after he has encountered it
in a Project until he dies, i.e. restraining the knowsAbout-
relation only to the earliest time-point of the encounter and
the life-time of the Person.

Since, the only difference between the two example struc-
tures lies in the naming of the relations and the intentions as-
sociated with their names, it is necessary to involve the user
for defining additional temporal constraints.

The task assemble-axiom asserts an additional tempo-
ral precondition for each concept that is temporally quanti-

fied. In our running example, this affects the instances of
Person (A1.2) and Project (A1.3). Furthermore, it also up-
dates the preconditions of the axiom involving relations that
need to be temporally modified. In the running example, this
affects, e.g., member (A1.6). Finally, the user is asked to
define one (or several) constraint(s) that relates all the timed
variables (intervals or instants) for the pre- or the postcondi-
tions of the axiom.

procedure assemble-axiom(A)
%for each concept present in the axiom
%LC is a list of all new constraints
foreach C partOf(A)
if isa(C,’Eventuality’) or

isa(C,’TimedThing’)
then add-concept-constraint(C,A)

LC=concat(LC,C)
end-if

end-do
%for each relation present in the axiom
%LR is a list of modified constraints
foreach R partOf(A)
if isa(R,’TimedRelation’)
then modify-relation-constraint(R,A)

LR=concat(LR,R)
end-if

end-do
%select a temporal constraint over
% all the timed variables
if (LC not empty) or (LR not empty)
then select-temporal-constraint(A,LC,LR)
end-if

end-procedure

Then the updated axiom includes previously existing pre-
conditions (A1.2 to A1.5) and further ones about Person
(A2.1), Project (A2.2) and member (A2.3) — as well as
a temporal constraint (e.g.intersection) over them (A2.4).
Hence the structure of the modified axiom looks like:

8p; top; t : worksOn(p; top; t) 
(A1.2)...(A1.5)
9t1; t2; t3 : duringAt(p; t1) ^ (A2.1)
duringAt(prj; t1) ^ (A2.2)
member(p; prj; t3) ^ (A2.3)
tempRelation([t1; t2; t3]; t) (A2.4)

5 User Interaction
FONTE uses an approach that relies on iterative interaction
with the user. All the assemble operations as well as interac-
tions with the Task List and the History List can be performed
using both the graphical drag-and-drop tool or a command
line interface (please refer to appendix A).

In order to evaluate the effectiveness of FONTE, we have
numerically evaluated the assembly tasks proposed and exe-
cuted for the ontologies presented in Sections 2 and 3. An
ontology engineer interactively assembled the two ontologies
and by our process log we could evaluate the success of our
approach by listing the numbers from Table 1:

The reader may note that the engineer initiated only very
few tasks (10). From this initial structure a large number of
tasks were proposed and accepted by the user (135). Of these

5



User-initiated tasks 10
Tasks proposed on Task List 135
Proposed tasks accepted 78
Proposed tasks postponed for later inspection 10
Proposed tasks rejected 47

Table 1: Figures summarizing the log file

58% were accepted (78), 7.4% (10) were postponed for later
inspection and the rest was ignored. I.e. only 34.8% were
considered inadequate indicating a high success rate for our
interactive approach.

This does not only seem to be true for simple structures
(where it might have been expected), but also for modifi-
cations of horn-logic axioms. Originally SWRC contained
25 axioms. 20 of them were updated automatically the rest
needed some more careful inspection.

6 Related Work
In the past a variety of approaches were proposed for reduc-
ing the complexity of engineering a rule-based system, e.g.
by task analysis [Schreiber et al., 1999], or an ontology-based
system, e.g. by developing with patterns [Clark et al., 2000;
Staab et al., 2001; Hou et al., 2002] or developing subontolo-
gies and merging them [Noy and Musen, 2000; Rahm and
Bernstein, 2001]. As different as these methods are, they
may be characterized by subdividing the task of building a
large ontology by engineering, re-using and then connecting
smaller parts of the overall ontology.

Though FONTE shares its goal with these methodologies
is its rather different in its operationalization. FONTE does
not aim at a partitioning and re-union (by merge or align with
recognition of similarities) of the problem space, but rather
by a factorization into primordial concepts and a subsequent
combination 
 that is more akin to a Cartesian product than
a union of ontologies. Despite these difference, one may
note that FONTE implements an iterative and interactive ap-
proach which was previously successfully adopted in sophis-
ticated tools for merging ontologies [Noy and Musen, 2000;
Mitra and Wiederhold, 2001; McGuinness et al., 2000]. Also,
FONTE does not substitute these other methodologies, rather
we envision that one wants to separate the target ontology to
be built into different (possibly overlapping) domains as well
as into time-less and temporal subontologies. The two ways
of carving up the engineering task need different, comple-
mentary methodologies.

7 Conclusions and Future Work
We have proposed a method, named FONTE, for engineering
complex ontologies with time by assembling them from time-
less domain ontologies and a temporal theory. FONTE pro-
vides an operator 
 that operationalizes the assembly in an
interactive way. 
 combines two independently developed
ontologies into a target ontology.

Though, so far, we have only studied the assembly of time
into a given ontology, we conjecture that FONTE may also
be applied to integrate other important concepts like space,
trust, or user access rights — concepts that pervade a given
ontology in intricate ways such that a method like FONTE is

needed in order to factorize engineering complexity out lead-
ing to more consistent and cheaper target ontologies.

Acknowledgments
This work was partially supported by a Marie-Curie Fellow-
ship and by FCT (Portuguese Science and Technology Foun-
dation) with programs ONTOMAPPER (POSI-41818) and
SANSKI (POCTI-41830). We are also in indebted to our col-
leagues in LS3, particulary to Gerd Stumme and Julien Tane
and Nuno Silva in ISEP.

References
[Allen, 1983] J. Allen. Maintaining knowledge about temporal in-

tervals. Communication ACM, 26(11):832–843, 1983.

[Clark et al., 2000] P. Clark, J. Thompson, and B. Porter. Knowl-
edge patterns. In KR2000, pages 591–600, 2000.

[Freksa, 1992] C. Freksa. Temporal reasoning based on semi-
intervals. Artificial Intelligence, 54(1):199–227, 1992.

[Guarino and Welty, 2000] N. Guarino and C. Welty. A formal on-
tology of properties. In Knowledge Acquisition, Modeling and
Management, pages 97–112, 2000.

[Hayes et al., 2002] P. Hayes, F. Lehmann, and C. Welty.
Endurantism and perdurantism: An ongoing debate.
http://ontology.teknowledge.com:8080/rsigma/dialog-3d-
4d.html, 2002.

[Hobbs, 2002] J. Hobbs. Towards an ontology for time for the se-
mantic web. In Proc. Workshop on Annotation Standards for
Temporal Information in Natural Language,LREC2002, Las Pal-
mas, Spain, May 2002.

[Hou et al., 2002] Chih-Sheng Johnson Hou, N. F. Noy, and M. A.
Musen. A template-based approach toward acquisition of logical
sentences. In Procs.Intelligent Information Processing 2002 -
World Computer Congress, Montreal, Canada, 2002.

[Kowalski and Sergot, 1986] R. Kowalski and M. Sergot. A logic-
based calculus of events. New Generation Computing, 4:67–95,
1986.

[Lehmann, 1996] F. Lehmann. Big posets of participants and the-
matic roles. In G. Ellis & G. Mann In P.W. Eklund, editor, Con-
ceptual Structures: Knowledge Representation as Interlingua,
pages 50–74. Springer-Verlag, 1996.

[McGuinness et al., 2000] D.L. McGuinness, R. Fikes, J. Rice, and
S. Wilder. An environment for merging and testing large ontolo-
gies. In Procs.KR2000, 2000.

[Mitra and Wiederhold, 2001] P. Mitra and G. Wiederhold. An al-
gebra for semantic interoperability of information sources. In
Proc.2nd.IEEE Symp. on BioInformatics and Bioengineering,
BIBE 2001, pages 174–182, Bethesda, MD, 2001.

[Niles and Pease, 2001] I. Niles and A. Pease. Toward a standard
upper ontology. In Procs of the 2nd International Conference on
Formal Ontology in Information Systems (FOIS-2001), 2001.

[Noy and Musen, 2000] N. Noy and M. Musen. Prompt: Algo-
rithm and tool for automated ontology merging and alignment.
In Procs.AAAI-2000, 2000.

[Preece and Shinghal, 1994] A. Preece and R. Shinghal. Founda-
tion and application of knowledge base verification. International
Journal of Intelligent Systems, 9(8):683–702, 1994.

6



[Rahm and Bernstein, 2001] Erhard Rahm and Philip A. Bernstein.
A survey of approaches to automatic schema matching. VLDB
Journal, 10(4):334–350, 2001.

[Santos et al., 2001] J. Santos, C. Ramos, Z. Vale, and A. Mar-
ques. Verification & validation of power systems control centres
kbs. In Procs.IASTED Artificial Intelligence and Applications
(AIA2001), pages 324–329, Marbella, Spain, September 2001.

[Schreiber et al., 1999] G. Schreiber, Akkermans H., Anjewierden
A., R. Hoog, N. Shadbolt, W. Van de Velde, and B. Wielinga.
Knowledge engineering and management. The CommonKADS
Methodology. MIT Press, 1999.

[Sowa, 1996] J. Sowa. Processes and participants. In G. Ellis &
G. Mann (Eds.) In P.W. Eklund, editor, Conceptual Structures:
Knowledge Representation as Interlingua, pages 1–22. Springer-
Verlag, 1996.

[Staab et al., 2001] S. Staab, M. Erdmann, and A. Maedche. Engi-
neering ontologies using semantic patterns. In Procs. IJCAI-01
Workshop on E-Business & the Intelligent Web, 2001.

[Steimann, 2000] F. Steimann. On the representation of roles in
object-oriented and conceptual modelling. Data & Knowledge
Engineering, 35(1):83–106, 2000.

[Vila and Schwalb, 1996] L. Vila and E. Schwalb. A theory of
time and temporal incidence based on instants and periods.
Proc.International Workshop on Temporal Representation and
Reasoning, pages 21–28, 1996.

[Vilain and Kautz, 1986] M. Vilain and H. Kautz. Constraint prop-
agation algorithms for temporal reasoning. In Proc. of AAAI-86,
pages 377–382, Philadelphia, PA, 1986.

[Wiederhold, 1994] G. Wiederhold. An algebra for ontology com-
position. In Proc.Workshop on Formal Methods, pages 56–61,
Monterey, 1994.

A User’s Choices
A command line interface was developed for the tool that im-
plements the FONTE method. Table 2 describes commands
used on the execution of assemble tasks both are available
through the acceptance of automatic produced proposals or
by user driven operations.

Command Description
link(C1,C2) Assembles concept C1 from do-

main ontology with concept C2
from general ontology

link(R,C1,C2) Defines the relation R between
concepts C1 and C2 as a temporal
relation

acptnextprop Accepts the next proposal in the
Task List for execution

acptpropnum(N) Accepts proposal N from Task List
for execution

acptprops(L) Accepts a list of proposals L from
Task List for execution

undo Undo last performed assemble task

Table 2: Assemble Tasks

Table 3 describes commands used for handling Task List
and History List. Provided facilities are showing and sorting
list contents.

Command Description
shownextprop Show detailed information about

next task on Task List, including a
question in natural language

showprop(N) Show detailed information about
task N on Task List, including a
question in natural language

sortproplist(F) Sorts tasks in Task List by field F
(e.g.Weight or Trigger)

showproplist Shows content of Task List
showhistlist Shows content of History List

Table 3: Historic and Task Lists Handling

The table 4 describes commands used for handling files
used in the assemble process, namely, ontology files and
batch files.

Command Description
loaddomont(F) Loads contents of file F containing

a domain ontology
loadgenont(F) Loads contents of file F containing

a general ontology (e.g. time ontol-
ogy)

loadscript(F) Loads a batch file File with a as-
semble tasks

savescript(F) Saves into a batch file F the
list of user driven assemble tasks
recorded in History List

savetargont(F) Saves target ontology obtained
through the assemble process into
file F

Table 4: File Handling

Finally, table 5 describes some auxiliary commands.

Command Description
cmd(C) Performs command C, allowing to evoke

any assemble task not available through
command line

help Shows help texts about available com-
mands

exit Finishes program execution

Table 5: Auxiliary Commands

7


