
Compiling Complex Terminologies for Query Processing

Heiner Stuckenschmidt
Vrije Universiteit Amsterdam

heiner@cs.vu.nl

Abstract

It is widely accepted that the Semantic Web will
be based on machine-readable metadata describ-
ing the content of resources. These descriptions
are designed to enable intelligent agents to locate
and filter relevant information with a higher level
of accuracy. The Resource Description Framework
(RDF) has been developed as universal language
for encoding content-related metadata and recently
a number of query languages have been proposed
to extract information from metadata models. Cur-
rent applications of RDF and RDF query languages
only use very simple metadata like simple concept
hierarchies (The Open Directory) or pre-defined at-
tribute value pairs (Dublin Core). In this paper
we address the problem of encoding and querying
complex metada using RDF models and queries. In
our approach we consider ontologies with complex
concept definitions in the spirit of DAML+OIL and
propose a pre-processing method that enables us to
access these models using RDF query languages
without losing information.

1 Motivation
In todays semantic web research there is still a big gap
between theoretical considerations about the use of rich
background knowledge in terms of ontologies and real
implementations that are actually used in applications on the
web. While theoreticians claim that rich knowledge models
(as supported by the ontology language DAML+OIL or
recently OWL) provide the expressive power and reasoning
support needed in many domains, the application of such
rich models is hampered by the high complexity of reasoning
that makes them unlikely to scale up to a realistic setting. As
a consequence, most existing implementations of semantic
web infrastructure such as JENA1, RDFSuite2 or Sesame3

rely on more light-weight solutions restricting them selves to
RDF, RDF schema or a small subset of the OWL language.

1http://www.hpl.hp.com/semweb/jena.htm
2http://139.91.183.30:9090/RDF/
3http://sesame.aidministrator.nl/

Our concern is now to close the gap between these views
and to provide ways of exploiting the expressive power of
rich ontology languages in combination with efficient imple-
mentations that rely on light weight solutions. In this paper,
we concentrate on the problem of querying information on
the Semantic Web. Most existing implementations support
querying RDF models, some also supporting schema aware
querying. However, it has been argued that the presence of
rich background knowledge requires deductive reasoning for
achieving complete answers[Horrocks and Tessaris, 2000].
To our knowledge, none of the existing implementations
of semantic web infrastructure supports this kind of query
processing4. Therefore, if we want to make use of the
expressive power of languages like DAML+OIL and the
querying facilities of existing infrastructure, we have to
find ways of pre-processing DAML+OIL models in such
a way that they can be handled by methods developed for
light-weight approaches.

The obvious way of dealing with DAML+OIL models
in a lightweight setting, ignoring all language features not
supported by the light weight approach has serious draw-
backs as it always means loosing information. Therefore,
rather than weakening the background model, our approach
is based on the idea of compiling out implicit knowledge in
the background model and enriching the plain RDF model
with this additional information. As finding the hidden
information again requires expensive logical reasoning,
this compilation step is done off-line. The actual query
answering is done on the enriched model already. This
approach, known as knowledge compilation, is well known
in Artificial Intelligence research[Cadoli and Donini, 1997].
The novelty of this work is to apply the idea in the specific
context of the semantic web and its representations.

The contribution of this paper is two-fold:

• We show how existing reasoning techniques can be used
to compile implicit information about named objects of
a domain model into a plain RDF description.

• We propose a heuristic approach for enhancing this

4There is a prototypical implementation of the query answering
approach of Horrocks and Tessaris, but it does not provide a real
infrastructure for handling semantic web data



description with information about anonymous objects
than can be derived from the background knowledge.

The paper is organized as follows. We first review some
basic notions of RDF, mainly referring to its model theoretic
semantics. We pay special attention to the interpretation of
unlabeled nodes as existentially quantified variables referring
to anonymous objects and on their role in query answering.
Afterwards we review existing work on explicating implicit
information contained in background knowledge. We con-
sider the case of RDF schema and of DAML+OIL model.
Finally, we discuss the issue of implicit relational informa-
tion that is only partially covered by existing approaches.
We show how the query answering approach of Horrocks
and Tessaris[Horrocks and Tessaris, 2000] can be used to
compile relational information about named objects and we
sketch an approach for dealing with unnamed objects in the
compilation process. We summarize with a discussion of
open questions.

2 RDF Querying
The ability to query RDF models in an efficient way is an
essential aspects with respect to building semantic web ap-
plications. As RDF is designed as a language for describ-
ing the content of an information source, being able to find
a specific piece of information is equivalent to being able
to find the corresponding RDF statement. In the following,
we present a general view on answering queries based on the
RDF data model introduced above and briefly review the RDF
data model and some existing query languages.

2.1 RDF Query langauges
The RDF data model described above and its associated se-
mantics provides us with a basis for defining queries on RDF
models in a straightforward way. The idea that has been pro-
posed elsewhere and is adopted here is to use graphs with un-
labeled nodes as queries. The unlabeled elements in a query
graph can be seen as variables of the query. In this approach,
answers to a query can be defined in two ways:

• A sub-graph of the given RDF model that is an instanti-
ation of the query graph.

• The set of resources that if they are used to instantiate
unlabeled nodes in the query graph result in a sub-graph
of the given RDF model

From a theoretical point of view these two definitions
are exchangeable as one can easily be derived from the
other by either extracting instantiated resources from the
an answer graph or by instantiating the query graph with
the resources from the answer set, respectively. Due to this
correspondence, we will use the definitions synonymously.

Another characteristic feature of RDF is the possibility to
refer to entire RDF graphs and not only to single resources.
At first sight, the ability to refer to entire statements destroys
the graph Another feature of graph-based queries is that an-
swering queries about RDF models can be based on the same
techniques that are used for reasoning about such model. In

especially, graph matching is a basic technique with respect
to reasoning and query answering (see e.g.[Caroll, 2002]).
Adopting this technique, query answering is done by find-
ing a match between the query graph and the RDF model,
allowing unlabeled nodes in the query graph to be matched
against any node in the model. Once a match is found, the
query graph can be instantiated with the matching nodes on
the model or those nodes can be returned as an answer.

With the increasing interest in RDF, a number of RDF
query languages have been developed and integrated in the
available infrastructure. One of the most widely adopted ones
that is based on graphs as queries is SquishQL[Miller et al.,
2002]. Different Implementations of SquishQL based lan-
guages exist as part of RDF APIs or persistent storages and
can therefore be assumed to be widely used. In the following,
we consider RDQL, an implementation of SquishQL that is
part of the Jena RDF Toolkit and the RDF storage and query
system Sesame. Following the basic definitions of SquishQL
a query has the following components:

SELECT the select clause identifies variables form the query
graph that should be returned as the result of the query.

FROM the from clause specifies the RDF model to be used
as a basis for querying. The model is identified by its
URI.

WHERE the where clause describes the query graph in
terms of a conjunction of RDF triples connected by vari-
ables.

AND the and clause contains a Boolean expression that
constraints possible variable instantiations in the query
graph.

USING the using clause can be used to define abbreviations
used in the specification of the query.

These constructs allow the user to formulate queries in an
SQL like style which is well known by most application de-
velopers.

2.2 An Example
We use a toy example from the domain of family relationships
to illustrate the way queries are formulated. For the sake of
simplicity, we omit the FROM, and USING clauses.

SELECT ?p ?c
WHERE

(?p has-child ?c)
(?p type ?g)
(?p age ?a)

AND
(?g eq #female)

The above query asks for mothers and their children. The
result of a query will be a table with the identifiers of persons
that satisfy the requirements specified in the query, namely
that they are in the has-child relation where the first member
of the relation is of type female. We further use the following
RDF model of mothers to be queried:

<rdf:Description rdf:about="alice">
<type rdf:resource="#female">



<has-child rdf:resource="#betty>
</rdf:Description>

<rdf:Description rdf:about="jane">
<mother-of rdf:resource="#tom">

</rdf:Description>

<rdf:Description rdf:about="eve">
<type rdf:resource="#female">
<has-son rdf:resource="#charles">
<has-mother rdf:resource="#betty">

</rdf:Description>

<rdf:Description rdf:about="betty">
</rdf:Description>

<rdf:Description rdf:about="carol">
<type rdf:resource="mother">
<has-child rdf:resource="#doris">

</rdf:Description>

<rdf:Description rdf:about="doris">
<type rdf:resource="#mother">

</rdf:Description>

<rdf:Description rdf:about="mary">
<type rdf:resource="#virgin-mary">

</rdf:Description>

Applying the query specified above we would get the pair
(alice, betty) as a result because alice is defined to be female
at having a child. This result is not very satisfying as it is easy
to see that all of the defined persons are actually mothers and
should therefore be in the answer to the query. The reason
for the incomplete result is the lack of information about the
meaning of the descriptions.

3 Ontology-Aware Querying
One of the main features of the semantic web is the idea to
enrich metadata descriptions with explicit models of their in-
tended meaning. These models range from simple schema
definitions to complex ontologies that define concepts and
describe them by necessary and sufficient conditions thus en-
abling intelligent applications to reason about their members
and their relation to each other. On the semantic web, we
want to exploit this semantic information for query answering
as it provides us with background information for computing
more complete results. In the example above we also want to
retrieve instances as an answer to ?p that have the following
properties:

• are of type female and have a daughter or a son, because
this implies having a child

• have a child and are human and not male because not
being male implies being female.

• are of type mother, because this implies being female
and having a child.

• are of type virgin-mary as this implies being the mother
of christ.

Expressive language have been developed that can be used
to encode the kind of background knowledge needed to
draw the conclusions mentioned above. In especially, RDF
schema provide means for define simple schematic informa-
tion [Brickley and Guha, 2003]. DAML+OIL extends RDF
schema towards a more expressive language for defining the
meaning of classes[van Harmelenet al., 2001a]. Unfor-
tunately, simple query language like RDQL are not able to
make use of the background knowledge per se. We rather
have to do some pre-processing on the RDF model to be
queried in order to get all intended results. In the follow-
ing, we describe how this pre-processing step can be done in
order to query metadata that is based on an RDF schema and
on a DAML+OIL ontology, respectively, and refer to exist-
ing approaches that use these methods to support querying.
Afterwards, we point out to remaining problems that are the
main motivation for the compilation approach, we propose as
an extension of existing proposals.

3.1 Schemas
RDF schema provide a language for encoding structural back-
ground information about the vocabulary used in an RDF
Model. This structural information provides insights into the
relations between the different elements of the model and
helps to draw conclusions that could not be found from the
plain model. In particular, a schema defines hierarchies of
classes and relations as well as restrictions on the range and
the domain of relations. In the family domain, we use in our
example, the schema may contain the following information
about the classes and relations used in the model:

<rdf:property id="has-son">
<rdfs:subPropertyOf rdf:resource="#has-child"/>

</rdf:Property>

<rdf:property id="has-mother">
<rdfs:range rdf:resource="#female"/>

</rdf:property>

<rdf:property id="mother-of">
<rdfs:subPropertyOf rdf:resource="#has-child"/>
<rdfs:domain rdf:resource="#female"/>

</rdf:property>

This schema defines that having a son is a special case of
having a child, that mother is a subclass of female persons
which is the range of the relation has-mother and the domain
of the relation mother-of, which in turn is a special case of
having a child. We immediately see that this information
is relevant for answering our query as from it we can con-
clude that Jane and Eve fulfill the requirements specified in
the query. Formally, this is established by the axiomatic se-
mantics of RDF schema given in[Hayes, 2003]. Applying
these axioms to our example RDF model, we can add a num-
ber of new facts that can be matched by the query engine. In
particular, we get the following more complete definitions of
jane, eve and betty:

<rdf:Description rdf:about="jane">



<mother-of rdf:resource="#tom">
<has-child rdf:resource="#tom">
<type rdf:resource="#female">

</rdf:Description>

<rdf:Description rdf:about="eve">
<type rdf:resource="#female">
<has-son rdf:resource="#charles">
<has-child rdf:resource="#charles">
<has-mother rdf:resource="#betty">

</rdf:Description>

<rdf:Description rdf:about="betty">
<type rdf:resource="#female">

</rdf:Description>

Now that the information about these resources has been
made explicit, posting the example query against the ex-
panded model will also return jane and eve as an answer
to the query. Betty, however, is now only known to be fe-
male, but there is no explicit statement about her child which
disables the query engine to recognize her as matching the
query. In fact, this approach of first expanding a model using
schematic information and then evaluating queries against the
completed model is a common approach that has for example
been implemented in Sesame[Broekstraet al., 2002].

3.2 Ontologies
The example domain already shows that there are many as-
pects of terminological knowledge that can not be captured
by RDF schema. These aspects include the following facts
that might be relevant for answering queries about our do-
main:

• the same person may not be male and female

• a female person automatically becomes a mother when
having a child

• virgin Mary is the mother of christ

Including these facts in a model of information semantics
requires a far more expressive language. DAML+OIL[van
Harmelenet al., 2001a] is such a language that has been de-
fined on top of RDF schema, extending it with additional
operators for defining classes by constraining possible mem-
bers. For our domain a DAML+OIL model might contain the
following definitions:

<daml:Class rdf:ID="human">
<daml:equivalentTo>

<daml:unionOf>
<daml:Class rdf:resource="#male"/>
<daml:Class rdf:resource="#female"/>

</daml:unionOf>
</daml:equivalentTo>

</daml:Class>

<daml:Class rdf:ID="male">
<rdfs:subClassOf>

<daml:complementOf>
<daml:Class rdf:resource="#female"/>

</daml:complementOf>

</rdfs:subClassOf>
</daml:Class>

<daml:Class rdf:ID="mother"> <rdfs:subClassOf>
<daml:complementOf>

<daml:Class rdf:resource="#male"/>
</daml:complementOf>
<daml:restriction>

<daml:onProperty rdf:resource="#has-child"/>
<daml:hasClass rdf:resource="#human"/>

</daml:restriction>
</rdfs:subClassOf>

</daml:Class>

<daml:Class rdf:ID="virgin-mary">
<rdfs:subClassOf>

<daml:Class rdf:resource="female">
<daml:restriction daml:cardinality="1">

<daml:onProperty rdf:resource="#has-child"/>
<daml:hasValue rdf:resource="#jesus-christ"/>

</daml:restriction>
</rdfs:subClassOf>

</daml:Class>

The model adds further semantic information about the
domain to our model, namely the fact that the class of all
humans is exactly the union of male and female person. That
male persons cannot be female at the same time, that a mother
is a female person having a child and that virgin Mary is
a female person having exactly one child which is jesus christ.

In [van Harmelenet al., 2001b] a formal semantics for
DAML+OIL is described. The semantics is based on an inter-
pretation mapping into an abstract domain. More specifically,
every concept name is mapped on a set of objects, every prop-
erty name is mapped on a set of pairs of objects. Individuals
(in or case resources) are mapped on individual objects in the
abstract domain. Formally, an interpretation is defined as fol-
lows:

Definition 1 (Interpretation) An Interpretation consists of a
pair (∆, .E) where∆ is a (possibly infinite) set and.E is a
mapping such that:

• xE ∈ ∆ for every individualx

• CE ⊆ ∆ for all classesC

• RE ⊆ ∆×∆ for all rolesR

We call .E the extension of an individual, concept or role,
respectively.

This notion of an interpretation is a very general one and
does not restrict the set of objects in the extension of a con-
cept. This is done by the use of operators for defining classes.
These kinds of operators restrict the possible extensions of a
concept. These kinds of restriction are the basis for deciding
whether a class definition is equivalent, more specialized or
more general than another. Formally, we can decide whether
one of the following relations between two expressions hold:

subsumption:C1 v C2 ⇐⇒ CE
1 ⊆ CE

2

membership:x : C ⇐⇒ xE ∈ CE



Based on the definitions of subsumption and membership,
we can use terminological reasoners to compute these rela-
tions from a given model and the corresponding ontology.
The main results for the given model are that mother is a
subclass of female as all human beings that are not male are
known to be female (the class human is a partition of male
and female persons). This of course implies that all members
of the class mother are also members of the class female. The
resulting relations that correspond to the rdfs:subClassOf and
the rdf:type statements can now be added to the RDF model
and its schema. The result are extended descriptions of Carol,
Doris and Mary as given below:

<rdf:Description rdf:about="carol">
<type rdf:resource="#mother"/>
<type rdf:resource="#female"/>
<has-child rdf:resource="#doris"/>

</rdf:Description>

<rdf:Description rdf:about="doris">
<type rdf:resource="#mother">
<type rdf:resource="#female"/>

</rdf:Description>

<rdf:Description rdf:about="mary">
<type rdf:resource="#female"/>
<type rdf:resource="#virgin-mary">

</rdf:Description>

We see that the additional information obtained by explicitly
adding implicit subclass and type relations to the model ex-
tends set of answers to our query with Carol, because it is
now explicitly stated that she is female and has a child named
Doris. This approach goes further than the use of schema in-
formation, however, it does not solve all problems, because
we still cannot find out that Doris and Mary are also answers
to our query.

4 Relational Knowledge
The reason while present approaches fail to compile the on-
tology in such a way that all intended answers can be given
from the RDF model is caused by their limited abilities to
compile relational knowledge. In the example it followed
from the ontology that Mary is related to jesus-christ by the
has-child relation. In the case of Doris, it is implied that
she is connect to some, maybe unknown object via the same
relation. Description logic reasoners allow to reason with
these kinds of relational information by constructing mod-
els in terms of possible objects, their type and their relations.
However, this information is only used internally to establish
subsumption and membership relations. In order to overcome
this problem we can use techniques for deductive query an-
swering in the off-line compilation phase and store the re-
trieved answers as explicit knowledge in our RDF model.

4.1 Compiling Object Relationships
Horrocks and Tessaris propose a deductive approach for an-
swering conjunctive queries over description logic knowledge
bases. The idea of the approach of Horrocks and Tessaris now

to translate the query into an equivalent concept expression,
classify this new concept and use standard inference methods
to check whether an object is an instance of the query expres-
sion. This approach makes use of the fact that binary relations
in a conjunctive query can be translated into an existential re-
striction in such a way that logical consequence is preserved
after a minor modification of the A-Box. Details are given in
the following theorem.

Theorem 1 (Role Roll-Up (Horrocks and Tessaris 2000))
Let 〈C],R,A〉 be a description logic knowledge base with
concept definitionsC, relation definitionsR and assertions
A. Let furtherR be a role,CI Concept names inT anda, b
be individual names inA. Given a new concept namePb not
appearing inT , then

〈C,R,A〉 |= (a, b) : R ∧ b : C1 ∧ · · · ∧ b : Ck

if and only if

〈C,R,A ∪ {b : Pb}〉 |= a : ∃R(Pb u C1 u · · · u Ck)

As DAML+OIL can be seen as a specific variant of de-
scription logics, the query answering approach can be applied
to DAML+OIL ontologies (compare[Horocks and Tessaris,
2002]). In especially, we can directly ask for objects that are
related by the has-child relation using the following very sim-
ple query:

Q(X, Y )← (X, Y ) : has− child

Using the theorem of Horrocks and Tessaris, we can now
do the translation of the conjunct(X, Y ) : has− child
into a concept expression called role-up. In order to actu-
ally retrieve related objects, we do this translation for in-
stantiations of the general conjunct where the Y variable is
replaced by an object contained in the model. Substitut-
ing X for example by the objectjesus− christ we get
the conjunct(X, jesus − christ) : has− child that trans-
lates into the concept expression∃has− child.Pjesus−christ

This concept specifies all objects that are related to the ob-
ject jesus− christ by thehas− child relation. We can
use existing description logic reasoners in order to retrieve all
objects belonging to this concept. For the example instantia-
tion, the reasoner will return mary telling us that we can add
the information that mary and jesus-christ are in the has child
relation into the RDF model. The new definition of mary will
be the following:

<rdf:Description rdf:about="mary">
<type rdf:resource="#female"/>
<type rdf:resource="#virgin-mary">
<has-child rdf:resource="#jesus-christ"/>

</rdf:Description>

In order to compile all the object relations implied by an
ontology, we have to iterate this process over all instances and
over all relations mentioned. The corresponding algorithm is
depicted as Algorithm 1.

Given a set of relations and objects, the algorithm compiles
out all relational information about them that is implied by



Figure 1: Basic algorithm for compiling object relations

a terminological knowledge base. When compiling an RDF
model that is based on a DAML+OIL model, the termino-
logical knowledge base will be provided by the DAML+OIL
model. The sets of relations and objects will consist of all
known relations and objects that are contained either in the
RDF model or the DAML+OIL model.

4.2 Anonymous Objects
While the use of the query answering approach of Horrocks
and Tessaris enables us to compile out information about
relations that exists between objects in a model, there is still
implicit relational information that is not captured by this
approach. The reason for this is that the logical nature of
DAML+OIL allows us to capture incomplete information
about the domain of interest in the sense that it is not required
to always name related objects in a concept definition. There
are also ways of talking about the existence and the number
of related objects in the domain without actually naming
these objects. The approach of Horrocks and Tessaris ignore
this information, because their approach aims at answering
questions about named objects in a model. We think,
however, that in the in the context of the semantic web there
are also may situations where we are also interested in this
incomplete information. This argument is based on the open
world assumption. The fact that the model does not contain
the name of the child of a female person in our example does
not mean that there is no information about this child. It just
happens not to be contained in this specific model. Therefore,
the answer that doris by virtue of being a mother has a child
we do not know the name of is also a valuable answer to
our example question. Following this argument, we sketch
an approach for also compiling relational information that
contains anonymous objects. In the resulting RDF model
these anonymous objects will be represented by blank nodes.

In order to determine what kind of anonymous objects we
have to deal with, we have to have a look at the possibilities
DAML+OIL provides us for describing relations to objects
that are not mentioned themselves. There are two operators

that are directly connected with anonymous objects (compare
figure 2). First of all, there is the daml:hasClass operator
claiming that all objects of a class are related some object of a
certain type. Further, there are cardinality statements claim-
ing that all objects of a class are related to at least, at most
or exactly a certain number of objects of a certain type. The
case where no special type of the related objects is required
is a special case and can therefore also be treated by the ap-
proach. The same holds for the first mentioned daml:hasClass
operators, because it is equivalent to stating that the mini-
mal number of object of certain type that is required equals
one. Further, requiring an exact number of related objects
(daml:CardinalityQ) can be expressed by requiring a mini-
mal and a maximal number of related objects of a certain
type where both numbers equal the required number of ob-
jects. Therefore, the main relational construct, we have to
focus on when investigating the problem of compiling rela-
tional knowledge are the following constructs:

<daml:restriction daml:minCardinalityQ="n">
<daml:onProperty rdf:resource="#p"/>
<daml:hasClassQ rdf:resource ="#C"/>

</daml:restriction>

<daml:restriction daml:maxCardinalityQ="m">
<daml:onProperty rdf:resource="#p"/>
<daml:hasClassQ rdf:resource ="#C"/>

</daml:restriction>

In the next section we introduce and extension of the com-
pilation algorithm that deals with anonymous objects making
use of these constructs.

4.3 Compilation with Anonymous Objects
As motivated above, our approach for compiling relational
information with anonymous objects relies on the use of
qualified number restrictions. We assume that all exis-
tential restrictions and unqualified number restrictions have
been translated into qualified number restrictions in the way
sketched in the last section. Further, we assume that the back-
ground knowledge is consistent in itself and that the informa-
tion model is consistent with this background model. In es-
pecially, this guarantees that there is no conflict between the
upper and lower bounds of related objects with respect to the
qualified number restrictions we use for compilation. This re-
quirement can be checked using existing reasoning systems.
For every object o and relation r in the model we now perform
a four step compilation process:

Step 1: Collect Bounds In the first step, we determine the
possible range of number of objects related to o by the
relation r. We collect all class descriptions o can be
proven to be a member of. From these description, we
extract all qualified number restrictions that refer to r. Fi-
nally, we take the largest lower bound and the smallest
upper bound with respect to each class name2 occurring
in the restrictions and store these numbers together with
the class name.

Step 2: Verify Bounds In the second step, we check
whether the bounds determined for the individual classes



in the hierarchy are consistent with the bound deter-
mined for their its subclasses. For every class c in the
hierarchy starting at the bottom of the hierarchy, we sum
up the lower bounds determined for all direct subclasses.
We then check, whether this sum is smaller than the up-
per bound determined for that class.

Step 3: Adjust Bounds In this step, we adjust the lower
bound on related objects in the light of collected in-
formation about more specific information about related
objects that imply some of the information contained in
the current bounds.

a) As a first step, we set the lower bound to the current
upper bound if the upper bound is lower is lower
than the sum of the lower bounds determined for
all direct subclasses.

b) As a second step we subtract the number of all
known and already compiled anonymous objects of
this type related to o. This ensures that only the
most specific available information is actually com-
piled out and prevents us from adding redundant in-
formation.

Step 4: Compile Relations In the last step, we add informa-
tion about relations of the object o to anonymous objects
to the RDF model by adding the corresponding triples.
For each class name, we look up the finally determined
lower bound of objects related to o via r. This bound is
an natural number l that specifies the number of neces-
sarily existing relations excluding already known rela-
tional information and necessary relations to objects of
a more specific type (compare step 2). We generate l
anonymous objects ai and add the triples (o r ai) and (ai
type c) for each of these objects.

It is important to recall, that different from the other compi-
lation methods described in this paper, this compilation pro-
cess is of a heuristic nature and does not claim to produce
logically sound results. The reason is that the current version
of the compilation approach does not take into account all
information contained in the background knowledge.

4.4 A Simple Example
We illustrate our compilation approach using a simple exam-
ple. Consider the following model describing the instance
betty:

<daml:Class rdf:ID="grandma">
<rdfs:subClassOf>

<daml:Class rdf:resource="mother">
<daml:restriction>

<daml:onProperty rdf:resource="#has-child"/>
<daml:hasClass rdf:resource="#parent"/>

</daml:restriction>
</rdfs:subClassOf>

</daml:Class>

<daml:Class rdf:ID="relaxed-parent">
<rdfs:subClassOf>

<daml:restriction daml:maxCarninality="2">
<daml:onProperty rdf:resource="#has-child"/>

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 2: Compuring Bounds in a Concept Hierarchy

<daml:hasClassQ rdf:resource="#person"/>
</daml:restriction>

</rdfs:subClassOf>
</daml:Class>

<rdf:Description rdf:about="betty">
<type rdf:resource="#grandma"/>
<type rdf:resource="#relaxed-parent"/>
<has-child rdf:resource="#peter"/>

</rdf:Description>

<rdf:Description rdf:about="peter">
<type rdf:resource="#person"/>

</rdf:Description>

When we look at the definition of betty, we see that
there are different sources of relational information, we are
interested in. From her being of type mother (implied from
the fact of being a grandmother) we derive a lower bound of
one for the has-child relation with respect to the class person.
Further, being a grandma also implies a lower bound of one
on the has-child relation with respect to the class parent,
which is a subclass of person. An upper bound of two on the
relation has-child is provided by the membership to the class
relaxed-parent. Finally, there is the the explicitly mentioned
child peter who is of type person. The result of collecting
these bounds is shown in figure 3a.

After processing the class parent which is lower in the hi-
erarchy, we see that the lower bound on the number of related
objects of type parent is higher that the number of related
individuals of that type (i.e. one compared to zero). As a
reaction, we add an anonymous object of type parent to the



RDF model (compare figure 2b). In the next iteration of the
process, we process the concept person by adding the lower
bound of all sub-concepts and checking it against the upper
bound (figure 2c). From the resulting lower bound of two we
subtract the number of all related objects of this type. In our
case there are two objects of this kind: peter and the anony-
mous object created in the previous iteration. As the result
is zero we conclude that the necessary number of related ob-
jects is already present in the model. The triples added in the
first iteration of the process lead to a more complete defini-
tion of the instance elly with respect to the has-child relation
as shown below:

<rdf:Description rdf:about="betty">
<type rdf:resource="#happy-grandma"/>
<type rdf:resource="#relaxed-parent"/>
<has-child rdf:resource="#peter"/>
<has-child rdf:resource="_anonX"/>

</rdf:Description>

<rdf:Description rdf:about="_anonX">
<type rdf:resource="#parent"/>

</rdf:Description>

The added information can now be used in querying en-
abling us to derive that elly is necessarily connected to an
instance of type parent by the has child relation using a plain
RDF query language. In fact, this object of type parent may
be identical with peter who we already know, but the back-
ground model does not provide us with enough information
to prove whether this is true or not.

5 Discussion
In this paper, we addressed the problems that arise from
the existing gap between theoretical investigations and
practical implementations of semantic web technology.
For the specific problem of querying RDF models with
background knowledge we presented an approach to enhance
plain RDF descriptions by information implied by the
background knowledge. To this end, we discussed some
already existing approaches and presented new methods for
compiling complex relational knowledge using the query
answering approach proposed by Horrocks and Tessaris.
All the methods mentioned produce a provably correct and
complete result with respect to answering queries about
named objects in an RDF model.

We argued that an open world assumption as we face to
on the semantic web also requires to consider anonymous
objects in answering queries. We described a first step to-
wards an adequate treatment of these objects in the compi-
lation step. The approach presented already produces some
reasonable results, but it cannot give any soundness or com-
pleteness guarantees. We do not expect to come up with a
provably complete algorithm for this problem, however, there
are still many options for improving the result presented most
of them concerned with features for defining complex rela-
tional structures (e.g. role hierarchies, transitivity). Further,

we need more experiences with applying these methods to re-
alistic scenarios in order to develop heuristics for improving
the compilation result.

References
[Brickley and Guha, 2003] Dan Brickley and R.V. Guha.

RDF vocabulary description language 1.0: RDF schema.
Working draft, W3C, 2003. http://www.w3.org/TR/rdf-
schema/.

[Broekstraet al., 2002] J. Broekstra, A. Kampman, and
F. van Harmelen. Sesame: A generic architecture for stor-
ing and querying rdf and rdf schema. InThe Semantic Web
- ISWC 2002[2002], pages 54–68.

[Cadoli and Donini, 1997] M. Cadoli and F.M. Donini. A
survey on knowledge compilation.AI Communications,
10(3-4):137–150, 1997.

[Caroll, 2002] J. Caroll. Matching RDF graphs. InThe Se-
mantic Web - ISWC 2002[2002], pages 5–15.

[Hayes, 2003] Patrick Hayes. RDF semantics. Working
draft, W3C, 2003. http://www.w3.org/TR/rdf-mt/.

[Horocks and Tessaris, 2002] I. Horocks and S. Tessaris.
Querying the semantic web: A formal approach. InThe
Semantic Web - ISWC 2002[2002], pages 177–191.

[Horrocks and Hendler, 2002] I. Horrocks and J. Hendler.
The Semantic Web - ISWC 2002, volume 2342 ofLecture
Notes in Computer Science. Springer, 2002.

[Horrocks and Tessaris, 2000] I. Horrocks and S. Tessaris. A
conjunctive query language for description logic aboxes.
In AAAI/IAAI, pages 399–404, 2000.

[Miller et al., 2002] L. Miller, A. Seaborne, and A. Reggiori.
Three implementations of SqishQL, a simple RDF query
langauge. InThe Semantic Web - ISWC 2002[2002], pages
423–435.

[van Harmelenet al., 2001a] Frank van Harmelen, Peter F.
Patel-Schneider, and Ian Horrocks. Reference descrip-
tion of the daml+oil (march 2001) ontology markup
language. http://www.daml.org/2001/03/reference.html,
march 2001.

[van Harmelenet al., 2001b] Frank van Harmelen,
Peter F. Patel-Schneider, and Ian Horrocks. A
model-theoretic semantics for daml+oil (march
2001). http://www.daml.org/2001/03/model-theoretic-
semantics.html, march 2001.


