Finitary Open Logic Programs

Piero A. Bonatti

Universita di Napoli Federico II
bonatti@na.infn.it

Abstract. Open logic programs and open entailment have been recently
proposed as an abstract framework for the verification of incomplete
specifications based upon normal logic programs and the stable model
semantics. Open programs generalize both standard ASP and Abduction
Frameworks, but can be embedded into standard ASP, thereby enabling
reasoning with open domains by means of standard engines. However,
the embedding can be an infinite program, or it may contain function
symbols. In this paper, we show how to deal effectively with these cases
by exploiting the theory of finitary normal programs. We obtain interest-
ing classes of open programs and abduction frameworks with unbounded
open domains and function symbols, where inference and explanations
are nonetheless computable.

1 Introduction

Open logic programs and open entailment have been recently proposed as an
abstract framework for the verification of incomplete specifications based upon
normal logic programs and the stable model semantics [Bonatti 2001].

An important example of incomplete specifications is given by compound
security policies [Bonatti et al. 2000], where details such as the set of users and
the formulation of certain subpolicies are tipically unknown at verification time.
In this setting, it is interesting to verify whether the policy will necessarily satisfy
privacy laws, all parties’ requirements, etc.

Logic-based agents are a second important example. IMPACT agent pro-
grams [Subrahmanian et al. 2000] must satisfy a property called conflict free-
dom. This property depends on a variable state that extends the agent program.
The state is unknown at verification time, and can be regarded as a runtime
extension of the agent program. Conflict freedom should hold for all possible
such extensions.

Incomplete specifications are modelled by identifying a set of predicates,
called open predicates, that are not completely defined in the program. Different
forms of entailment capture what could possibly be true and what must nec-
essarily be true, across a space of possible complete specifications of the open
predicates.

Open programs generalize both standard normal programs under the stable
model semantics, and abduction frameworks [Bonatti 2002b]. Conversely, open

Finitary Open Programs 85

programs can be simulated by normal programs, by suitably extending the vo-
cabulary [Bonatti 2002b]. Therefore, in principle, one can use any state-of-the-art
ASP engine to compute open inferences.

However, in general, the embedding may produce infinite programs, or pro-
grams with function symbols. In this case, some restrictions are needed in order
to make inferences computable. Moreover, the existing reasoning techniques need
to be adapted: a direct use of the existing engines forbids unbounded open do-
mains (cf. [Bonatti 2002b]).

In this paper, these difficulties are tackled by applying the theory of fini-
tary programs [Bonatti 2001b,Bonatti 2002] to handle function symbols and un-
bounded open domains. The main contributions of the paper include an exten-
sion of the notion of finitary programs to open logic programs, decidability and
semidecidability results for open programs with function symbols and unbounded
domains, and a new technique for computing explanations from abduction frame-
works with open domains and function symbols.

The basic definitions concerning abduction frameworks, open programs, and
finitary programs will be recalled in Section 2. Then finitary open programs and
their properties will be introduced (Section 3). Section 4 shows how to handle
infinite open programs, such as those needed to capture abduction frameworks
with open domains. Finally, the main results and future work are summarized
and discussed in Section 5.

2 Preliminaries

We assume the reader to be familiar with normal logic programs and the sta-
ble model semantics [Gelfond and Lifschitz 1988]. We say that a normal logic
program is consistent if it has at least one stable model.

An open program is a triple (P,F,O) where P is a normal logic program,
F' is a set of function and constant symbols not occurring in P, and O is a set
of predicate symbols. A completion' of (P, F,0) is a normal logic program P’
such that

1. P'D P,
2. the constant and function symbols of P’ occur in P or F,
3. if r € P'\ P, then head(r) € O.

The set of all the completions of (P, F,0) is denoted by Comp(P, F, Q).
There exist four kinds of open inference:

1. (Credulous open inference) (P, F, O) |=¢ ¥ iff for some P’ € Comp(P, F, O),
P' credulously entails ¥.

2. (Skeptical open inference) (P, F,O0) |=° ¥ iff for all P' € Comp(P, F,0), P'
skeptically entails &.

! Note that this notion of completion has nothing to do with the standard notion

of completion derived from Clark’s work. We have not been able to identify an
alternative term to express correctly the idea of complete predicate specification.

86 P. A. Bonatti

3. (Mixed open inference I) (P,F,0) = ¥ iff for some consistent P' €
Comp(P, F,O), P’ skeptically entails ¥.

4. (Mixed open inference II) (P, F,0) |=°¢ ¥ iff for each consistent P’ €
Comp(P, F,0), P' credulously entails &.

The four open entailments are pairwise dual and form a diamond-shaped
lattice [Bonatti 2001].

Proposition 1. (Duality) For all open programs 2 and all sentences ¥,
1. R E=CU iff QW5 -,
2. U ff 2 0.

Proposition 2. (Entailment lattice) Suppose there exists a consistent P' €
Comp(£2). Then, for all sentences ¥,

1. 2 =% ¥ implies 2 =¥ and 2 =5° ¥;
2. 2 W implies 2 =°¥;
3. 2 %0 implies 2 =° V.

An abduction framework is a pair (T, A), where T is a normal logic program
and A is a set of abducible predicates. Let Abducibles(T', A) be the set of all ground
atoms p(t1,...,t,) such that p € A and ¢; belongs to the Herbrand domain of
T (1<i<n).

Definition 1. A generalized stable model of an abduction framework (T, A) is
a stable model of T U E, for some E C Abducibles(T', A).

An explanation of a closed sentence @ (called observation) w.r.t. an abduc-
tion framework (T, A) is a set E C Abducibles(T, A) such that there exists a
stable model M of T U E that satisfies Q.

The following definitions [Bonatti 2002b] extend abductive frameworks so
that the existence of new domain elements can be abduced. In the rest of the
paper, let Sk = {¢; | 0 < i < w} be an arbitrary but fixed set of (skolem)
constants not occurring in the given abductive frameworks.

Definition 2. For each abduction framework (T, A), let Abducibles®* (T, A) be
a set of ground atoms p(ty,...,t,) such that p € A and each t; is a term built
from the function and constant symbols occurring in T and Sk.

Abducibles®* (T, A) will be called a set of open abducibles of the abduction
framework (T, A) (w.r.t. the set of skolem constants Sk).

Note that the choice of Sk is irrelevant, as long as it does not intersect the
vocabulary of T'.

Definition 3. An open generalized stable model of an abduction framework
(T, A) is a stable model of T U E, for some E C Abducibles®* (T, A).

An open explanation of a closed sentence @) (called observation) w.r.t. an
open abduction framework (T,A) is a set E C Abducibles®* (T, A) such that
there exists a stable model M of T U E that satisfies Q.

Finitary Open Programs 87

Proposition 3. [Bonatti 2002b] M is an open generalized stable model of an
abductive framework (T, A) iff M is a stable model of some P € Comp(T, Sk, A).

The (atom) dependency graph of a program P is a labelled directed graph
denoted by DG(P), whose vertices are the ground atoms of P’s language. More-
over, (i) there exists an edge labelled ’+’ (called positive edge) from B to A
iff for some rule R € Ground(P), A € head(R) and B € body(R); (ii) there
exists an edge labelled ’—’ (called negative edge) from B to A iff for some rule
R € Ground(P), A € head(R) and =B € body(R).

An atom A depends positively (resp. negatively) on B if there is a directed
path from B to A in the dependency graph with an even (resp. odd) number of
negative edges. Moreover, each atom depends positively on itself. If A depends
positively (resp. negatively) on B we write A > B (resp. A >_ B). We write
A > Bifeither A>, Bor A>_ B.If both A >, B and A >_ B hold then we
write A >4 B.

By odd-cycle we mean a cycle in the dependency graph with an odd number
of negative edges. A ground atom is odd-cyclic if it occurs in an odd-cycle.

In the context of normal logic programs, a splitting set for a program P
[Lifschitz and Turner 1994] is a set of atoms U containing all the atoms occurring
in the body of any rule r € Ground(P) whose head is in U. The set of rules
r € Ground(P) whose head is in U—called the “bottom” of P w.r.t. U—will be
denoted by by (P). By ey (P, I) we denote the following partial evaluation of P
w.r.t. I N U: remove from Ground(P) each rule A « Ly,..., L, such that some
L; containing an atom of U is false in I, and remove from the remaining rules
all the L; containing a member of U. The following is a specialization to normal
programs of a result in [Lifschitz and Turner 1994].

Theorem 1 (Splitting theorem). Let U be a splitting set for a normal logic
program P. An interpretation M is a stable model of P iff M = J U I, where

1. I is a stable model of by (P), and
2. J is a stable model of ey (P \ by (P), I).

The next definitions and results, taken from [Bonatti 2001b,Bonatti 2002],
characterize finitary programs.

Definition 4 (Finitary programs). We say a program P is finitary if the
following conditions hold:

1. Each ground atom A in DG(P) depends on finitely many ground atoms B.
In other words, the cardinality of {B | A > B} must be finite for all ground
atoms A.

2. There are finitely many odd-cyclic atoms in DG(P).

Two examples of finitary programs can be found in figures 1 and 2. Many further
examples of interesting finitary programs, showing that the above definition is
compatible with a rather free use of function symbols and recursion, can be
found in [Bonatti 2001b,Bonatti 2002].

The consequences of finitary programs can be computed by using only a finite
fragment of their (potentially infinite) domain.

88 P. A. Bonatti

Definition 5 (Kernel atoms, Relevant universe and subprogram). A
kernel atom for a mormal program P and a ground formula Q) is either an odd-
cyclic atom or an atom occurring in) (note that kernel atoms are ground by
definition). The set of kernel atoms for P and Q is denoted by K (P, Q).

The relevant universe for P and @, denoted by U(P,Q), is the set of all
ground atoms B such that some kernel atom for P and @) depends on B. In
symbols:

U(P,Q) = {B| for some A€ K(P,Q), A> B}.

The relevant subprogram for a ground formula Q (w.r.t program P), denoted
by R(P,Q), is the set of all rules in Ground(P) whose head belongs to U(P,Q):

R(P,Q) = {R | R € Ground(P) and head(R) € U(P,Q)}.

In [Bonatti 2001b] it is proven that if P is finitary, then R(P, () is finite and
computable. Moreover, R(P, Q) is all that is needed for query answering;:

Lemma 1. For all finitary normal programs P and all ground formulae @,
R(P,Q) has a stable model Mg iff P has a stable model M such that M N
U(P,Q) = Mg.

Theorem 2. For all finitary normal programs P and all ground formulae @Q,

1. P credulously entails Q iff R(P,Q) does.
2. P skeptically entails Q iff R(P,Q) does.

Since R(P, Q) is finite, it follows that all the above reasoning tasks are decid-
able. Moreover, it can be shown that if @) is a quantifier-free nonground for-
mula, then credulous and skeptical entailment are semi-decidable and Turing-
equivalent [Bonatti 2001b].

3 Finitary open programs

In this section we extend the theory of finitary programs from normal logic
programs to open programs.

Each standard normal logic program P can be regarded as a degenerate
open program { P,(,). Therefore, in order to inherit the properties of finitary
programs, the first element of each open program (P, F, O) should at least be
finitary. In the general case, given that finitary programs are defined by two con-
ditions on their dependency graph, the question is: how should the dependency
graph be constructed, and how should we take into account the function and
constant symbols in F'?

A very natural approach consists in extending the vocabulary of P with the
symbols of F. In the following, Ground g (P) denotes the ground instantiation of
P w.r.t. the vocabulary of P extended with the symbols in F'.

Finitary Open Programs 89

Definition 6. The (atom) dependency graph of an open program (P,F,0O)
is a labelled directed graph denoted by DGr(P), whose vertices are the ground
atoms of P’s language extended with the function (and constant) symbols in F.
Moreover, (i) there exists an edge labelled '+’ (called positive edge) from B to
A iff for some rule R € Groundp(P), A € head(R) and B € body(R); (ii) there
exists an edge labelled '—’ (called negative edge) from B to A iff for some rule
R € Groundg(P), A € head(R) and - B € body(R).

We say that A depends on B in DG (P) if A and B are nodes of DG (P)
and there exists a path from B to A in DGg(P).

A ground atom A is odd-cyclic in DGr(P) if A belongs to a cycle in DG g (P)
containing an odd number of negative edges.

Now we have the building blocks for the definition of finitary open programs.

Definition 7 (Finitary open programs). We say that an open program
(P, F,0) is finitary if the following conditions hold:

1. Each ground atom A depends on finitely many ground atoms B in DGp(P).
2. There are finitely many odd-cyclic atoms in DG (P).

Let us see the implications of this definition on the embedding of open pro-
grams into ASP [Bonatti 2002b]. Recall that the normal logic program IT (P, F, O)
corresponding to an open program (P, F, O) is defined as follows. For each predi-
cate symbol p € O, introduce a new distinct predicate symbol p. Moreover, let U,
S and S be three new predicate symbols distinct from the symbols p. IT(P, F, O)
consists of the following rules, for all rules H < Body in P, for all n-ary function
symbols f occurring in P or F, and for all p € O:

H + Body,U(z1),...,U(z,) where the z;s are
the variables of

H < Body
U(f(x177xn)) (—U(.Z’l),,U(Z'n),S(f)
S(f)) iffeF
S(f) « —=5(f) iffeF
S(f) < =5(f) if feF

p(T1,. . 2n) & P(21, .., 20), U(x1), ..., U(xn)
D1y xn) & (21, .., 20),U(x1), ..., U(xn)

Intuitively, each extension of U (in each stable model of the above program)
corresponds to the Herbrand domain of a program P' € Comp(P,F,0). By
filtering away the new predicates and the terms not occuring in the extension of
U, one obtains the stable models of the completions P’ € Comp(P, F, O):

Theorem 3. [Bonatti 2002b] Let
Mlpro ={p(t1,....tn) € M | p occurs in PUO and U(t;) e M (1<i<n)}.

M 1is a stable model of I1 (P, F, O) iff there exist P' € Comp(P, F,0) and a stable
model M' of P' such that M|pro = M'.

90 P. A. Bonatti

Note that the set W consisting of all the ground atoms U(t), S(t) and S(t)
occurring in Ground(II (P, F,0)) is a splitting set of P. The following properties
hold.

Proposition 4. The bottom (normal) program by (II(P, F,0)) (consisting of
the definitions of U, S and S) is finitary.

To see this, note that for all rules defining U, S and S, each variable in the
body occurs also in the head (so these predicates are finitely recursive), and
there are no odd-cyclic atoms.

Proposition 5. If (P, F,0) is a finitary open program, then the (normal) pro-
gram IT(P, F,0) \ bw (II(P, F,0)) is finitary.

From these propositions it follows that II(P, F,O) is finitary, through the
following lemmata.

Lemma 2. Let U be a splitting set for a normal program P. If by (P) and P\
by (P) are finitary, then P is finitary, too.

Theorem 4. If (P, F,0) is a finitary open program, then II(P, F,0) is a fini-
tary normal program.

This result has several immediate corollaries, that extend the theoretical
results of [Bonatti 2001b] to open programs. Perhaps, the most important of
such results are the following.

Theorem 5. Let (P,F,0) be a finitary open program. For all ground formulae
Q, R(II(P,F,0),Q) is finite and

1. (P,F,0) E°3Q iff RUII(P,F,0),Q) credulously entails Q.
2. (P,F,0) E=*3Q iff RUI(P,F,0),Q) skeptically entails Q.

Corollary 1. Let (P, F,0) be a finite, finitary open program. For all quantifier-
free formulae Q@ with no occurrences of the new predicates p (p € O), U, and
U,

1. checking whether { P,F,0O) E=° 3Q is decidable if Q is ground, and semi-
decidable (r.e.-complete) otherwise.

2. checking whether (P,F,0) E=°* 3Q is decidable if Q is ground, and semi-
decidable (r.e.-complete) otherwise.

These results make it possible to effectively compute credulous and skeptical
open inference, even if P or F' contain (occurrences of) function symbols. For
example, one may first compute R(IT(P, F,0), Q) and then feed it to any state-
of-the-art ASP engine.

A second interesting extension of the results of [Bonatti 2001b] tells us that
the two conditions in Definition 7 are “minimal”, in the sense that if any of
them were dropped, then the decidability and semi-decidability results would

Finitary Open Programs 91

not hold. To prove this, we can use the same counterexamples illustrated in
[Bonatti 2001b], and exploit the fact that each normal program P is equivalent
to the degenerate open program (P, 0,0).

Last but not least, the standard embedding of finitary open programs into
normal programs enjoys the following compactness theorem (unlike unrestricted
normal programs, default logic and autoepistemic logic).

Definition 8. An unstable kernel for an open program (P,F,O) is a subset K
of Ground (P) with the following properties:

1. K is downward closed, that is, for each atom A occurring in K, K contains
all the rules r € Ground(P) whose head is A.

2. K has no stable models. O

Theorem 6 (Compactness). Let (P, F,0) be a finitary open program. Then
II(P, F,0) has no stable models iff (P, F,0) has a finite unstable kernel.

4 Dealing with infinite open programs

Recall that each open abduction framework (T, A) is captured by an infinite
open program (T, Sk, A), where T is the domain theory, A is the set of abducible
predicates, and Sk is an infinite set of (skolem) constants (see Section 2). The
elements of Sk may be included into the domain of the completions of (T, Sk, A)
to abduce the existence of new individuals.

Unfortunately, the standard embedding IT of open programs into normal logic
programs in this case produces an infinite program. Since the current implemen-
tation techniques apply only to finite (nonground) finitary programs, here we
show an alternative (finite) embedding for the class of open programs (P, F,0)
such that F' is an infinite set of constants with cardinality Ng, while P and O are
finite. Given the relationships with abduction, we call this class abductive open
programs.

To simplify the presentation, we assume that P contains no function sym-
bols (recall, however, that Sk is an infinite set of constants).? Each abductive
open program { P, F, O) can be captured by a normal logic program II' (P, F, O)
defined as follows. For each predicate symbol p € O, introduce a new distinct
predicate symbol p. Moreover, let U, and U be two new predicate symbols dis-
tinct from the symbols p, and let ¢ and s, respectively, be a constant and a unary
function not occurring in P. IT'(P, F, O) consists of the following rules, for all
rules H « Body in P, for all n-ary function symbols f occurring in P or F, and

2 If P contains function symbols, then the definition of U must be slightly changed to
avoid hybrid terms s*(t), where ¢ contains symbols occurring in P.

92 P. A. Bonatti

for all p € O:

H < Body,U(z1),...,U(x,) wherex; ...z, are
the variables of

H + Body
Ule) + -U(c)
Ule) + -U(c)
U(s(X)) « U(X),~U(s(X))
U(s(X)) < ~U(s(X))
p(-'L'l, '71"") (—ﬁﬁ(.’ll'l,...,.Z'"),U(-Z'l),...,U(.Z'n)
D@1y y) & (21, 2,),U(z1),. .., U(zy)

Clearly, IT'(P, F, O) is finite, as required.

Note that the possible extensions of predicate U under the stable model
semantics are the initial segments of the infinite sequence X' = ¢, s(c), s(s(c)), . . .
(including the empty sequence and X).

Therefore, each subset of F' is isomorphic to some extension of U, in some
stable model of II'(P, F,0). Then it can be proved that the models of the new
embedding correspond faithfully to the stable models of the completed programs
in Comp(P, F, O). More precisely, the new atoms must be filtered away, and each
new term s*(c) must be matched with a suitable element of F.

Let M|p,r,0 be defined as in Theorem 3. Let a renaming function over F' be
an injective substitution, preserving the symbols in P and O, and mapping the
new elements occurring in X' onto elements of F.

Theorem 7. M is a stable model of II' (P, F, O) iff there exist P' € Comp(P, F, 0),
a stable model M' of P' and a renaming function p such that

— the image of p restricted to M(U) (the extension of U in M) equals the set
of elements of F' actually occurring in P'.
= p(M|p,ro0) = M'".

This proves that the new embedding can be used to compute open inference
from abductive open programs.

Next we prove that if an abductive open program is finitary, then also the
corresponding normal program (under the new embedding) is finitary.

Proposition 6. Let W' be the set of ground atoms U(t) and U(t) occurring in
Ground(IT'(P, F, 0)).

1. W' is a splitting set for II'(P, F,O).

2. by (II'(P, F,0)) is finitary.

3. If (P,F,0) is a finitary open program, then II'(P, F,O) \ by: (II'(P, F, 0))
is finitary.

From the above proposition and Lemma 2 we have:

Finitary Open Programs 93

Theorem 8. If (P,F,0) is a finitary open program then II'(P, F,O) is a fini-
tary normal program.

An interesting corollary of Theorem 7 relates the credulous and the skeptical
consequences of the new embedding to their open counterparts.

Corollary 2. Let (P,F,0) be an abductive open program. For all sentences Q)
with no occurrences of the new symbols p (p€ 0), U, U, ¢, and s,

1. (P,F,0) E° Q iff Q is a credulous consequence of II'(P, F, O).
2. (P,F,0) E* Q iff Q is a skeptical consequence of II'(P, F, O).

As a consequence of this corollary, Theorem 8 and Theorem 2, we have that
if { P,F,0) is finitary, then the above inferences are computable.

Corollary 3. Let (P, F,0) be a finitary, abductive (infinite) open program. For
all quantifier-free formulae Q with no occurrences of the new symbols p (p € O),
U, U, c, and s,

1. checking whether { P,F,0) E° 3Q is decidable if Q is ground, and semi-
decidable (r.e.-complete) otherwise.

2. checking whether (P, F,0) E=°* 3Q is decidable if Q) is ground, and semi-
decidable (r.e.-complete) otherwise.

We conclude this section with two examples of standard abduction frame-
works corresponding to finitary open programs with unbounded domains. The
first domain theory illustrated in Figure 1 is a finitary program for model-based
circuit diagnosis. Each atom out(G) models the output of gate G. The values
of circuit inputs are specifed through the same predicate. For example the fact
out(y2) states that the value of input y2 is 1. The rules model the behav-
ior of each gate, both under the assumption that the gate is working properly
(—ab(@)), and under the assumption that a fault exists (ab(@)). This formal-
ization makes the common assumption that in the absence of observable faults
gates are not faulty. This program is stratified, so there are no odd-cycles. The
set of abducible predicates is A = {ab}.

The second domain theory, illustrated in Figure 2, can be used to find se-
quences of events that explain sequences of observations by abducing the pred-
icate do. Most atoms with time argument T 4+ 1 depend on atoms with time
argument T. So the only source of cycles with negative edges are the rules for
nondeterministic actions (predicates fails and succeeds). However, these are
not odd-cycles.

An open version of this example (where the existence of new individuals
can be abduced) can produce explanations that exploit blocks not explicitly
mentioned in the domain theory.

Note the advantages of using function symbols and recursion. Infinite and
structured domains (such as the set of all gates and time) can be modelled di-
rectly, in a natural way. An infinite number of problem instances can be encoded

94 P. A. Bonatti

in one program, so there is no need for external components to build a specific en-
coding for each instance. More generally, all necessary pre- and post-processing
can be carried out within the same language, and in principle such auxiliary
computations can be interleaved naturally with proper problem solving activ-
ities. Once all instances are simultaneously encoded in one program, one can
submit queries across (and relating) multiple instances. For further details on
these topics, see [Bonatti 2001b,Bonatti 2002].

out(and(X, Y)) ¢ out(X), out(Y), nab(and(X, Y))
out(and(X,Y)) < ab(and(X,Y))
out(and(X,Y)) + ab(and(X,Y))

, out(X)
, nout(Y)

out(or(X,Y)) < out(X), ~ab(or(X,Y))
out(or(X, Y)) « out(Y), nab(or(X,Y))

out(or(X, Y)) « ab(or(X,Y)), ~out(X), mout(Y)

out(not(X)) < —out(X), ~ab(not(X))
out(not(X)) < ab(not(X)), out(X)

out(y2) /* other inputs implicitly negated */

Fig. 1. Model based diagnosis

5 Conclusions

A natural generalization of the notion of finitary programs captures a very ex-
pressive class of open programs where skeptical and credulous open consequences
can be effectively computed, even if such programs allow a rather flexible use of
function symbols and recursion.

As this work is still in progress, a number of things remain to be done. In
a forthcoming paper we will show how the finitary program recognizer can be
adapted to handle finitary open programs. As far as traditional abduction frame-
works are concerned, no modification is needed. Moreover, we shall illustrate in
detail how to handle effectively finite explanations in the presence of unbounded
domains.

Then we are going to study how to reason with open programs where F' is
infinite and contains function symbols.

It is also interesting to see whether the current definition of finitary open
programs can be relaxed in some way. A related question is what relations hold

Finitary Open Programs

/* Frame axiom */
holds(P,T 4 1) + holds(P, T), ~ab(P, T)

/* Sample deterministic action */

holds(on_top(A,B), T+ 1) <
do(put_on(4,B),T), /* action */
holds(is_clear(B),T), /* preconds */
holds(in_hand(A),T)

/* Sample nondeterministic action */

holds(in-hand(B),T + 1)
do(grasp(B), T), /* action */
holds(is_clear(B),T), /* preconds */
—fails(grasp(B), T)

holds(on_table(B),T + 1)
do(grasp(B), T), /* action */
holds(is_clear(B),T), /* preconds */
fails(grasp(B), T)

ab(on_top(B, C),T)
do(grasp(B), T), /* action */
holds(is_clear(B),T) /* preconds */

fails(grasp(B), T) < —succeeds(grasp(B), T)
succeeds(grasp(B), T) < —fails(grasp(B), T)

Fig. 2. Reasoning about actions

95

96 P. A. Bonatti

between the cycles in DG(P) and those in DGr(P). Concerning the first con-
dition in Definition 7, a relaxation technique based on local variable binding
by recursive domain predicates will be illustrated in an extended version of the
paper.

The complexity of reasoning with finitary open programs is still an open
issue. Moreover, we do not know yet how to handle mixed open inference in the
presence of infinite domains.

Acknowledgements The work reported in this paper is partially supported
by the European Community within the Fifth (EC) Framework Programme
under contract IST-FET-2001-37004 — WASP working group (on answer set
programming).

References

[Bonatti 2002] P. A. Bonatti. Reasoning with infinite stable models II: Disjunctive
programs. Proc. of ICLP’02, LNCS 2401, 333-346, Springer, 2002.

[Bonatti 2002b] P. A. Bonatti. Abduction, ASP and open logic programs. Proc. of
NMR’02, Toulouse, 2002.

[Bonatti 2001] P. A. Bonatti. Reasoning with open programs. Proc. of LPNMR’01,
pp. 147-159, LNAI 2173, Springer Verlag, 2001.

[Bonatti 2001b] P. A. Bonatti. Reasoning with infinite stable models. Proc. of IJCAI,
Morgan Kaufmann, 2001.

[Bonatti et al. 2000] P.A. Bonatti, S. De Capitani Di Vimercate, P. Samarati. An
algebra for composing access control policies. ACM Transactions on Information
and System Security, 5(1), 2002, to appear. Preliminary version in Proc. of the
7th ACM Conference on Computer and Communication Security, CCS’2000, Atene,
2000.

[Denecker and De Schreye 1998] D. Denecker, D. De Schreye. SLDNFA: An abduc-
tive procedure for abductive logic programs. The Journal of Logic Programming,
34(2):111-167, 1998.

[Eshghi and Kowalski 1989] K. Eshghi, R.A. Kowalski. Abduction compared with
negation as failure. In Proc. of the 6th Int.l Conf. on Logic Programming, MIT
Press, 1989.

[Gelfond and Lifschitz 1988] M. Gelfond, V. Lifschitz. The stable model semantics for
logic programming. In Proc. of the 5th ICLP, pp.1070-1080, MIT Press, 1988.

[Kakas et al. 1992] A.C. Kakas, R.A. Kowalski, F. Toni. Abductive Logic Program-
ming. Journal of Logic and Computation, 2(6):719-770, 1992.

[Kakas and Mancarella 1990] A.C. Kakas, P. Mancarella. Generalized Stable Models:
a semantics for abduction. Proc. of ECAI’90, pp.385-391, 1990.

[Lifschitz and Turner 1994] V. Lifschitz, H. Turner. Splitting a logic program. In Proc.
ICLP’94, pp.23-37, MIT Press, 1994.

[Niemeld and Simons 1997] I. Niemeld, P. Simons. Smodels - an implementation of the
stable model and well-founded semantics for normal LP. In J. Dix, U. Furbach, A.
Nerode (eds.), Logic Programming and Nonmonotonic Reasoning: 4th international
conference, LPNMR’97, LNAI 1265, Springer Verlag, Berlin, 1997.

[Poole 1988] D. Poole. A logical framework for default reasoning. Artificial Intelligence,
36(1):27-47, 1988.

Finitary Open Programs 97

[Satoh and Iwayama 1992] K. Satoh, N. Iwayama. A query evaluation method for
abductive logic programming. In Proc. of the Joint Int.l Conf. and Symposium on
Logic Programming (JICSLP’92), 671-685, MIT Press, 1992.

[Satoh and Iwayama 1991] K. Satoh, N. Iwayama. Computing abduction by using the
TMS. In Proc. of the Int.l Conf. on Logic Programming (JICSLP’92), 504-ff, MIT
Press, 1991.

[Shanahan 1989] M. Shanahan. Prediction is deduction but explanation is abduction.
In Proc. of IJCAI’89, 1055-ff, 1989.

[Subrahmanian et al. 2000] V.S. Subrahmanian, P.A. Bonatti, J. Dix, T. Eiter,
S. Kraus, F. Ozcan, R. Ross. Heterogeneous Active Agents. MIT Press, 2000.

