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Abstract. The paper is an epistemological analysis of logic programming and
shows an epistemological ambiguity. Many different logic programming formalisms
and semantics have been proposed. Hence, logic programming can be seen as a
family of formal logics, each induced by a pair of a syntax and a semantics, and
each having a different declarative reading. However, we may expect that (a) if
a program belongs to different logics of this family and has the same formal se-
mantics in these logics, then the declarative meaning attributed to this program
in the different logics is equivalent, and (b) that one and the same logic in this
family has not been associated with distinct declarative readings.

In the current state of the art, neither (a) nor (b) holds. The paper investigates the
causes and the consequences of this phenomenon and points out some directions
to overcome the ambiguity.

1 Introduction

In the early 70-ties, the area of Knowledge Representation in Al was the scene of a
lively debate between logical approaches versus non-logical approaches such as se-
mantic networks. In 1975, a paper “What’s in a link?” by Woods [22] had a significant
impact on this debate. In this paper, he pointed out that semantic nets were epistemo-
logically ambiguous in the sense that “the same semantic network notations could be
used by different people (or even by the same person at different times for different ex-
amples) to mean different things”. If there is anything that we should request of a logic
or a knowledge representation language, then it is that its expressions have a clear and
non-ambiguous meaning. Given an expression or theory in such a language, it should be
clear what information it expresses about the real world. Woods study was received as
a strong argument in favor of the logical approach to knowledge representation and as
a decisive argument in favor of using formal semantics for disambiguating the meaning
of knowledge representation languages [12].

This study is an epistemological investigation of Logic Programming (LP) and in-
vestigates its declarative reading(s). The notion of declarative reading of a theory is
used here to refer to the intuitive meaning of the theory, i.e. the information on the
external problem world that a human expert extracts from the theory. Although this
declarative reading is not a formal object, it is (or ought to be) determined by the for-
mal semantics. | will argue that at the epistemological level, LP and its extensions show
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the same type of epistemological confusion and ambiguity as occurred in the area of
semantic nets in the early 70ties.

The area of logic programming offers a complex landscape and many different ex-
tensions and semantics have been presented. Each pair of formal syntax and semantics
in the LP family can be expected to have its own declarative reading, thus giving rise to
a complex landscape of different declarative interpretations and views. However, this is
not the ambiguity problem that | am referring at. There is a deeper problem.

There is a substantial overlap between the different LP logics. For example, for
acyclic normal programs, it is well known that completion semantics, the stable se-
mantics and the well-founded semantics coincide [1]. For stratified programs, stable,
well-founded and perfect semantics coincide. In general, we should expect that:

(a) the declarative reading underlying the different semantics are equivalent for pro-
grams for which different semantics coincide;

(b) each logic consisting of a pair of syntax and semantics in this family has a unique
declarative reading. If in one way or the other, different readings have been as-
sociated to the same pair of syntax and semantics, then these readings must be
equivalent in some deep sense.

The epistemological ambiguity of logic programming is that neither (a) nor (b) holds.
It is easy to show that virtually all programs, including those for which all the above
mentioned semantics coincide, have been assigned several different declarative read-
ings. This is an ambiguity of an analogous kind as in the context of semantic nets in the
early seventies.

As shown in section 2, this ambiguity can be pinpointed in a formal way, by com-
paring different formal embeddings of logic programming in other logics. Section 3
investigates how this ambiguity can arise despite the existence of formal semantics.

The observation that logic programming has multiple interpretations has been made
before. In [11],Gelfond and Lifschitz observe that extended logic programs without
classical negation (under answer set semantics) and general logic programs (under sta-
ble semantics) are formally indistinguishable (same syntax and formal semantics) but
that “in spite of this, there is a semantic difference between a set of rules viewed as
a general program and the same set of rules viewed as an extended program”. What
they say here is that although general logic programming and extended logic program-
ming without classical negation are formally identical, they have different declarative
readings and should be considered as different logics. Section 4 discusses how the am-
biguity phenomenon appears in the LP literature. Section 5 investigate some of the
consequences. Finally, section 6 discusses some approaches for a more solid epistemo-
logical foundation of LP, and points out some directions to resolve the epistemological
ambiguity.

2 Theambiguity formally demonstrated

A number of different logic programming formalisms and different semantics have been
proposed. In this section | will focus on the standard formalisms of propositional defi-
nite and normal logic programming [14]. A normal or general logic program is a set of
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rulesp :- Qdi,..,09m, NOt Qut1,.., NOt Qyp, where p and g; are (proposi-
tional) atoms. A definite program is a normal logic program without negative literals
(m=n). An extended logic program consists of rules where p and g; are atoms or clas-
sically negated atoms —q. For these formalisms, a number of different model semantics
have been proposed. The most important ones are the completion semantics [3], the sta-
ble semantics [10] and the well-founded semantics [21] for normal programs; | will also
consider the least Herbrand model semantics for definite logic programs [20]. Some fa-
miliarity of the reader with these semantics and their interrelations and with classical
logic, default logic and autoepistemic logic, will prove useful but most arguments pre-
sented below can be understood without deep acquaintance of the mathematical details
of these systems.

The meaning of Logic Programming has often been defined through embeddings in
other logics, in particular in (propositional) classical logic (CL), default logic [19] and
autoepistemic logic [17]. To understand (some of) the multiple views on logic program-
ming, we can compare the embeddings of LP in these different logics.

There is good formal ground for such comparisons, both in terms of possible state
semantics of these logics and in terms of belief sets, i.e. first order or modal theories
closed under entailment. The deductive closure of a first order theory, an extension of
a default theory and an expansion of an autoepistemic theory! are belief sets that can
be seen as the representation of the belief of the knowledge representing expert. The
models of these belief sets represent the possible states according to the expert’s belief.
Thus, these objects can be compared in a meaningful way.?

We consider the three oldest and most influential embeddings of LP. The first em-
bedding is the Clark completion [3], which defines the declarative reading of a normal
program through a set of first order equivalences, called completed definitions. The
completed definition of an atom p occurring as the head of rulesp : - Li,.., L;l
(1 < i <m), is the following first order equivalence:

peo (LiAALL )V ..V (LPALALT)

The completion of a propositional program P is the first order theory consisting of the
set of completed definitions of all symbols and will be denoted comp(P).

In [8], Gelfond proposed to interpret negation as failure literals not p, which are
interpreted by the Prolog system as “p cannot be proven”, by epistemic literals “I do
not know p”. To formalise this declarative reading, he proposed an embedding of logic
programs into autoepistemic theories in which negation as failure literals not p are
mapped to epistemic literals —Kp . In this embedding, a logic programming rule:

p:- g, notr

1 An expansion contains not only first order formulas but also modal formulas. However, these
can be computed from the first order formulas in it. For this comparison, | will ignore them.

2 A first order theory T always defines a unique belief set Cn(T'). Default and autoepistemic
logic are indexical in the sense that they have expressions referring to the agents own beliefs.
As a consequence, they sometimes cannot be assigned a belief set or they may have multiple
belief sets, each being a candidate for representing the experts belief. This distinction is not
important for the sake of the argument in this section, since the examples that we will consider
have a unique belief set.



116 Marc Denecker

is interpreted as the following AEL formula:
p— qgA-Kr

In the sequel, | will denote the mapping of a logic program P as ael(P). In the original
paper on the stable models [10], this embedding is used to explain the stable semantics.
In particular, it was shown that the stable models of a program P correspond exactly to
the sets of atoms in the autoepistemic expansions of ael(P).

In [15], Marek and Truszczynski proposed a third embedding, of logic programming
into default logic. This embedding was later generalised by Gelfond and Lifschitz in
[11] to the case of answer set programming. The embedding maps a rule

p:- q, notr

to the default:
q:—r

p

Let us denote the embedding of a program P by dI(P). Marek and Truszczyhski showed
that there is a one to one correspondence between stable models of P and extentions of
dl(P): each extention of dl(P) is of the form Cn(AM) with M a stable model and vice
versa, for each stable model M, Cn (M) defines an extension of dl(P).

The three different embeddings are non-equivalent and give different meaning to
the rule operator (equivalence, material implication or inferent rule) and the negation
as failure (classical negation, or modal epistemic negation). The difference appears in
almost every logic program, even the most simple ones without negation and where all
main LP model semantics coincide. It is easy to demonstrate this formally. Consider the
case of definite programs and as an illustration, take the following program:

Pr={p :- a}

The first point is that P, is a non-recursive definite program. For such programs, all
semantics coincide. The empty set {} is the unique least model, the unique model of
the completion, the unique stable model and the unique well-founded model of P; .

Now, let us compare the meaning of P, as expressed by the different embeddings
on which these model semantics are based. The following table presents the different
embeddings, the belief sets and the possible states:

comp(P) | ael(P1) | di(Py)
{q & false,

po g} {p+4q} {%}

Cn({-p,~¢}|Cn({p < q}) Cn({})

{ {1 At A a3} {p}, {p. a}. {a}

On the one hand, we observe that the least model, the model of the completion, the
stable and the well-founded model of P; coincide. On the other hand, we observe that
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the three embeddings assign a different belief set and a different set of possible states to
Py. Consequently, P; is an example of a program for which all formal model semantics
coincide, but for which the declarative readings induced by the different embeddings
differ. So it illustrates that point (a) of the introduction does not hold.

P, also illustrates that ael and dl assign a different meaning to logic programs,
despite the fact that they both induce the stable semantics. So, this example illustrates
that point (b) of the introduction does not hold.

The above example is just one illustration of a large class of programs showing the
ambiguity problem. Note that P, is a definite logic program, and hence, these different
views on the meaning of a logic program occur even in the absence of negation as
failure.

We can conclude that the different embeddings give different meaning to the same
logic programs. Whether this is an ambiguity of the same order as that of semantic nets
in the early seventies, depends on whether these different meanings have been mixed
up in the LP community, which is discussed in section 4. But first we look at how the
ambiguity could arise.

3 Ambiguity: how can it arise?

Unlike semantic nets in the middle seventies, the ambiguity of LP arises in the context
of logics with formal model semantics. As illustrated above, formal semantics do not
seem to guarantee a non-ambiguous declarative reading? How is it possible that the
embeddings differ while the induced models coincide?

In a nutshell, a formal semantics is not more than a precise mathematical theory
which associates formal semantical objects (i.e. models, usually) to a logic expression.
But formal semantics cannot prescribe how human experts should interpret what these
semantical objects say about the real problem world; what a model means is informal
and may be subjective. Two human experts who give different interpretations to what
the models of a logic expression mean, will assign different meaning to the expression.

This phenomonon occurs in logic programming. In each of the embeddings consid-
ered in the previous section, a different epistemological role is assigned to a “model”.
Under the completion, in the classical logic convention, a model represents a possible
state of the world, describing the collection of objects that exists in this state, their re-
lationships and the functions. Under the default embedding dI, a stable model (or more
general, an answer set) M is a first order logic representation of a possible belief state of
the expert and Cn(M) is the corresponding belief set. In the autoepistemic embedding
ael, a stable model is simply the set of atoms that are believed in one of the possible
belief states of the expert.

The same mathematical structures are used to describe very different characteristics
of the expert knowledge. For example, the fact that the unique model of comp(P;) is
{} means that the world is known to be in the state in which both p and g are false. The
fact that the stable model is {} means in the autoepistemic view that nor p nor g are
known to be true by ael(Py). And in the default view dI(P;), it means that the empty
theory is believed, i.e. the expert knows nothing and all he believes are the tautologies.
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The bottom line is that the informal notions of declarative reading of a formal logic
and the epistemological role of its semantic primitives are tightly connected. Only if we
fix the meaning of the semantic primitives, the formal semantics specifies a declarative
reading of the logic.

4 Ambiguity in theliterature

In the context of classical logic, there is a convention that is quasi universally followed,
namely that a model represents a possible state of the world. In logic programming,
this convention is not followed. This is a potential source of confusion. Below is a brief
overview of whether and how epistemological foundations of logic programming are
discussed in the literature.

In the papers introducing the main semantics of logic programming [20, 3, 2, 21],
the epistemological role of the models is not discussed. It can be that the authors had
only the intention to define a formal semantics and not a declarative reading, or it may
be that they had in mind the standard convention of interpreting a model as a possible
state of the world, but we cannot be sure. One exception is Gelfond and Lifschitz’s orig-
inal paper on stable semantics [10], which explicitly state that stable models represent
possible states of beliefs that a rational agent might hold”. As appears from [11], they
later left this view in the context of general logic programs but kept it in the context of
extended logic programs and answer set programming.

In [11], the difference between general logic programs and extended logic programs
(without =) is explained in terms of different interpretations of a stable model. Gelfond
and Lifschitz state that the absence of an atom A in the stable model of a general
program represents the fact that A is false; the absence of A and —A in the answer
set of an extended program is taken to mean that nothing is known about A. What this
means is that in general logic programming, a stable model represents a possible state
of the world, whereas in answer set programming, it represents a first order theory of
believed literals (exactly as under di).

More recently, the view of answer set programming seems to evolve towards a com-
putational paradigm, in which epistemological issues are ignored. In [16], Marek and
Truszczyhski investigate the stable logic progamming paradigm from a computational
and complexity perspective and ignore epistemological aspects of the semantics; they
do not discuss the epistemological role of stable models nor the declarative reading in-
duced by the stable semantics. In [18], Niemeld mentions that logic programs can be
seen as a special case of autoepistemic logic and as default theories and refers to stable
models as solution sets. In these papers, the distinction between general logic program-
ming and answer set programming is fading and the view on what a model means is not
longer considered to be an issue; instead a stable model or an answer set represents a
“solution” to a “problem”. These terms have no epistemological connotation and it is
impossible to know what a stable logic program or answer set program means. Some
counterweight is found in [9] which distinguishes general logic programs from answer
set programs and discusses how to approximate the first by the latter.

Abductive logic programming is another extension of logic programming. In [13],
Kakas, Toni and Kowalski define it from an inferential point of view, as an extension of
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of logic programming to perform abductive reasoning. Formal semantics are specified
implicitly through a framework explaining how in any logic programming semantics
can be extended to the case of ALP. Until recently, no efforts had been made to explain
the epistemological foundations of this logic, and this domain inherits the ambiguity
problems of LP.

In conclusion, there exist multiple declarative readings of logic programming. Gel-
fond and Lifschitz have explained the distinction in some depth, but epistemological
issues have mostly been ignored or confused. The picture of logic programming’s epis-
temology is a blurred one.

5 Consequences

The declarative reading and, connected, the view on the semantical primitives, are infor-
mal notions but they play a fundamental role in the goals and applications of declarative
logic in Al. Logic is often praised for its precision as a specification and a knowledge
representation language. It is seen as a precise language for communication of informa-
tion between human experts. Evidently, this precision depends on the extent to which
different human experts interpret a logic theory in the same way, that is, assign the same
declarative reading to it.

Also the KR methodology of a declarative logic is based on its declarative reading.
The basic methodological principle of knowledge representation in declarative logic is
that the human expert describes the world by writing formal axioms or theories that
are true in the external problem world. Different declarative readings require differ-
ent methodologies. The methodologies of answer set programming and general logic
programming are indeed very different.

Below, I discuss two consequences of the multiple interpretation of logic program-
ming.

An example of the kind of confusion that may arise due to the epistemological am-
biguity is the following. In LP, there exist many mathematical results relating different
model semantics. Because of the different views on what a model is, extreme caution
is needed when interpreting these results at the epistemological level. Comparing first
order theories of literals, sets of believed atoms and possible worlds is comparing ap-
ples and oranges. These mathematical results are potentially very misleading and may
be simply meaningless. For example, in [10] it is shown that the set of stable models is
a subset of the set of models of the completion. It is tempting to conclude from this that
the default reading or the autoepistemic reading of a logic program is stronger, i.e. has
larger belief sets, than the completion semantics. This is a wrong conclusion. Actually
the program P; in the previous section is an example showing that the contrary often
happens. The belief represented by dl(P;) is a strict subset of the belief represented by
ael (Py) which in turn is a strict subset of the belief set represented by comp(Py). In
this example and in many others the completion semantics is stronger than the default
reading. On the other hand, the meaning of a set of normal rules interpreted under com-
pletion semantics is indead weaker than the same set of rules seen as a general logic
program (under stable semantics).
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In LP and the wider area of nonmonotonic reasoning, there are plenty of mathemat-
ical results relating different systems and semantics, but very little attention is spent to
explain what these mathematical relationships mean at the epistemological level.

Another issue is the nature of the negation as failure. It is generally assumed that
negation as failure is not classical negation. This view is supported by the embeddings
of LP in default and autoepistemic logic. But these embeddings only apply for answer
set programming, and not for, say general logic programming.

A closer look at Clark’s completion transformation shows that negation as failure is
translated to classical negation. In the completion semantics, negation as failure is defi-
nitely classical negation; it is the LP rule operator that is assigned a non-classical mean-
ing. In general logic programming (under stable semantics) and completion semantics,
models are viewed in the same way, as possible states. Stable models of a general logic
program are models of the completion. For an important class of programs, the inverse
holds. Such programs, whether interpreted as general logic programs semantics or un-
der the completion semantics, are mathematically and epistemologically equivalent. In
the light of this, one wonders if negation as failure in general logic programming is not
classical negation after all.

In [11], the meaning of a general logic program is explained in terms of the corre-
sponding extended logic program augmented with the closed world assumption for all
predicates. However, in the current practice of general logic programming, this expla-
nation is not satisfactory. General logic programs are frequently used to model domains
where the human expert has incomplete knowledge. For example, in the context of a
planning problem, there is knowledge about initial state, effects of actions and goal
state, but not about what actions actually occur. In such domains the closed world as-
sumptions are invalid. The issue of the nature of negation as failure remains partly
unresolved.

6 In search of a solid epistemology for LP

Originally, logic programming was viewed as the Horn clause sub-formalism of clas-
sical logic. This view broke down almost immediately when the negation as failure
inference rule was introduced. On the one hand, this inference rule is unsound with
respect to the classical logic view of a logic program. On the other hand, negation as
failure derived conclusions with a strong common sense appeal and turned out to be
very useful and natural in many practical situations. This was the motivation for the
search for alternative views and semantics of logic programming.

One intuition is to interpret a negation as failure literal not  p as an epistemic state-
ment of the kind “I do not know p”, or similarly “I cannot infer p”, or “it is consistent to
assume that p is false”. This approach has been followed in answer set programming.

A second view is to interpret a logic program as a definition. This intuition was first
used by Clark [3] in the completion semantics. As mentioned in the previous section,
negation as failure in this view is really standard classical negation but LP’s rule oper-
ator is not material implication. The completion semantics has a big disadvantage that
it does not correctly formalise the intended meaning of recursive logic programs repre-
senting inductive definitions (e.g. the transitive closure program). But other semantics,
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in particular the perfect model semantics and well-founded semantics solve this prob-
lem. In [4-6], we argued that logic programming under well-founded semantics can be
seen as a logic of a very general kind of definitions, including many types of mathemat-
ical inductive definitions. In [5], a logic, called ID-logic, is defined as an integration of
classical logic assertions and inductive definitions. ID-logic formally extends Abductive
Logic Programming and induces a declarative reading for ALP as a logic of definitions
and classical logic assertions.

The source of LP’s ambiguity problem is the fact that these fundamentally different
intuitions lead to the same or very similar formal semantics but in which the epistemo-
logical status of a model is different.

There is no “right” view on logic programming. Both intuitions can be the basis of
a different epistemology for LP (which to some extend have been elaborated already).
The two views are both consistent, natural and have their own class of applications. Pro-
totypical examples of inductive definitions are programs such as menber, append,
del et e, .. and the transitive closure program. Prototypical examples of the other
view are defaults and rules referring to knowledge or provability as in:

presuned. nnocent :- not guilty

Both views lead (and have led already) to different logics, in which the epistemo-
logical role of the semantic primitives has been made explicit. It is easy to avoid the
ambiguity in the context of knowledge representation and declarative semantics; it suf-
fices to state explicitly in which of these logic one works. Then it is clear what is the
role of the semantic primitives.

There remain important philosphical questions about the meaning of the logical
connectives (negation as failure, the rule operator and disjunction in the head) in the
different logics of logic programming. For example, one open question, stated in the
previous section, is whether general logic programming imposes closed world assump-
tion and whether its negation as failure is really modal negation as suggested by Gelfond
and Lifschitz.

7 Conclusion

One aim, maybe the main aim, of formal semantics of a logic is to clear out the meaning
of its expressions. | showed that in the logic programming community, there remains
considerable vagueness and ambiguity about the meaning of programs and the logical
connectives, despite many efforts on the formal semantics.

Epistemological clarity is a sine qua non for declarative logic. If we want to ad-
vocate the use of logic programming as a knowledge representation language to the
broader knowledge representation and Al community, we will have to explain in clear
and precise terms what knowledge is represented in our logic. If we want to understand
the position of logic proramming in the spectre of logics, we will have to explain what
the logical connectives mean and how they relate to connectives in other logics.

The ambiguity of logic programming is a concern for anyone who wishes to view
logic programming and its extensions as declarative logics. Logic programming must be
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to split out in a number of logics with a clear declarative reading and a well-motivated
precise formal semantics. This will greatly improve our understanding of the position
and contributions of logic programming in logic and knowledge representation and |
believe that in the long run it will lead to a much desired simplification of the very
complex landscape of logic programming.
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