
Parametric Connectives in
Disjunctive Logic Programming

Nicola Leone and Simona Perri

Department of Mathematics, University of Calabria
I-87030 Rende (CS), Italy�

leone, perri � @mat.unical.it

Abstract. Disjunctive Logic Programming (DLP) is an advanced formalism for
Knowledge Representation and Reasoning (KRR). DLP is very expressive in a
precise mathematical sense: it allows to express every property of finite structures
that is decidable in the complexity class ���� (���
	��). Importantly, the DLP en-
codings are often simple and natural.
In this paper, we single out some limitations of DLP for KRR, which cannot nat-
urally express problems where the size of the disjunction is not known “a priori”
(like N-Coloring), but it is part of the input. To overcome these limitations, we
further enhance the knowledge modelling abilities of DLP, by extending this lan-
guage by Parametric Connectives (OR and AND). These connectives allow us to
represent compactly the disjunction/conjunction of a set of atoms having a given
property. We formally define the semantics of the new language, named DLP �� �
and we show the usefulness of the new constructs on relevant knowledge-based
problems. We analyze the computational complexity of DLP � � , showing that
the addition of parametric connectives does not bring a higher cost in that respect.

1 Introduction

Disjunctive logic programs are logic programs where disjunction is allowed in the heads
of the rules and negation may occur in the bodies of the rules. Such programs are now
widely recognized as a valuable tool for knowledge representation and commonsense
reasoning [2, 9, 12, 3, 6, 8, 11, 1]. The most widely accepted semantics for DLP is the
answer sets semantics proposed by Gelfond and Lifschitz [6] as an extension of the
stable model semantics of normal logic programs [5]. According to this semantics,
a disjunctive logic program may have several alternative models (but possibly none),
called answer sets, each corresponding to a possible view of the world. Disjunctive
logic programs under answer sets semantics are very expressive. It was shown in [4, 7]
that, under this semantics, disjunctive logic programs capture the complexity class ����
(i.e., they allow us to express, in a precise mathematical sense, every property of finite
structures over a function-free first-order structure that is decidable in nondeterministic
polynomial time with an oracle in ���). As Eiter et al. [4] showed, the expressiveness of
disjunctive logic programming has practical implications, since relevant practical prob-
lems can be represented by disjunctive logic programs, while they cannot be expressed
by logic programs without disjunctions, given current complexity beliefs. Importantly,

Parametric Connectives in Disjunctive Logic Programming 125

even problems of lower complexity can be often expressed more naturally by disjunc-
tive programs than by programs without disjunction.

As an example, consider the well-known problem of 3-coloring, which is the as-
signment of three colors to the nodes of a graph in such a way that adjacent nodes have
different colors. This problem is known to be NP-complete. Suppose that the nodes and
the edges are represented by a set � of facts with predicates ������� (unary) and ���
	��
(binary), respectively. Then, the following DLP program allows us to determine the
admissible ways of coloring the given graph.

������������������������� !�����"�#��������$��
 %�&�#�����������('�� :-) �#*
+����,�
� � � :- +-*�'�+������/.0���1�����"�#��������23���1�&�#��������.!�423�

Rule 5�6 above states that every node of the graph is colored red or yellow or green,
while 5 � forbids the assignment of the same color to any adjacent nodes. The minimality
of answer sets guarantees that every node is assigned only one color. Thus, there is a
one-to-one correspondence between the solutions of the 3-coloring problem and the
answer sets of �87:9#5 6�; 5 �
< . The graph is 3-colorable if and only if �87:9#5 6�; 5 �
< has
some answer set.

Despite the high expressiveness of DLP, there are several problems which cannot
be encoded in DLP in a simple and natural manner. Consider, for instance, the general-
ization of the 3-coloring problem above, where the number of admissible colors is not
known “a priori” but it is part of the input. This problem is called N-Coloring: Given a
graph G and a set of N colors, find an assignment of the N colors to the nodes of G in
such a way that adjacent nodes have different colors.

The most natural encoding for this problem would be obtained by modifying rule
5�6 in the above encoding of 3-coloring. The head

= ��>?��5�@BA ; 5
CED = ��>?��5�@BA ;4F CED = ��>?��5�@BA ; 	GC
should be replaced by a disjunction of H atoms representing the H possible ways of
coloring the node at hand. This encoding, however, cannot be done in a uniform way,
since the number of colors is not known “a priori”; but it is part of the input (the program
should be changed for each number H of colors; while a uniform encoding requires the
program to be fixed, and only the facts encoding the input to be varying).

To overcome these limitations, in this paper we enhance the knowledge modeling
abilities of DLP, by extending this language by Parametric Connectives (OR and AND).
These connectives allow us to represent compactly the disjunction/conjunction of a set
of atoms having a given property. For instance, by using parametric OR we obtain a
simple and natural encoding of N-Coloring by modifying the above rule 5�6 as follows:

I 9 = ��>4@?A ;&J CLK = ��>�@ J C <NM �����O�O@?APC-Q
(see Section 4.1).

We formally define the semantics of the new language, named DLP � � , by provid-
ing a natural extension of the answer set semantics for DLP � � programs. We show the
usefulness of the new constructs on relevant knowledge-based problems. We analyze
the computational complexity of DLP � � . Importantly, it turns out that the addition of

126 Nicola Leone and Simona Perri

parametric connectives does not increase the computational complexity, which remains
the same as for reasoning on DLP programs.

2 The DLP �� � Language

In this section, we provide a formal definition of the syntax and the semantics of the
DLP � � language.

2.1 Syntax

A variable or a constant is a term. A standard atom is � @ � 6
; Q�Q�Q ; ��� C , where � is a predicate
of arity � and

� 6�; Q�Q"Q ; ��� are terms. A standard literal is either a standard positive literal �
or a standard negative literal ��� � � , where � is a standard atom. A standard conjunction
is �E6 ;	�
�	��; � � where each �E6 ;
�	�
� ; � � is a standard literal. A symbolic literal set � is 9� K
J ����� < where � is a standard literal and J ����� is a standard conjunction; if � is a positive
standard literal, � is called positive symbolic literal set. A parametric AND literal is� � where � is a symbolic literal set. A parametric OR atom is ��� where � is a
positive symbolic literal set. From now on, we refer to both parametric AND literal and
parametric OR atom as parametric literals.

Example 1. � 9 � @BA ;�� C K���@?A ;�� C ; ��� � 5�@ � C < is a parametric OR atom and 9 � @BA ;�� C K
��@BA ;�� C ; ��� � 5�@ � C < is the positive symbolic literal set. Intuitively, the above parametric
OR atom stands for the disjunction of all instances of � @BA ;�� C such that the conjunction
��@BA ;�� C ; ��� � 5�@ � C is true.

An atom is either a standard atom or a parametric OR atom. A literal is either a
standard literal or a parametric AND literal.

A (disjunctive) rule 5 is a syntactic of the following form:
� 6 D �
�	� D � � :- >?6 ;
�
�	��; >�� Q ����� ;�� ���

where � 6�;	�
�	��; � � are atoms and > 6�;
�	�
�#; > � are literals.
The disjunction � 6 D �
�
� D � � is the head of 5 , while the conjunction > 6�;
�	�
�#; > � is the
body of 5 .

We denote by @?5�C the set 9 � 6 ; Q"Q�Q ; � � < of the head atoms, and by ! @B5
C the set
9�>?6 ; Q"Q�Q ; >�� < of the body literals.

An (integrity) constraint is a rule with an empty head.
A DLP � � program " is a finite set of rules. A # -free (resp., D -free) program is

called positive (resp., normal). A program where neither parametric atoms nor paramet-
ric literals appear is called (standard) DLP program. A term, an atom, a literal, a rule,
or a program are ground if no variables appear.

2.2 Syntactic Restrictions and Notation

A variable A appearing solely in a parametric literal of a rule 5 is a local variable of 5 ;
otherwise, A is a global variable of 5 .

Parametric Connectives in Disjunctive Logic Programming 127

Example 2. Consider the following rule

� @ �L;�� C :- � 9 ��@?A ;�� C K � @BA ;�� C�C < ; � @ � C ; 5�@ � C Q
A is the only local variable, while � and � are global variables.

Safety A rule 5 is safe if the following conditions hold:

(i) each global variable of 5 appears in a positive standard literal in the body of 5 ;
(ii) each local variable of 5 appearing in a symbolic set 9� K J ����� < , also appears in a

positive literal in J ����� .

A program is safe if all of its rules are safe.

Example 3. Consider the following rules:

� 9��!@BA ;�� C K���@ � C < :- 5�@BAPC Q
� @BA ;�� C :- � 9��@BA ;�� C K � @BAPC�C < ;�� @BA ;�� C Q
� @BAPC :- � 9��@BA ;�� C K � @BAPC < ; � @ � C Q

The first rule is safe, while the second is not, since the local variables � violates condi-
tion (ii). The third rule is not safe either, since the global variable A violates condition
(i).

From now on, throughout this paper, we assume that all rules of a � ���
	�� �" are
safe.

2.3 Semantics

Program Instantiation. Given a DLP � � program " , let ��� denote the set of constants
appearing in " , and !�� the set of standard atoms constructible from the (standard)
predicates of " with constants in ��� .

A substitution is a mapping from a set of variables to the set ��� of the constants
appearing in the program " . A substitution from the set of global variables of a rule 5
(to � �) is a global substitution for r; a substitution from the set of local variables of a
symbolic set � (to � �) is a local substitution for � . Given a symbolic set without global
variables � = 9 � K J ����� < , the instantiation of set � is the following ground set of pairs
����� 9���� @ �LC K���@ J �����EC������ is a local substitution for � < 1; ��� is called ground literal
set.

A ground instance of a rule 5 is obtained in two steps: (1) a global substitution
for 5 is first applied over 5 ; (2) every symbolic set � in �@B5
C is replaced by its instan-
tiation !(� � � @ � C . The instantiation "05���# ��� @�" C of a program " is the set of all possible
instances of the rules of " .

1 Given a substitution $ and a DLP �� � object %'&)((rule, conjunction, set, etc.), with a little
abuse of notation, we denote by $ � %'&*(� the object obtained by replacing each variable � in
%'&)(by $ ���,� .

128 Nicola Leone and Simona Perri

Example 4. Consider the following program " 6 :
��@���C�D � @�� ; ��C Q ��@���CED � @�� ; ��C Q� @BAPC :- ��@BAPC ; � 9 � @ � C K �!@?A ;�� C < Q

The instantiation "05���# ��� @ " 6#C is the following:

��@���CED �!@�� ; ��C-Q ��@���CED �!@�� ; ��C-Q� @���C :- ��@���C ; � 9�� � @���C K � @�� ; ��C�� ; � � @���C K �!@�� ; ��C � < Q� @���C :- ��@���C ; � 9�� � @���C K � @�� ; ��C�� ; � � @���C K �!@�� ; ��C � < Q
Interpretation and models. An interpretation for a DLP � � program " is a set

of standard ground atoms ��� !�� . The truth valuation � @�	 C , where 	 is a standard
ground literal is defined in the usual way. Besides assigning truth values to the standard
ground literals, an interpretation provides the meaning also to (ground)literal sets, and
to (the instantiation of) parametric literals. Let � be a (ground) literal set. The valuation
� @ � C of set � w.r.t. � is the set

9� �O@ � K = ������
 � C�P@ = ������! � � 5�# ��� Q 5�Q � �EC < Q
Given a symbolic literal set, let ��� be the instantiation of � . Then a paramet-

ric AND literal
� � is true w.r.t � if all the standard literals in � @ ��� C are true w.r.t

� . Similarly, a parametric OR atom � � , is true w.r.t � if at least one of the standard
literals in � @ ��� C is true w.r.t � .

Example 5. Let ��� be the set 9 1,2 < and � the interpretation 9 p(1),p(2), a(1,2), a(2,1),
b(1), b(2) < . Consider the parametric AND atom

� � �
� 9��!@?APCLK � @BA ;�� C ;�� @BA C <

Then the instantiation of � is

��� � 9�� �!@���C K � @�� ; ��C ;�� @���C�� ; � �!@���C K � @�� ; ��C ;�� @���C�� ;
� �!@���C K � @�� ; ��C ;�� @���C � ; � � @���CLK � @�� ; ��C ;�� @���C � <

and its value w.r.t � is � @ ��� C = 9��!@���C ; �!@���C < . � � is true w.r.t. � because both �!@���C and
�!@���C are true w.r.t � .

Using the above notion of truth valuation for parametric literals, the notion of mod-
els, minimal models and answer sets for DLP � � are an immediate extension of the
corresponding notions in standard DLP [6].

3 Declarative Programming in Standard DLP

3.1 The GC Declarative Programming Methodology

The standard DLP language can be used to encode problems in a highly declarative
fashion, following a “GC” (Guess/Check) paradigm. In this section, we will describe

Parametric Connectives in Disjunctive Logic Programming 129

this technique and we then illustrate how to apply it on a number of examples. Many
problems, also problems of comparatively high computational complexity (that is, even
� �� -complete problems), can be solved in a natural manner with DLP by using this
declarative programming technique. The power of disjunctive rules allows for express-
ing problems which are even more complex than NP, and the (optional) separation of
a fixed, non-ground program from an input database allows to do so uniformly over
varying instances.

Given a set ��� of facts that specify an instance � of some problem � , a GC program
" for � consists of the following two main parts:

Guessing Part The guessing part � ��" of the program defines the search space, in a
way such that answer sets of � 7���� represent “solution candidates” for � .

Checking Part The checking part � � " of the program tests whether a solution
candidate is in fact an admissible solution, such that the answer sets of � 7�� 7����
represent the solutions for the problem instance � .

The two layers above can also use additional auxiliary predicates, which can be seen
as a background knowledge.

In general, we may allow both � and � to be arbitrary collections of rules in the
program, and it may depend on the complexity of the problem which kinds of rules are
needed to realize these parts (in particular, the checking part); we defer this discussion
to a later point in this chapter.

Without imposing restrictions on which rules � and � may contain, in the extremal
case we might set � to the full program and let � be empty, i.e., all checking is integrated
into the guessing part such that solution candidates are always solutions. However, in
general the generation of the search space may be guarded by some rules, and such
rules might be considered more appropriately placed in the guessing part than in the
checking part. We do not pursue this issue any further here, and thus also refrain from
giving a formal definition of how to separate a program into a guessing and a checking
part.

For many problems, however, a natural GC program can be designed, in which the
two parts are clearly identifiable and have a simple structure:

– The guessing part � consists of some disjunctive rules which “guess” a solution
candidate � .

– The checking part � consists of integrity constraints which check the admissibility
of � .

All two layers may also use additional auxiliary predicates, which are defined by normal
stratified rules.Such auxiliary predicates may also be associated with the guess for a
candidate, and defined in terms of other guessed predicates, leading to a more “educated
guess” which reduces blind guessing of auxiliary predicates; this will be seen in some
examples below.

Thus, the disjunctive rules define the search space in which rule applications are
branching points, while the integrity constraints prune illegal branches.

130 Nicola Leone and Simona Perri

Remark 1. The GC programming methodology has positive implications also from the
Software Engineering viewpoint. Indeed, the modular program structure in GC allows
us to develop programs incrementally providing support for simpler testing and de-
bugging activities. Indeed, one first writes the Guess module � and tests that ��7 � �
correctly defines the search space. Then, one deals with the Check module and verifies
that the answer sets of � 7 ��7���� are the admissible problem solutions.

3.2 Applications of the GC Programming Technique

In this section, we illustrate the declarative programming methodology described in
Section 3.1 by showing its application on a couple of standard problems from graph
theory.

Hamiltonian Path Let us consider now a classical NP-complete problem in graph
theory, namely Hamiltonian Path.

Definition 1 (HAMPATH). Given a directed graph " � @ � ;�� C and a node �
 �
of

this graph, does there exist a path of " starting at � and passing through each node in�
exactly once?

Suppose that the graph " is specified by using predicates �����O� (unary) and � 5 =
(binary), and the starting node is specified by the predicate � � � 5 � (unary). Then, the
following GC program "���� solves the problem HAMPATH.

!(��� � �	� @BA ;�� CED ��# � � � �	� @?A ;�� C :- � � � 5 � @?APC ; � 5 = @BA ;�� C-Q
!(��� � �	� @BA ;�� CED ��# � � � �	� @?A ;�� C :- 5�� �O= � ��� @BAPC ; � 5 = @BA ;�� C Q

Guess

:- !(��� � �	� @BA ;�� C ; !(��� � �	� @BA ;�� ��C ;������� ��Q
:- !(��� � �	� @BA ;�� C ; !(��� � �	� @BA � ;�� C ; A �� A ��Q
:- �����O�E@BAPC ;	����� 5�� �E= � ��� @BAPC ;	����� � � � 5 � @BAPC Q

� �
� Check

5�� �E= � ��� @BA C :- !(��� � �	� @ � ; APC-Q

Auxiliary
Predicate

The two disjunctive rules guess a subset � of the given arcs to be in the path, while the
rest of the program checks whether that subset � constitutes a Hamiltonian Path. Here,
an auxiliary predicate 5�� �E= � ��� is used, which is associated with the guessed predicate
! ��� � �	� using the last rule.

The predicate 5�� �O= � ��� influences through the second rule the guess of !(��� � �	� ,
which is made somehow inductively: Initially, a guess on an arc leaving the starting
node is made by the first rule, and then a guess on an arc leaving from a reached node
by the second rule, which is repeated until all reached nodes are treated.

In the Checking Part, the first two constraints check whether the set of arcs � se-
lected by !(��� � �	� meets the following requirements, which any Hamiltonian Path must
satisfy: (i) there must not be two arcs starting at the same node, and (ii) there must not
be two arcs ending in the same node. The third constraint enforces that all nodes in the
graph are reached from the starting node in the subgraph induced by � . This constraint
also ensures that this subgraph is connected.

Parametric Connectives in Disjunctive Logic Programming 131

It is easy to see that any set of arcs � which satisfies all three constraints must
contain the arcs of a path ��� ; ��6 ; Q�Q�Q ; ��� in " that starts at node ��� � � , and passes
through distinct nodes until no further node is left, or it arrives at the starting node� again. In the latter case, this means that the path is a Hamiltonian Cycle, and by
dropping the last arc, we have a Hamiltonian Path.

Thus, given a set of facts � for �����O� , � 5 = , and � � � 5 � , specifying the problem input,
the program "����N7 � has an answer set if and only if the input graph has a Hamilto-
nian Path. Thus, the above program correctly encodes the decision problem of deciding
whether a given graph admits an Hamiltonian Path or not.

This encoding is very flexible, and can be easily adapted to solve both the search
problems Hamiltonian Path and Hamiltonian Cycle (where the result is to be a tour,
i.e., a closed path). If we want to be sure that the computed result is an open path (i.e.,
it is not a cycle), then we can easily impose openness by adding a further constraint
:- � � � 5 � @ � C ; ! ��� � �	� @ ;�� C-Q to the program (like in Prolog, the symbol ‘ ’ stands for
an anonymous variable, whose value is of no interest). Then, the set � of selected arcs
in an answer set of " ��� 7 � constitutes a Hamiltonian Path starting at � . If, on the other
hand, we want to compute a Hamiltonian Cycle, then we have just to strip off the literal��� ��� � � 5 � @?APC from the last constraint of the program.

N-Coloring Now we consider another classical NP-complete problem from graph the-
ory, namely N-Coloring.

Definition 2 (N-COLORING). Given a graph " � @ � ; � C , a N-Coloring of " is an
assignment of one, among N colors, to each vertex in

�
, in such a way that every pair

of vertices joined by an edge in � have different colors.

Let us suppose that the graph " is represented by a set of facts with predicates �E�#5 � ���
(unary) and ���
	�� (binary), respectively. Then, the following DLP program "��
	�� deter-
mines the admissible ways of coloring the given graph.

= ��>�@BA ; �OC�D ��� � = ��>�@BA ; �OC :- �O��5 � ���!@BA C ; = ��>?��5�@ �EC-Q

Guess

:- = ��>�@BA ; �OC ; = ��>�@ �L; �EC ; ����	��O@?A ;�� C Q
:- = ��>�@BA ; �OC ; = ��>�@BA ; C ; � �� Q
:- �E��5 � ��� @BAPC ;	����� = ��>/��5���� @BA C-Q

� �
� Check

= ��>/��5���� @BA C :- = ��>�@BA ; �OC Q

Auxiliary
Predicate

The disjunctive rule guesses a graph coloring; = ��>4@?A ; �EC says that vertex A is as-
signed to color � and ��� � = ��>4@?A ; �EC that it is not. The constraints in the checking part
verify that the guessed coloring is a legal N-Coloring. In particular the first constraint
assert that two joined vertices cannot have the same color, while the other two con-
straints impose that each vertex is assigned to exactly one color.

The answer sets of " �
	�� are all the possible legal N-Colorings of the graph. That is,
there is a one-to-one correspondence between the solutions of the N-Coloring problem
and the answer sets of " �
	�� . The graph is N-colorable if and only if there exists one of
such answer sets.

132 Nicola Leone and Simona Perri

Maximal Independent Set Another classical problem in graph theory is the indepen-
dent set problem.

Definition 3 (Maximal Independent Set). Let " � @ � ;�� C be an undirected graph,
and let � � �

. The set � is independent if whenever ! ; �
 � then there are no edges
between ! and � . An independent set � is maximal if no one among supersets of � is an
independent set.

Suppose that the graph " is represented by a set of facts � with predicates �����O�
(unary) and ����	E� (binary). The following program " � ��������� computes the maximal in-
dependent sets of " :

@B5 6 C !(� @BA CED ��# � @BAPC :- �������E@BA C-Q

Guess

@ = 6 C :- !(� @BAPC ; !(� @ � C ; ����	E�E@BA ;�� C-Q
@ = � C :- ��# � @?APC ; � � ! � � � = >�# ����� @BAPC Q

� �
� Check

@B5 � C � � ! � � � = > # �O��� @?APC :- !(� @ � C ; ����	E�E@BA ;�� C Q

Auxiliary
Predicate

The rule 5�6 guesses a set of vertices; !(� @BAPC means that node A belongs to the set
while ��# � @BAPC means that it does not. Then, the integrity constraint = 6 verifies that the
guessed set is independent. In particular, it says that it is not possible that two nodes
joined by an edge belong to the set.

Note that the answer sets of � 7�9#5
6 ; = 6 < correspond exactly to the independent sets
of " .

The maximality of the set is enforced by constraint = � using the auxiliary predicate� � ! � � � = >�# ����� . A node A has to be excluded by the set because a node connected to
it is already in the set. Then = � says that it is not possible that a node is out of the set if
there is no reason to exclude it.

4 Knowledge Representation by DLP �� �
In this section, we show how DLP extended with parametric connectives can be used
to encode relevant problems in a natural and elegant way.

4.1 N-Coloring

In the previous section we showed an encoding for the N-Coloring problem, following
the GC paradigm. Now, we show how the extension of DLP with parametric connec-
tives allows us to represent the N-Coloring problem in a much more intuitive way by
simply modifying the elegant encoding of 3-colorability described in the Introduction.

Suppose again that the graph in input is represented by predicates �E��5 � ��� (unary)
and ���
	�� (binary) and the set of H admissible colors is provided by a set of facts= ��>?��5�@ = 6�C ;
�
�	��; = ��>?��5�@ =	� C . Then, the following simple DLP � � program computes the
N-Colorings of the graph.

Parametric Connectives in Disjunctive Logic Programming 133

� 9 = ��>4@?A ;&J C K = ��>?��5�@ J C < :- �E��5 � � � @BAPC Q
:- = ��>4@?A ;&J C ; = ��>�@ �L;&J C ; ���
	��E@BA ;�� C ; A �� � Q

The first rule guesses all possible N-Colorings. It contains in the head a parametric
atom representing the disjunction of all the atoms = ��>�@BA ; = 6 C ;
�	�
�#; = ��>�@BA ; = � C , where= 6�;	�
�
�#; = � are the H colors (i.e. the disjunction of all the atoms representing the pos-
sible way to color A). For each vertex � , the following ground rule belongs to the
instantiation of the program:

I 9�� = ��>4@ � ; = 6 C K = ��>?��5�@ = 6 C�� ;
�	�
�#; � = ��>4@ � ; = � C K = ��>?��5�@ = � C�� < :- �E��5 � � � @ ��C-Q
Since vertex � and = ��>?��5�@ = 6#C ;	�
�	� = ��>/��5E@ = � C are always true, the above rule stands for
the following disjunction

= ��>�@ � ; = 6 C�� �
�
� � = ��>4@ � ; = � C
The constraint simply checks that the N-Coloring is correct, that is, adjacent nodes must
always have different colors.

4.2 Maximal Independent Set

Another problem which can be easily encoded in a more intuitive way by DLP � � is
maximal independent set. Indeed, this problem can be represented by the following
simple one-rule encoding.

!(� @BA C :- �����O�O@?APC ; � 9 ����� !(� @ � C K � 5 = @BA ;�� C < Q
As usual, the graph in input is encoded by predicates �����O� and � 5 = and the atom

! � @?APC means that node A belongs to the set. Intuitively, such rule says that node A
belongs to the independent set if for each node � which is connected to it, � does not
belong to the set. In particular, the parametric AND literal

� 9 ����� !(� @ � C3K � 5 = @BA ;�� C <
is the conjunction of all the literals ��� � ! � @ � C such that there exists an edge between A
and � .

Note that, differently from the GC encoding shown in the previous section this for-
mulation does not need the predicate ��# � @BAPC and the auxiliary predicate

� � ! � � � = >�# �O��� @BA C
used to mark the nodes that have to be excluded by the set.

It is worth noting that we do not need further rules to express maximality property,
which, indeed, comes for free.

4.3 N-Queens

DLP � � allows to obtain another intuitive and elegant encoding also with respect to the
problem of N-Queens.

Definition 4 (N-QUEENS). Place N queens on a N*N chess board such that the place-
ment of no queen constitutes an attack on any other. A queen attacks another if it is in
the same row, column, or on a diagonal.

134 Nicola Leone and Simona Perri

Let’s suppose that rows and columns are represented by means of facts 5�� � @���C Q ;	�
�	�#; 5�� � @?H C Q
and = ��>�# � � @���C Q ;	�
�
�-; = ��>�# � � @?H C Q Then the following DLP � � problem solves the N-
Queens problem.

� 9��@BA ;�� C K = ��> # � � @ � C < :- 5�� � @?APC-Q
@ = 6�C :- ��@?A ;�� C ; ��@ �3;�� C ; A �� � Q
@ = � C :- ��@?A � ;�� ��C ; ��@BA � ;�� ��C ; A � � A ����� ;�� � � � ����� ; � � Q
@ =�� C :- ��@?A � ;�� ��C ; ��@BA � ;�� ��C ; A � � A ����� ;�� � � � ����� ; � � Q

We represent queens with atoms of the form ��@BA ;�� C . ��@?A ;�� C is true if a queen
is placed in the chess board at row A and column � . The disjunctive rule guesses the
position of the queens; in particular, for each row A , we guess the column where the
queen has to be placed. Then the constraints assert that two queens cannot stay in the
same column (constraint = 6) and in the same diagonal (from top left to bottom right
(constraint = �) and from top right to bottom left (constraint =	�)).

5 Computational Complexity of DLP � �
As for the classical nonmonotonic formalisms [10], two important decision problems,
corresponding to two different reasoning tasks, arise in DLP � � :

(Brave Reasoning) Given a DLP � � program " and a ground literal � , is � true in
some answer set of " ?

(Cautious Reasoning) Given a DLP �� � program " and a ground literal � , is �
true in all answer sets of " ?

The following theorems report on the complexity of the above reasoning tasks for
propositional (i.e., variable-free) DLP � � programs. Importantly, it turns out that rea-
soning in DLP � � does not bring an increase in computational complexity, which re-
mains exactly the same as for standard DLP.

Theorem 1. Brave Reasoning on ground DLP � � programs is � �� -complete.

Theorem 2. Cautious Reasoning on ground DLP � � programs is
 �� -complete.

6 Conclusions

We have proposed DLP � � , an extension of DLP by parametric connectives. This for-
malism enhances the knowledge modelling abilities of DLP allowing to represent in a
natural and elegant way problems that cannot be simply encoded using standard DLP.
Indeed, these connectives allow us to represent compactly the disjunction/conjunction
of a set of atoms having a given property.

We have formally defined the semantics of the new language, and we have shown
the usefulness of DLP � � on relevant knowledge-based problems.

Ongoing work concerns the implementation of parametric literals in the DLVsystem.
In order to guarantee an efficient instantiation of parametric literals we impose a syn-
tactic restriction on the domain predicates (i.e. on the predicates appearing in the con-
junction on the right side of symbolic set). In particular, we require that such predi-
cates are normal (disjunction-free) and stratified. Moreover, the instantiation process

Parametric Connectives in Disjunctive Logic Programming 135

takes care of instantiating the domain predicates before dealing with parametric literals
where they occur. In this way, the parametric literals can be completely solved during
the instantiation process and transformed into standard disjunctions or standard con-
junctions. Further work concerns an experimentation activity devoted to the evaluation
of the impact of parametric connectives on system efficiency. We believe that the con-
ciseness of the encoding obtained through parametric literals in some cases, like for
instance N-Coloring and N-Queens, should bring a positive gain on the efficiency of
the evaluation.

Acknowledgments

This work was supported by the European Commission under project INFOMIX, IST-
2002-33570 INFOMIX, IST-2001-32429 ICONS, and IST-2001-37004 WASP.

References

1. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2002.

2. C. Baral and M. Gelfond. Logic Programming and Knowledge Representation. Journal of
Logic Programming, 19/20:73–148, 1994.

3. T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The
DLV System. In J. Minker, editor, Workshop on Logic-Based Artificial Intelligence, Wash-
ington, DC, College Park, Maryland, June 1999. Computer Science Department, University
of Maryland. Workshop Notes.

4. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transactions on Database
Systems, 22(3):364–418, September 1997.

5. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In
Logic Programming: Proceedings Fifth Intl Conference and Symposium, pages 1070–1080,
Cambridge, Mass., 1988. MIT Press.

6. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365–385, 1991.

7. G. Gottlob. Complexity and Expressive Power of Disjunctive Logic Programming. In
M. Bruynooghe, editor, Proceedings of the International Logic Programming Symposium
(ILPS ’94), pages 23–42, Ithaca NY, 1994. MIT Press.

8. V. Lifschitz. Foundations of Logic Programming. In G. Brewka, editor, Principles of Knowl-
edge Representation, pages 69–127. CSLI Publications, Stanford, 1996.

9. J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Programming. The
MIT Press, Cambridge, Massachusetts, 1992.

10. V. W. Marek and M. Truszczyński. Autoepistemic Logic. Journal of the ACM, 38(3):588–
619, 1991.

11. J. Minker. Overview of Disjunctive Logic Programming. Annals of Mathematics and Artifi-
cial Intelligence, 12:1–24, 1994.

12. B. Wolfinger, editor. Workshop: Disjunctive Logic Programming and Disjunctive Databases,
Berlin, August 1994. German Society for Computer Science (GI), Springer. 13 �

�
IFIP World

Computer Congress, Hamburg, Germany.

