
The A-POL System

Mauricio Osorio
�

and Enrique Corona
�

Universidad de las Américas, CENTIA.
Sta. Catarina Mártir, Cholula, Puebla,

72820 México�
josorio,is108990 � @mail.udlap.mx

Abstract. Answer Set Programming (ASP) is a formalism widely used for knowl-
edge representation since its introduction in 1988 by Gelfond and Lifschitz [4].
Nowadays there are powerful implementations of this paradigm, like DLV1 and
Smodels2. In order to increment the descriptive power of this tools, several ex-
tensions to their languages have been done. For example, the weak constraints of
Smodels and more recently the aggregate functions of DLV. Partial Order Pro-
gramming is very similar to mathematic programming, where a function is min-
imized (or maximized) and has a set of restrictions, the difference is that the
domain of values is a partial order [12]. Theorical work has already been done
to integrate this paradigms [11], one of the most important results is that partial-
order clauses can be expressed as normal clauses [8]. The main purpose of this
work is to present A-POL3, an extension for ASP that allow us to express op-
timization problems in a very suitable way, integrating disjunctive clauses and
partial-order clauses.

1 Introduction

Partial-order clauses are introduced and studied in [6, 9, 10], we refer the reader to this
papers for a full account of the paradigm. In comparision with traditional equational
clauses for defining functions, partial-order clauses offer better support for defining
recursive aggregate operations. Partial-order clauses are actually a generalization of
subset program clauses [2, 5]. There are two basic forms of a partial-order clause [10]:

�����	��

��������������
������������
�����	��

��������������
������������

Since these clauses are used to define functions, we requiere that each variable ocurring
in "!$#&%' '("(�)	*�+ should also occur in ,- "%�./(. Terms are made up of constants and vari-
ables, while expressions are in addition made up of user-defined-functions. Informally,
the declarative meaning of a partial-order clause is that, for all its ground instances, the
function 0 applied to the argument ,- "%"./(is 1 (respectively, 2) than the ground term
denoted by the "!3#&%' '(�(�)4*�+ on the right-hand side. In general, multiple partial-order

1 http://www.dbai.tuwien.ac.at/proj/dlv/
2 http://www.tcs.hut.fi/Software/smodels/
3 http://www.udlap.mx/˜is108990/apol

254 Mauricio Osorio and Enrique Corona

clauses may be used in defining some function 0 . We define the meaning of a ground
expression 0�� ,- �%�./(�� to be the least-upper bound (respectively, greatest-lower
bound) of the resulting terms defined by the different partial-order clauses for 0 . In
practice the lattice domains that commonly occur in applications are sets (under the
subset ordering) and numbers (under the numeric ordering). In the former case, the lub
and glb operations are set union and intersection, respectively; and in the latter case,
these operations are numeric greater-than and less-than, respectively. All these opera-
tions can be implemented quite efficiently, as shown in [5]. To use information from an
extensional database in partial-order clauses we need to extend them as follows:

�����	��

��������������
������������������	�����4��
�� ���	��

�
�
��
 ��� ���4��
�� ���3���
�����	��

��������������
������������������	�����4��
�� ���	��

�
�
��
 ��� ���4��
�� ���3���

where #	� (� 2) 2 +) is a predicate symbol and the variables in ,- �%�./(�� may appear in
,- �%�./(or �!$#&%' '(�(
)	*�+ .

Example 1. [10] Suppose that a graph is defined by a predicate ���� ������������ � , where
� is the non-negative distance associated with a directed edge from node � to node � ,
the shortest distance from � to � can be declaratively specified through the following
partial-order clauses:

�"! �

� �$#%
'& � �)(*�+�/��,�-3�'�$#%
.&/
0(���
�"! �

� �$#%
'& � � �"! �

� �$#%
01 �32 �"! ��
�����14
5& ���+�/�",�-3�'�$#%
614
0(���

The meaning of a ground expression such as (�7&*�%�,���8	�
9�� is the glb (smallest number
in the above example) of the results defined by the different partial-order clauses. In
order to have a well-defined function using partial-order clauses, whenever a function
is circularly defined (as could happen in the above example when the underlying graph
is cyclic), it is necessary that the constituent functions be monotonic.

Example 2. The 0-1 Knapsack Problem [14] is a well-known optimization problem
that is known to be NP-complete. Suppose we are given weights : � and profits # � , for
� 2) 2 + , and a capacity m. For ; 2=< 2 . , and � 2?> 2 + , define @&(+�.>A�
<B� to
be the profit of the optimal solution to the 0-1 knapsack problem, using objects ���DCECECF��> ,
and knapsack capacity M. Then, @ (is defined by the following inequalities:

G �'�IHJ
0K � �LHJ�G �'�$MN
5K � � G �'�$MO�QP�
0K �4���RM �SP��G �'�$MN
5K � � G �'�$MO�QP�
0KT�VU �$M3�	�A2�� �$M3�W�+�XM �SP�
6U �$M3���YKZ�
The solution for this problem (maximum profit) is the value of @ (���+4� .R� .
Example 3. This is a problem from the ACM International Collegiate Programming
Contest Problem Set Archive4.

The fastfood chain McBurger owns several restaurants at highway. Recently, they have decided
to build several depots along the highway, each one located at a restaurant and supplyng several

4 http://www.acm.inf.ethz.ch/ProblemSetArchive.html

The A-POL System 255

of the restaurants with the needed ingredients. Naturally, these depots should be placed so that
the average distance between a restaurant and its assigned depot is minimized. You are to write
a program that computes the optimal positions and assigments of the depots.

To make this more precise, the management of McBurger has issued the following spec-
ification: You will be given the positions of

�
restaurants along the highway as

�
integers,N��� ,���� �
�"��� ,J�

these are the distances measured from the company’s headquarter, which
happends to be at the same highway). Furthermore, a number

G
(
G � �

) will be given, the
number of depots to be built.

The
G

depots will be built at the locations of
G

different restaurants. Each restaurant will be
assigned to the closest depot, from which it will then receive its supplies. To minimize shipping
costs, the total distance sum, defined as� �� � �
	 , � � (position of depot serving restaurant i) 	
must be as small as possible. Write a program that computes the positions of the @
depots, such that the total distance sum is minimized.

A recursive solution to obtain the total distance sum is as follows:� �
� ��� � ,N
 �&
"�
� �� ��� ��� � �'P�
	�
"�
	� ,��*P
� ��� ���� � ��� � ��� � � �6
-�
"�52� �
��� � � ,O�QP�
4�	��P��
	� ,����

Where + % is the number of restaurants, + � is the number of depots and ��* (�,���)
���N� repre-
sents the cost of placing a depot between restaurants) and � . A dynamic programming
approach to solve this problem can be derived from this formula, and the location of the
depots can be recovered from the resulting matrix. This kind of problems can be easily
formulated with partial-order clauses:� �
� ���$MN
.M3� �LH������ � � � �4����� �$M3���� �
� ���'P
'M3� � � �"� ���'P�
'M3�����/� ��,�,!� � �'P
5M3�"�SKS����� � �#� �4���
� ��K ���� �
� ���$MN
%$�� � � �"��� �'&
($��32 � �
� ���$M �QP�
%& �LP��4���M)�*$+
5M �+&
,& �*$+
	� �I,�,!���'�'&
($��
�SKS����� � � � �4����� ��K ���

Where .)5�+�.- N������� � is the arithmetic mean of � and � . In this example we introduce
a very useful feature of A-POL, witness recovery. This is not a standard feature of
partial order programming, however, it is very useful for optimization problems. In this
particular example, recovering the witness of 9� '(�,��.@ � + � we obtain the ubication of the
depots in the atoms of type - */�D8$,)	*�+ .

The rest of this work is organized as follows. First we present the language of A-
POL, then we explain how our current implementation works and finally we provide
some examples and experimental results.

2 Proposed Language

Our language includes function symbols, predicate symbols, constants and variables, it
can be described with the following context free grammar:

256 Mauricio Osorio and Enrique Corona

program ::= clause 	 clause program
clause ::= disjunctive clause 	 partial order clause
term ::= variable 	 constant
terms ::= terms 	 term, terms
expression ::= term 	 f(expressions)
expressions ::= expression 	 expression, expressions
f-p atom

�
::= function atom 	 predicate atom

f-p atom
�
::= f-p atom

� 	 not predicate atom
function atom ::= f(terms) = term
predicate atom ::= p(terms)
inequality atom ::= f(terms)

�
expression 	 f(terms) �

expression
f-p predicates

�
::= f-p atom

� 	 f-p atom
�
, f-p predicates

�
f-p predicates

�
::= f-p atom

� 	 f-p atom
�
, f-p predicates

�
partial order clause ::= inequality atom :- f-p predicates

�
disjunctive atoms ::= predicate atom 	 predicate atom � disjunctive atoms
disjunctive head ::= disjunctive atoms 	��
disjunctive clause ::= disjunctive head :- f-p predicates

�
Where f is any function symbol and p is any predicate symbol. A f-p symbol is either a
function or predicate symbol.

Definition 1. A program � is a couple ����� �	��

� where ��� is a set of disjunctive
clauses and ��
 is a set of partial-order clauses.

We are integrating disjunctive clauses with partial order clauses in our language.
Since their evaluation is done in different ways, we need to setup an order of evaluation.

Definition 2. A program � is stratified if exists a mapping function - �� -������������ %
��
, where

�
is a subset of consecutive natural numbers, � is the set of user defined

function symbols in � and � % is the set of predicate symbols in � . Clauses of � must
have the following properties:

(i) For a clause of the form:�����	��

������� �	��

� �+� & �
�����	��

������� �	��

� �+� & �

Where � is a set of f-p atoms, then - �� -������ 0 � 1 - �� -������ #	� , where # is any f-p
symbol appearing in � .

(ii) For a clause of the form:�����	��

��������- ��������
"� ��� & �
�����	��

��������- ��������
"� ��� & �

Where 0 and � are user defined functions and � is defined like in (i), then - �� - ��� � 0 � 1- ��� - ��� �I��� , - ��� - ��� � 0 ��� - ��� - ��� �.7	�"� - �� - ��� � # � , - �� - ��� �$� � � - �� - ��� � #	� where #
is any predicate symbol appearing in � and 7 is any user defined function symbol
in "!3# % .

(iii) For a clause of the form:�����	��

������� � � - ��������
"�	� ��� & �
�����	��

������� � � - ��������
"�	� ��� & �

The A-POL System 257

Where � is defined like in (i) and . is a monotonic function, then - �� -���� � 0 � 1- ��� -������I��� , - ��� -������ 0 ��� - ��� -������ .X��� - ��� -����N� 73��� - ��� -���� � #	� where # is any predi-
cate symbol appearing in � and 7 is any function symbol in "!3# % .

(iv) For a clause of the form:� � ���4��
�� � � � �
�
� � � � ���	��
�� � �V��� &
Where � is defined like in (i), then for each) (� 2) 2 +), - �� - ��� � #	�.� �- ��� - ��� � � � , where � is any f-p symbol appearing in � .

(v) No other kind of clause is allowed.

For a stratified program � the function - ��� - ��� is obtained using the dependency
graph of the f-p symbols defined in � .

Definition 3. For a stratified program � we define the function - ��� -�������� � � %�� �
using the dependency graph ����� � ��� �
	 � as follows:- ��� -����N����
���� � ��!W��
 ����	�����!����������?�- ��� -����N����
�� - �� -���� ��! ��� +4��� � ! ��
 ����	������ +� �

A restriction in our language is that predicate and function symbols cannot be in the
same level, now that we have the function - ��� -���� we define the function - �� - to deal
with this issue.

Definition 4. Using - �� -�! ���� we define the function - ��� - ��;
� � �#" ��� � � %J� as
follows: - ��� -��%$ +'&($����)�"!���!�� - ��� -*! ���� � + �,+ !�� � %-�- ��� -��%$ +'& �����)�"!���!�� - ��� -*! ���� � + �,+ !�� �.�

With this construction, all the predicate symbols in � are in even levels (including
zero) and all the functional symbols in � are in odd levels. The evaluation order of a
stratified program � is obtained using - �� - .
3 Implementation

A-POL is written in Java and uses a compiled version of DLV [3]. Our implementation
follows the proposed language with a small extension for partial-order clauses that allow
us to recover the witness in optimization problems. To obtain the fix-point of partial-
order clauses we use a general form of dynamic programming as shown in [7].

3.1 Main Computation Cycle

Now we present the main algorithm of A-POL for computing the models of a stratified
program � .

A-POL(/) �
�

D, ��

= obtainOrder(/)
models = 0�
�ZH

258 Mauricio Osorio and Enrique Corona

while (
��
D, ��
 ������

or
�

 , ��
 � � � ����

)
�

if (
�
mod � �ZH

)
models = ASP(models,

�

 , ��
 �
)

else
models = POP(models,

�

 , ��
 �
)� � ��2YP

�
return models

�
where obtainOrder generates the dependency graph of the f-p symbols in � and
obtains its evaluation order using the function - ��� - . obtainOrder returns the array
*�%�� "% , where *�%�� "%�� contains the clauses corresponding to the f-p symbols in - ��� -���)6� .
ASP obtains the stable models of disjunctive clauses in *�%�� "% � and POP obtains the
models of the partial order clauses in *�%�� "% � , both using each . *�� -�� models as an
extensional database.

3.2 DLV Wrapper

A-POL uses DLV to obtain the stable models from disjunctive clauses. DLV is used as
a black box and the comunication between them is done directly from Java, this means
that an input file is generated for DLV and its output models are parsed and wrapped so
they can be used as an extensional database for the next level in the stratification path.
To generate DLV’s input file, disjunctive clauses of the form:

�	������� � � �
�"� � ���&���5�$���+� � �����'� � � ��
��
�
�

 ��� ���'� � � ��
 �������5� � � � � � �
��

"�
�
��
 �	�����5� � � � � �
�

�D�
are rewritten as:

�	������� � � �
�
� � ��� ���5�$�/��� � �����5� � � ��
����
�

 ��� ���5� � � ��
 �������'� � � � �

	
�� ��

�
���

 �
�"���5� � � � �"
-

� ���
In our implementation only a subset of the DLV language is supported, to support other
features (such as weak constraints and aggregate functions) we would have to extend
the grammar of A-POL (in other words, extend the grammar of the source-input and
DLV-output parsers).

3.3 Partial-order clauses compiler

A-POL is a complete partial-order clauses compiler that supports by default two lattice
domains, numbers under the numeric ordering and sets under the subset ordering. As
mentioned before, A-POL uses a general form of dynamic programming, because of
this, witness recovery is done very natural way. The main algorithm used for computing
partial-order clauses is described below.

POP(model,clauses)
�

clauses’ = flattening(clauses)
grounded = grounding(model,clauses’)
return fix-point(grounded)

The A-POL System 259

�
Where flattening returns the flattened form of the partial-order clauses. For exam-
ple, consider the clause:

� �$# �����3�
$� ���$&/
51 �	�	�/��� ����� ���
its flattened form is:

� �$# ������� ��� � ��� ��
-���$&/
51 �
�����"
	
3���J� �
��� �
	�3��� ��� ����
��
This is done to eliminate composed functions in the right-hand side of the inequality
atom of partial-order clauses. The instantiation of clauses using model as an ex-
tensional database is done by grounding, this is the most expensive part of POP in
memory (and time) because we need to store all the instanced clauses, we actually
store an encoded version of this clauses for smaller memory requirements. To ground a� -�8
� (� � clauses of the form:

� � ��� � �+� � �

�
�"� � �
 � � � � ��� �
 � � � � ��� ���3�
"�
�
�

 � � ��� � �
a grounding tree for this � -�8
� (� is generated as follows:

�

����� , � � � � � ����
 ��� �
� ��� �������� !�" � � �

��� �A, � ��� � � � � � �'�!# � ��� � "
 � � � � ������
 ��� � �-�
where

(i) $%� �&%+� is the set of grounded atoms of the same type of �'% that unify with �&% . For
example, if we have the grounded atoms � #W��8	�
9��"� #W��8	�#�D�"� #W�.9�� �D��� and the partially
grounded atom #/��8	�0�L� , then $%� #W�.83���L�0��� � #W�.83�
9��"� #W�.83�#�D� � (for � � the domain
of the function is used to obtain $%� � � �).

(ii))4+ (�,68 + �� N�($%��� % �*)�� � -.8+� (" �� replaces the variables of � % with the values of $�� � % �()
in all the f-p atoms of � -�8
� (" . For example, for #W�.8	�0�L� with $%� #W�.83���L�0��� � #/��8	��9���� ,
� will be replaced with 9 in all the f-p atoms of � -.8+� (" .
A-POL supports user defined libraries, this feature will be explained with more de-

tail later, however, it is very important for grounding because it allow us to make an
important cut in the grounding tree of each � -�8
� (" . Suppose that we have a predefined
boolean function called - N�I����� � that returns true if � 2*� and false otherwise, when
X and Y are instanced we can evaluate - N�I����� � , if its false we eliminate � -.8
� (" from
the tree, if its true we eliminate - N�I����� � from � -�8
� (" and continue with the instantia-
tion of its branches.

The main algorithm to obtain the fix-point of a set of partial-order clauses is de-
scribed in [7], to ilustrate this procedure we will use example 1 (shortest distance be-
tween two nodes of a graph) with the following extensional database:

,.- & � � �",�-3�'� �
 �
"P���
-�",�-3�'� �
 �
 � ��
	��,�-3�'� �
.,N
	/'� � .
First consider that A-POL will obtain - ��� -0��;�� � �" ����� ��� �� and - �� -��6����� ��(�7&*�%�, � ,the
solution of the first level is trivial. To solve (�7&*�%�, first we ground its clauses using EDB,
obtaining:

260 Mauricio Osorio and Enrique Corona

short(a,b)
�

1.
short(b,c)

�
2.

short(a,d)
�

4.
short(a,a)

�
v
�
:- short(a,b)=v

�
, short(b,a)=v

�
, v

�
+v
�
=v
�
.

short(a,b)
�

v
�
:- short(a,b)=v

�
, short(b,b)=v

�
, v

�
+v
�
=v
�
.

short(a,c)
�

v
�
:- short(a,b)=v

�
, short(b,c)=v

�
, v

�
+v
�
=v
�
.

short(a,d)
�

v
�
:- short(a,b)=v

�
, short(b,d)=v

�
, v

�
+v
�
=v
�
.

short(b,a)
�

v
�
:- short(b,c)=v

�
, short(c,a)=v

�
, v

�
+v
�
=v
�
.

short(b,b)
�

v
�
:- short(b,c)=v

�
, short(c,b)=v

�
, v

�
+v
�
=v
�
.

short(b,c)
�

v
�
:- short(b,c)=v

�
, short(c,c)=v

�
, v

�
+v
�
=v
�
.

short(b,d)
�

v
�
:- short(b,c)=v

�
, short(c,d)=v

�
, v

�
+v
�
=v
�
.

short(a,a)
�

v
�
:- short(a,d)=v

�
, short(d,a)=v

�
, v

�
+v
�
=v
�
.

short(a,b)
�

v
�
:- short(a,d)=v

�
, short(d,b)=v

�
, v

�
+v
�
=v
�
.

short(a,c)
�

v
�
:- short(a,d)=v

�
, short(d,c)=v

�
, v

�
+v
�
=v
�
.

short(a,d)
�

v
�
:- short(a,d)=v

�
, short(d,d)=v

�
, v

�
+v
�
=v
�
.

The solution of this program is done using a matrix to store the partial values of the
function. Then, we refine them using different iterations until we obtain a fix-point. The
initial state � � of the matrix stores the values obtained by the EDB of our program:

short(a,b)
�

1.
short(a,d)

�
4.

short(b,c)
�

2.

a b c d
a � 1 � 4
b � � 2 �
c � � � �
d � � � �

In the next interation, we compute state ��� . For this, we no longer use the EDB but only
the IDB and � � .

short(a,c)
�

v
�
:- short(a,b) + short(b,c) = v

�
.

a b c d
a � 1 3 4
b � � 2 �
c � � � �
d � � � �

The next interation ��� is as follows:

short(a,c)
�

v
�
:- short(a,b) + short(b,c) = v

�
.

a b c d
a � 1 3 4
b � � 2 �
c � � � �
d � � � �

At this point, ���.����� then ��� is our fix-point. A-POL stores also a parent matrix, if
the value of the matrix at �� is refined using the grounded clause � - the body of this
clause is stored in the parent matrix at �� , using this information we can recover how
a specific position was obtained, doing this in our example, we can obtain the shortest
path instead of just the shortest distance between two nodes of a graph. This is the final
parent matrix of our example:

The A-POL System 261

a b c d
a short(a,b)=1 short(a,b)=1,short(b,c)=3 short(a,d)=4

b short(b,c)=2

c
d

Suppose that we want to know the shortest path between 8 and � , starting from position
��8	� �D� in the parent matrix we have to go to �.83�
9�� and �.9��#�D� , since this positions do not
give us more information, we are done. With a larger graph we probably would have to
track more positions in the parent matrix, however, this simple example give us a good
idea of how A-POL recovers a witness in this kind of problems.

3.4 Advanced Features

A-POL has some advanced features that allow us to increment its efficiency and descrip-
tive power. This features are, witness recovery, user defined libraries and user defined
partial-orders.

Witness recovery The inner procedure for recovering a witness was explained above,
however, it is necessary to tell A-POL what information we want to retrieve from each
clause, to do this, we extend the syntax of partial-order clauses as follows:
�����	��

��������������
������������������	�����4��
�� ���	��

�
�
��
 ��� ���4��
�� ���3��� � ��� � �$� � �	��

�������
�����	��

��������������
������������������ � ���4��
�� � � ��

�
�
��
 � � ���4��
�� � � ��� � ��� � �$� � �	��

�������

To ilustrate this let us use our shortest distance example (1), suppose that we want to
recover the shortest path instead of just the distance, so, we want to obtain every existing
edge from our clauses.
�"! �

� �$#%
'& � �)(*�+�/��,�-3�'�$#%
.&/
0(�����4U ��� �$#%
5& ����"! �

� �$#%
'& � � �"! �

� �$#%
01 �32 �"! ��
�����14
5& ���+�/�",�-3�'�$#%
614
0(���

Notice that nothing is added to the second clause, this is because we are only interested
in the existing edges, and the second clause finds a cheaper way between two nodes
using intermediate nodes. Now we need to specify which way we want to recover,
suppose that we want to know the shortest path between node 8 and � , we can do this
in A-POL as follows:
��� ��� � �AU ��� U !���
�� �"! ��
���� �
 � ���

In our resulting model we can recover the path from the atoms of type : 8
 . Notice
that in this particular implementation we can only obtain one path even if different
paths with the same cost exists, now we present an alternative implementation of this
problem to fix this issue:
�"! �

� �$# � �)H ��� � � �
����$#����
�"! �

� �$# � � �"! �

����$& �32Q(��� ��,�-3�'�$#%
51
0(�����4U ��� �$&/
 # ���

Supose that our extensional database includes (�,68$%�,��.8N� , then (�7&*�%�,����L� represents the
shortest distance from node 8 to node � .

262 Mauricio Osorio and Enrique Corona

User defined libraries User defined libraries are not just a fancy implementation issue,
but a very convenient way of increasing the core functions of A-POL. Since A-POL is
written in Java, loading external classes for their use in a specific program is a very
easy task (like dynamic linking libraries). All predefined A-POL functions (add, sub,
mul, div, etc..) are implemented as user defined libraries. For creating a new predefined
function the user has to extend a Library class, override its functional method (execute),
compile it and register it. For functions that are very easy to define in procedural lan-
guages most of the time is easier (and more efficient) to write and register a new library
than try to code it in A-POL.

User defined partial-orders The co-domain of the functions defined by partial-order
clauses is a partial or complete ordered set. In A-POL a specific partial-order can be
described from the relations between its elements. To ilustrate this let us consider the
set � � ��83�
9�� �J���3� -� where 8�� 9�� ��� ��� , the relations between their elements
are �)� ��8�� 9��
9�� ��� ���*�A����� -� .

4 Examples and Results

In this section we present some examples coded in A-POL and some experimental
results.

Example 4. A-POL’s implementation of the shortest path between two nodes of a graph
is as follows:

declare < short(node).
select way where short(X) <- end(X).
% extensional database
node(a). node(b). node(c). node(d).
edge(a,b,1). edge(b,c,2). edge(a,d,4).
start(a). end(f).
% rules
short(X)<= 0 :- start(X).
short(X)<= add(short(Y),C) :- edge(Y,X,C). / way(Y,X).

The first line is required to specify the domain and the type of partial-order clauses that
define the function short. We also wrote a DLV version of this problem using weak
constraints:

% rules
way(X,Y,C) v other(X,Y,C) :- edge(X,Y,C).
:- edge(X,A,C), start(A), way(X, A,C).
:- edge(D,X,C), end(D), way(D,X,C).
:- edge(X,Y,C), edge(X,Y1,C1), way(X,Y,C), way(X,Y1,C1), Y != Y1.
:- edge(X,Y,C), edge(X1,Y,C1), way(X,Y,C), way(X1,Y,C1), X != X1.
r(X) :- start(X).
r(X) :- r(Y), edge(Y,X,C), way(Y,X,C).
:- end(D), not r(D).

The A-POL System 263

:˜ way(X,Y,C). [C:1]

Now we present experimental results using complete graphs for both implementations:

� + *�� �(DLV A-POL
10 ; CE���$(;AC ���3(
20 �AC���� (;AC 	�� (
40 �3. $��+C �
�3(�+CF���3(
60 $ $'.��
��C ; $3($ C $ �"(
80 & $ C 	��3(

Example 5. Partial-order clauses can be used for carrying out sophisticated flow-analysis
computations, as illustrated by the following program which computes the reaching def-
initions and busy expressions in a program flow graph. This information is computed
by a compiler during its optimization phase [1]. The original formulation of the flow-
analysis equations is:

��� ���$# � �)-3��� �$# ��� � ��� �$#�� � G � � � �$# �	�
��� �$# � ����� ��� � � / �

Where � is a predecesor of � . Now we present an A-POL implementation of this
problem (this particular example is from [1]):

setmode.
declare > out(block).
declare > in(block).
declare > gen(block).
declare > kill(block).
% extensional database
block(1..4).
pred(2,1). pred(2,3). pred(2,4).
pred(3,2). pred(4,2). pred(4,3).
gen(1)>=

�
a,b,c � . gen(2)>=

�
d,e � .

gen(3)>=
�
f � . gen(4)>=

�
g � .

kill(1)>=
�
d,e,f,g � . kill(2)>=

�
a,b,g � .

kill(3)>=
�
c � . kill(4)>=

�
a,d � .

% rules
in(X)>= out(Y) :- pred(X,Y).
out(X)>= gen(X).
out(X)>= sub(in(X),kill(X)).

In the above program, kill(X) and gen(X), are predefined set-valued functions spec-
ifying the relevant information for a given program flow graph and a basic block X.
pred(X,Y), defines when Y is predecessor of X. The first line specify that the co-
domain of the functions defined by partial-order clauses are sets. The set-difference
(sub) is monotonic in its first argument, and hence the program has a unique intended
meaning as it is shown in [1]. The operational semantics behaves exactly as the algo-
rithm proposed in [1] to solve this problem.

264 Mauricio Osorio and Enrique Corona

Example 6. A-POL’s implementation of the 0-1 knapsack is as follows:

maxint = 20.
declare > ks(object,tweight).
declare > profit(object).
select take1 where ks(4,10).
% extensional database
object(0..4).
tweight(0..10).
weight(1,2). weight(2,3). weight(3,5). weight(4,8).
profit(0)>= 0. profit(1)>= 1. profit(2)>= 2.
profit(3)>= 3. profit(4)>= 5.
% rules
ks(N,K)>= ks(sub(N,1),K) :- le(1,N). / take1(N,K).
ks(N,K)>= add(profit(N),ks(sub(N,1),sub(K,X))) :-

weight(N,X), le(X,K), le(1,N). / take1(N,K).
take(X1,Y) :- take1(X1,Y), not take(X2,Y), X2 > X1, object(X2), tweight(Y).

In this example we have 4 objects, each object has a weight and a profit, notice that
we recover which objects are selected from partial-order clauses and we use disjunctive
clauses to make more clear the output.

Example 7. The optimal parentization for a matrix-chain multiplication is a typical dy-
namic programming problem [14] we present a solution to this problem in A-POL:

declare < r(nmat).
declare < c(nmat).
declare < m(nmat,nmat).
select asoc where m(1,6).
% extensional database
nmat(1..6).
r(1)<= 30. c(1)<= 35.
r(2)<= 35. c(2)<= 15.
r(3)<= 15. c(3)<= 5.
r(4)<= 5. c(4)<= 10.
r(5)<= 10. c(5)<= 20.
r(6)<= 20. c(6)<= 25.
% rules
m(N,N)<= 0 :- le(1,N). / asoc(N,N).
m(I,N)<= add(add(m(I,K),m(add(K,1),N)),mul(mul(r(I),c(K)),c(N)))

:-
le(1,N), le(1,I), lt(K,N), le(I,K), nmat(K). / asoc(I,N).

Where r(X) and c(X) are the number of rows and columns of matrix X respectively.
This problem can also be found in the ACM International Collegiate Programming
Contest problem set archive. The following results are using the judge’s input (consider
that in a real contest this inputs have to be processed by the program in less than a
minute).

The A-POL System 265

matrix time # grounded clauses # iterations
3 ;AC 	A�"(��� ���
6 ;AC 	
�$(��� � $��
10 �+CF� 	$(���
� � �����
20 �3C $ � (�����+; � $J;���;
40 $�� C $
� (� ;�� 	�; � ;��
� $�;

Example 8. The implementation of the fastfood example (3) is as follows:

declare < middle(dom,dom).
declare < rest(dom).
declare < sumato(dom,dom,dom).
declare < cost(dom,dom).
declare < best(dom,dom).
declare < rdist(dom,dom).
select location where best(5,10).
% extensional database
dom(1..10).
rest(1)<= 11. rest(2)<= 28.
rest(3)<= 68. rest(4)<= 84.
rest(5)<= 86. rest(6)<= 93.
rest(7)<= 96. rest(8)<= 160.
rest(9)<= 171. rest(10)<= 200.
% rules
middle(X,Y)<= div(add(X,Y),2).
rdist(I,J)<= dist(rest(I),rest(J)).
cost(I,J)<= sumato(I,J,middle(I,J)).
sumato(I,I,K)<= rdist(I,K).
sumato(I,J,K)<= add(rdist(I,K),sumato(add(I,1),J,K)) :- lt(I,J).
best(I,I)<= 0. / location(I).
best(1,I)<= cost(1,I) :- middle(1,I) = M. / location(M).
best(I,J)<= add(cost(B,J),best(sub(I,1),sub(B,1))) :-

middle(B,J) = M, lt(I,J),
le(I,B), le(B,J), dom(B). / location(M).

Where rest represents the distance of the restaurant and cost(X,Y) is the cost of
placing a depot between restaurants X and Y. Now we present experimental results using
some of the judge’s inputs.

rest. time # grounded clauses # iterations
��; ��C�� (��;��+; ���
�+;
$
� � $ C � (� $��
� � $ � $ � �J;
��; � . �NC �$(��� �
�J; � $ �
����;+;

In the above examples, we use predefined functions (which are implemented as user
defined libraries) such as:

266 Mauricio Osorio and Enrique Corona

Function Meaning
add(X,Y) X

2
Y

sub(X,Y) X
�

Y
mul(X,Y) X � Y
div(X,Y) X

�
Y

dist(X,Y) 	 X-Y 	
le(X,Y) X

�
Y

lt(X,Y) X
�

Y
ge(X,Y) X

�
Y

gt(X,Y) X
�

Y

If a new function is required, the user can easily code it and register it for its use.

5 Conclusions and future work

Partial-order clauses seem to be a better approach for optimization problems than dis-
junctive clauses. They offer a more direct way to express optimization functions and
we have found domains where they are more efficient than disjunctive clauses. Since
partial-order clauses can be expressed as normal clauses [8], they can be seen as a very
efficient macro for certain kind of Answer Set programs. A-POL’s main design offers
some important features such as witness recovery and user defined functions (which
also allow us to make cuts in the grounding tree). This features make A-POL a more
flexible and powerful tool.

A very important issue is that A-POL has to support all the features of DLV, our
current version only supports a subset of the DLV language. As mentioned before, A-
POL is written in Java. This was a good choice to create a prototype in a short period of
time. However, if a better integration with DLV is desired, A-POL should be rewritten
in C++. The use of partial-order clauses in other front ends such as DLV-K has not been
considered at this point, we believe this could be very useful mainly for efficiency rea-
sons. Nowadays parallel answer set systems are been developed [13]. Our partial-order
clauses compiler could use parallel programming techniques (mainly in the grounding)
and considering that all the programs in A-POL are stratified, consecutive levels could
be evaluated in parallel.

References

1. Alfred V. Aho, Ravi Setvi, and Jeffrey D. Ullman. Compilers Principles, Techniques, and
Tools. Addison Wesley, 1988.

2. Bharat Jayaraman. Implementation of Subset-Equational Programs. Journal of Logic Pro-
gramming, 11(4):299–324, 1992.

3. Simona Citrigno, Thomas Eiter, Wolfgang Faber, Georg Gottlob, Christoph Koch, Nicola
Leone, Cristinel Mateis, Gerald Pfei fer, and Francesco Scarcello. The dlv System: Model
Generator and Application Frontends. In Proceedings of the 12th Workshop on Logic Pro-
gramming (WLP ’9 7), Research Report PMS-FB10, pages 128–137, München, Germany,
September 1997. LMU München.

4. Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic Program-
ming. In R. Kowalski and K. Bowen, editors, 5th Conference on Logic Programming, pages
1070–1080. MIT Press, 1988.

The A-POL System 267

5. Bharat Jayaraman and K. Moon. Subset logic programs and their implementation. Journal
of Logic Programming, 41(2):71–110, 2000.

6. Bharat Jayaraman, Mauricio Osorio, and K. Moon. Partial order programming (revisited).
In M. Nivat V.S. Alagar, editor, Proc. AMAST, LNCS 936, pages 561–575. Springer-Verlag,
1995.

7. Mauricio Osorio. Semantics of partial-order programs. Proceedings JELIA ’98, appears in
LNAI series (No. 1489, 1998). Vol. Editor J. Dix., pages 47–61, 1998.

8. Mauricio Osorio and Bharat Jayaraman. Aggregation and negation-as-failure. New genera-
tion computing, 17(3):255–284, 1999.

9. Mauricio Osorio, Bharat Jayaraman, and Juan Carlos Nieves. Declarative pruning in a func-
tional query language. In Danny De Schreye, editor, Proceedings of the International Con-
ference on Logic Programming, pages 588–602. MIT Press, 1999.

10. Mauricio Osorio, Bharat Jayaraman, and David Plaisted. Theory of partial-order program-
ming. Science of Computer Programming, 34(3):207–238, 1999.

11. Mauricio Osorio and Juan Carlos Nieves. Stratified partial-orden programming. In Eleni
Stroulia and Stan Matwin, editors, Canadian Conference in AI’2001, pages 225–235.
Springer-Verlag, LNAI 2056, 2001.

12. S. Parker. Partial order programming. In Proc. 16th Symo. on Principles of Programming
Languages, pages 260–266, ACM, Press, 1989.

13. Enrico Pontelli and Omar El-Khatib. Construction and optimization of a parallel engine for
answer set programming. PADL 2001, pages 200–303, 2001.

14. D.R. Stinson. An introduction to the Design and Analysis of Algorithms. The Charles Bab-
bage Research Centre, Winnipeg, Canada, 1987.

