
Building the WSMO-Lite Test Collection on the
SEALS Platform

Liliana Cabral, Ning Li, and Jacek Kopecký

KMI, The Open University
Milton Keynes, UK

{L.S.Cabral,N.Li,J.Kopecky}@open.ac.uk

Abstract. We present a test collection for WSMO-Lite that is suitable
for evaluating systems, tools or algorithms for Semantic Web Service
discovery or matchmaking. We describe the design of the test collection
and how the collection has been implemented on the SEALS platform.
In addition, we discuss lessons learned with respect to the WSMO-Lite
ontology and our implementation of the test collection.

Keywords: Semantic Web Service Evaluation, WSMO-Lite, Test col-
lection, Service Discovery, Service matchmaking

1 Introduction

Semantic Web Service (SWS) technologies enable the automation of discovery,
selection, composition, mediation and execution of Web Services by means of
semantic descriptions of their interfaces, capabilities and non-functional proper-
ties. SWS build on Web service standards such as WSDL1, SOAP2 and REST
(HTTP), and as such provide a layer of semantics for service interoperability.
Current results of SWS research and industry efforts include a number of ref-
erence service ontologies, such as OWL-S3, WSMO4 and WSMO-Lite5 and se-
mantic annotation extension mechanisms, as provided by SAWSDL6, SA-REST7

and MicroWSMO8.
The SWS discovery activity consists of finding Web Services based on their

semantic descriptions. Tools for SWS discovery or matchmaking can be evaluated
on retrieval performance, where for a given goal, i.e. a semantic description of a
service request, and a given set of service descriptions, i.e. semantic descriptions
of service offers, the tool returns the match degree between the goal and each

1 http://www.w3.org/TR/wsdl
2 http://www.w3.org/TR/soap
3 http://www.w3.org/Submission/OWL-S/
4 http://www.wsmo.org
5 http://www.w3.org/Submission/WSMO-Lite/
6 http://www.w3.org/2002/ws/sawsdl/
7 http://www.w3.org/Submission/SA-REST/
8 http://sweet.kmi.open.ac.uk/pub/microWSMO.pdf

37

Proceedings of the Second International Workshop on 
Evaluation of Semantic Technologies (IWEST 2012) 
May 28th, Heraklion, Greece 
CEUR Workshop Proceedings Vol. 843



2 L.Cabral and N. Li and J. Kopecký

service, and the evaluation platform measures the rate of matching correctness
based on a number of metrics.

Currently, there are two de-facto test collections, namely OWLS-TC9 and
SAWSDL-TC10 used for the evaluation of OWL-S and SAWSDL matchmaking
algorithms respectively, which have been used as part of the S311 evaluation
initiative. In conjunction with this, there are other test collections provided in
natural language that allows evaluations across different semantic annotation
approaches, such as the JGD12 test collection used in one of the tracks of the S3
contest, and the Discovery scenarios from the Semantic Web Service Challenge13.

As known from evaluation communities, the publication of test data col-
lections foster the uptake and evaluation of current standards as well as related
technologies. In this paper we provide a test collection for WSMO-Lite - WSMO-
LITE-TC - that is combined with SAWSDL as well as formats for Semantic Web
rules. Our goal was to create a test collection that leveraged the annotation
features of WSMO-Lite for enabling automatic discovery of Web Services. As
WSMO-Lite has been prescribed to complement SAWSDL, we have created the
WSMO-LITE-TC initially as a counterpart of SAWSDL-TC and extended the
test collection with annotations specific to the WSMO-Lite ontology. We also
planned additional variants in order to account for the use of rules in formats
such as RIF[4] and SPIN[5], or from languages such as WSML, which are not
present in existing test collections.

As a more recent initiative on the evaluation of Semantic technologies, the
SEALS (Semantic Evaluation at Large Scale) project14 has undertaken the task
of creating a lasting reference infrastructure for semantic technology evaluation
- the SEALS platform - which is technology independent, open, scalable and
extensible. The platform will allow online evaluation of semantic technologies by
providing access to an integrated set of evaluation services and test collections.
Semantic Web Services are one of the technologies supported by SEALS [1]. The
platform supports the creation and sharing of evaluation artifacts (e.g. datasets
and measures) and services (e.g. retrieving data sets from repositories and auto-
matic execution of tools), making them widely available according to evaluation
scenarios, using semantic based terminology.

WSMO-LITE-TC is one of the outcomes of the SEALS project and as such
adopts the SEALS test suite metadata and it is available through the SEALS
Dataset repository. Accordingly, the WSMO-LITE-TC can be accessed using
the SEALS platform services. In this paper, we describe the design of the test
collection and how it has been implemented on the SEALS platform. In addition,
we discuss lessons learned with respect to the WSMO-Lite ontology and our
implementation of the test collection.

9 http://semwebcentral.org/projects/owls-tc/
10 http://semwebcentral.org/projects/sawsdl-tc/
11 http://www-ags.dfki.uni-sb.de/~klusch/s3/index.html
12 http://fusion.cs.uni-jena.de/professur/jgd
13 http://sws-challenge.org/wiki/index.php/Scenarios
14 http://about.seals-project.eu

38



Building the WSMO-Lite Test Collection 3

The remainder of the paper is organised as follows. In Section 2 we provide
an overview of the related evaluation initiatives and test collections. In Section
3 we provide an overview of WSMO-Lite. In Section 4 we describe the design
of WSMO-LITE-TC, considering previous test collections and the features of
the WSMO-Lite ontology. In Section 5 we present the implementation details of
WSMO-LITE-TC. In Section 6 we discuss our results, and finally in Section 7
we present our conclusions and future work.

2 Related Work

The evaluation of Semantic Web Services is currently being pursued by a few
initiatives using different evaluation methods. In particular, we refer to the S3
(Semantic Service Selection) contest and corresponding test collections, as men-
tioned previously.

S3 is about the retrieval performance evaluation of matchmakers for Seman-
tic Web Services. It is a virtual and independent contest, which runs annually
since 2007. It provides the means and a forum for the joint and comparative
evaluation of publicly available Semantic Web service matchmakers over given
public test collections. S3 features three tracks: OWL-S matchmaker evalua-
tion (over OWLS-TC); SAWSDL matchmaker evaluation (over SAWSDL-TC);
and cross evaluation (using JGD collection). The participation in the S3 con-
test consists of: a) implementing the SME215 plug-in API for the participant’s
matchmaker together with an XML file specifying additional information about
the matchmaker; and b) using the SME2 evaluation platform for testing the
retrieval performance of the participant’s matchmaker over a given test collec-
tion. This platform has a number of metrics available and provides comparison
results in graphical format. The presentation and open discussion of the results
with the participants is performed by someone from the organisational board at
some event like the SMR2 (Service Matchmaking and Resource Retrieval in the
Semantic Web) workshop.

The OWL-S Test Collection (OWLS-TC) is intended to be used for evalu-
ation of OWL-S matchmaking algorithms. OWLS-TC is used worldwide (it is
among the top-10 download favourites of semwebcentral.org) and the de-facto
standard test collection so far. It has been initially developed at DFKI, Germany,
but later corrected and extended with the contribution of many people from a
number of other institutions (including e.g. universities of Jena, Stanford and
Shanghai, and FORTH). The OWLS-TC4 version consists of 1083 semantic web
services described with OWL-S 1.1, covering nine application domains (educa-
tion, medical care, food, travel, communication, economy, weapons, geography
and simulation). OWLS-TC4 provides 42 test queries associated with binary as
well as graded relevance sets. The relevance sets were created with the SWS-
RAT (Semantic Web Service Relevance Assessment Tool) developed at DFKI.
The graded relevance is based on a scale using 4 values: highly relevant, rele-
vant, potentially relevant, and non-relevant. 160 services and 18 queries contain
Precondition and/or Effect as part of their service descriptions.

15 http://semwebcentral.org/projects/sme2/

39



4 L.Cabral and N. Li and J. Kopecký

The SAWSDL Test Collection (SAWSDL-TC) is a counterpart of OWLS-TC,
that is, it has been semi-automatically derived from OWLS-TC. SAWSDL-TC is
intended to support the performance evaluation of SAWSDL service matchmak-
ing algorithms. The SAWSDL-TC3 version provides 1080 semantic Web services
written in SAWSDL (for WSDL 1.1) and 42 test queries with associated relevance
sets. Model references point to concepts described in OWL2-DL exclusively.

3 Overview of WSMO-Lite

WSMO-Lite (Lightweight Semantic Descriptions for Services on the Web)[2] is
a recent (Aug, 2010) submission to W3C. It can be used for annotations of
various WSDL elements using the SAWSDL annotation mechanism. It exploits
RDF and RDFS as well as their various extensions such as OWL and RIF for
semantic service descriptions. WSMO-Lite annotations cover semantic aspects
of Web services, and are intended to support tasks such as (semi-)automatic
discovery, negotiation, composition and invocation of services. Inspired by the
distinctions made by Sheth [7], WSMO-Lite groups service semantics into four
orthogonal parts:

– Functional description specifies service functionality, that is, what a service
can offer to its clients when it is invoked.

– Nonfunctional description defines any contract and policy parameters of a
service, or, in other words, incidental details specific to the implementation
or running environment of the service.

– Behavioral model specifies the actions and the process (in other words, the
operations and their ordering) that a client needs to follow when consuming
a service’s functionality.

– Information model defines the input, output and fault messages of the ac-
tions.

Informally, WSMO-Lite represents these types of semantics as follows:

– Functional semantics are represented in WSMO-Lite as capabilities and/or
functionality classifications. A capability defines preconditions which must
hold in a state before the client can invoke the service, and effects which hold
in a state after the service invocation. Functionality classifications define the
service functionality using some classification ontology (i.e., a hierarchy of
categories). 16

– Nonfunctional semantics are represented using an ontology that semantically
captures some policy or other nonfunctional properties.

– Behavioral semantics are represented by annotating the service operations
with functional descriptions, i.e., capabilities and/or functionality classifica-
tions. These functional annotations of operations can serve for ordering of
operation invocations.

16 The distinction of capabilities and categories is the same that is made by Sycara et
al. [8] between “explicit capability representation” (using taxonomies) and “implicit
capability representation” through preconditions and effects.

40



Building the WSMO-Lite Test Collection 5

– Information semantics are represented using domain ontologies, which are
also involved in the descriptions of the other types of semantics.

WSMO-Lite is formally materialized as an RDFS ontology as shown in Listing
1.1(N3 format).

1 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
2 @prefix wl: <http://www.wsmo.org/ns/wsmo−lite#> .
3

4 wl:FunctionalClassificationRoot rdfs:subClassOf rdfs:Class .
5 wl:Condition a rdfs:Class .
6 wl:Effect a rdfs:Class .
7 wl:NonfunctionalParameter a rdfs:Class .

Listing 1.1. WSMO-Lite Service Semantics Ontology in RDFS

In the interest of simplicity of the RDF form of actual concrete semantic
service descriptions, the ontology is not a straightforward implementation of
the formal terms (such as classification, capability, or ontology for nonfunctional
semantics). We discuss below some of the considerations that led to the proposed
form of the ontology classes.

wl:FunctionalClassificationRoot is a class that marks the roots of service
functionality classifications. All subclasses of the root class are included in the
particular classification. Authoring tools can suggest all known instances of
wl:FunctionalClassificationRoot and their subclasses for annotating the func-
tionality of services and operations.

wl:Condition, wl:Effect together form a capability in a functional service de-
scription. Instances of these classes are expected to contain some logical ex-
pressions. In common with OWL-S, the WSMO-Lite service ontology does not
specify the concrete language for the logical expressions, or their processing.
Logical expressions can be specified in any suitable language, such as SWRL [3]
or RIF [4], and embedded in RDF semantic descriptions as literals.

A precondition and an effect implicitly make up a capability of a service (or
of a particular operation). WSMO-Lite does not model the capability itself in
the RDF ontology, as as it would be an unnecessary indirection between the
service (or operation) and its capability’s precondition and effect.

wl:NonfunctionalParameter is a class of concrete, domain-specific nonfunc-
tional parameters. For a particular ontology of nonfunctional semantics, its in-
stances would be instances of this class. WSMO-Lite places no further restric-
tions on nonfunctional parameters; research in this area, which is out of scope
of this article, has not yet converged on a common set of properties that non-
functional parameters should have.

Finally, there is no explicit marker for information ontologies used to describe
the information model of the service. Earlier versions of WSMO-Lite specified
the class wl:Ontology, but it turned out not to be useful in practice and is about
to be deprecated. The TC described in this article does not use this class.

41



6 L.Cabral and N. Li and J. Kopecký

WSDL

WSMO-Lite Service Ontology

Schema Type
or Element

Operations Interface Service

Uses in a message Contains Implements

I I B F N

Ontology
element

Transformations
(lifting, lowering)

Capability Functional
category

Nonfunctional
parameter

F

Fig. 1. Use of WSMO-Lite semantics on WSDL components annotated with SAWSDL;
annotations: F—functional, N—nonfunctional, B—behavioral, I—information model

3.1 Relation to SAWSDL

Until 2007, there were no agreed standards for semantic Web services; then
the World Wide Web Consortium (W3C) produced its Recommendation called
SAWSDL [6], based on an earlier effort called WSDL-S. SAWSDL is not a fully-
fledged SWS framework; instead it only provides hooks in WSDL where seman-
tic annotations can be attached, leaving the specification and standardization
of concrete service semantics for later. WSMO-Lite investigates such concrete
semantics.

In SAWSDL, the main annotation property is a model reference, which points
from any WSDL component to the associated semantics. Each concrete model
reference value is always identified with a URI. Multiple values of a model ref-
erence on a single component all apply to the component; for example, an input
message element can be associated with two ontology classes because this one
element contains information that fits both of those classes.

Since SAWSDL presents only a thin annotation layer over WSDL but no ac-
tual semantics, it must be complemented by ontologies that express the seman-
tics of the various WSDL components. WSMO-Lite is such an ontology. Fig-
ure 1 illustrates graphically the WSMO-Lite annotations in relation to WSDL.
In short, WSDL services and interfaces can be annotated with model references
to functional semantics by using the classes wl:FunctionalClassificationRoot,
wl:Condition and wl:Effect ; the same classes used in model reference annota-
tions on operations express behavioral semantics of the service. A service can
also be annotated with model references to nonfunctional properties (instances
of the class wl:NonfunctionalParameter), and operation input and output mes-
sages can be annotated with model references to ontology elements, or with
lifting and lowering schema mapping pointers to data transformations.

Note that while SAWSDL only describes the use of its modelReference an-
notations on WSDL interface components (along with some of their subcompo-

42



Building the WSMO-Lite Test Collection 7

nents, such as operations) and on XML Schema element declaration and type
definition components, it allows the annotation of all the other components
in WSDL, including service. The use of modelReference annotations on service
components in WSMO-Lite is fully within the spirit of SAWSDL.

4 WSMO-Lite TC Design

WSMO-LITE-TC has been initially designed as a counterpart of SAWSDL-TC,
and as such contains the same number of queries and services descriptions as
SAWSDL-TC in addition to the rules descriptions from OWLS-TC. In future ex-
tensions we will provide variants of WSMO-LITE-TC according to the language
used for rules. Thus, accordingly, we created the first variant using OWL and
SWRL and have planned additional variants for PDDL, RIF, SPIN and WSML.

More specifically, our design approach consisted of a) deriving WSMO-LITE-
TC from SAWSDL-TC, keeping the OWL semantic annotations for inputs and
outputs; b) adding functional classification annotations to the service according
to the domains defined for these collections, and c) adding (pre) conditions
and effects annotations to the service operations according to the SWRL rules
provided in OWLS-TC.

We use the Web Service (WSDL) extract shown in Listing 1.2 taken from the
WSMO-LITE-TC (file bookperson price service.wsdl) as an example to describe
the WSMO-Lite annotations next.

1 name=”PersonbookPriceSoap”> <wsdl:operation name=”get PRICE” sawsdl:
modelReference=”http://127.0.0.1/rules/SWRL/
bookperson price service SWRL.owl#AuthorizedPerson”>

2 <wsdl:input message=”get PRICERequest”/>
3 <wsdl:output message=”get PRICEResponse”/>
4 </wsdl:operation> </wsdl:portType>
5 <wsdl:service name=”PersonbookPriceService” sawsdl:modelReference=”http

://127.0.0.1/ontology/serviceCategories.owl#Economy”>
6 <wsdl:port name=”PersonbookPriceSoap” binding=”

PersonbookPriceSoapBinding”>
7 <wsdlsoap:address location=”http://127.0.0.1/services/PersonbookPrice”/>
8 </wsdl:port> </wsdl:service>

Listing 1.2. Web Service (WSDL) Annotations Example from WSMO-LITE-TC.

4.1 Functional Classification Annotations

As explained in Section 3, the WSMO-Lite functionality classification is used
to define the service functionality using some classification ontology. Currently,
the services in OWLS-TC and SAWSDL-TC are coarsely classified into nine do-
mains (communication, economy, education, food, medical, simulation, travel,
weapon and geography). Thus, we decided to use these domains as service cate-
gories for functional classification annotation. Since there was no single ontology
that formally described those domains, we created a new ontology, referred to as
Service Category Ontology, as shown in Listing 1.3. As can be seen, the domain

43



8 L.Cabral and N. Li and J. Kopecký

classes are subclasses of the class called EvaluationDomain, a type of WSMO-
Lite FunctionalClassificationRoot class. Therefore, these classes can be used for
the annotations of services with respect to its functional classification. Accord-
ingly, service discovery tools based on the WSMO-Lite service ontology can be
developed to search for services according to the service functional classification.

1 @prefix owl: <http://www.w3.org/2002/07/owl#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
3 @prefix wl: <http://www.wsmo.org/ns/wsmo−lite#> .
4 :EvaluationDomain a owl:Class, wl:FunctionalClassificationRoot .
5 :Communication a owl:Class; rdfs:subClassOf :EvaluationDomain .
6 :Economy a owl:Class; rdfs:subClassOf :EvaluationDomain .
7 :Education a owl:Class; rdfs:subClassOf :EvaluationDomain .
8 :Food a owl:Class; rdfs:subClassOf :EvaluationDomain .
9 :Geography a owl:Class; rdfs:subClassOf :EvaluationDomain .

10 :Medical a owl:Class; rdfs:subClassOf :EvaluationDomain .
11 :Simulation a owl:Class; rdfs:subClassOf :EvaluationDomain .
12 :Travel a owl:Class; rdfs:subClassOf :EvaluationDomain .
13 :Weapon a owl:Class; rdfs:subClassOf :EvaluationDomain .

Listing 1.3. Service Category Ontology.

As illustrated in the exemplar service description shown in Listing 1.2, we
annotated the service by attaching the Economy category to the wsdl:service
element via the sawsdl:modelReference extension element. Accordingly, the same
is done for the Goals (queries) in the test collection.

4.2 Condition and Effect Annotations

We follow on from Section 3 for representing conditions and effects by hooking
an ontological abstraction of language-dependent descriptions of conditions and
effects to service operations through SAWSDL modelReference.

OWLS-TC uses SWRL as one of the languages for describing service con-
ditions and effects, whereas, in SAWSDL-TC, conditions and effects are not
present. Thus, we decided to derive all logical expressions from the correspond-
ing services and queries from OWLS-TC and represent them as types of WSMO-
Lite class Condition and Effect accordingly. These are then hooked to service
operations through SAWSDL modelReference. As illustrated in the exemplar
service description shown in Listing 1.2, we annotated the operation by at-
taching the AuthorizedPerson condition to the wsdl:operation element via the
sawsdl:modelReference extension element. Accordingly, the same is done for the
conditions in Goals (queries) in the test collection.

To create the corresponding WSMO-Lite annotations from OWL-S descrip-
tions we applied the following mappings: 1) the owls:hasPrecondition is mapped
to wl:Condition; 2) since no owls:Result has more than one owls:Effect, the
owls:Effect is mapped to wl:Effect. This is also due to the fact that they are
similar in the way that they are both described with a logic language and they
share the same semantics; 3) the owls:inCondition is ignored in WSMO-LITE-
TC because it is not, unlike owls:hasPrecondition, a pre-requirement that must

44



Building the WSMO-Lite Test Collection 9

be satisfied for using the service; instead, it is a condition depending on the run-
ning status of the service; 4) the local references to OWL-S elements are replaced
with the corresponding element in the rule language (e.g. SWRL variables) and
corresponding datatype.

The representation in WSMO-Lite of the condition AuthorizedPerson from
the example in Listing 1.2 is shown in Listing 1.4. The AtomList part of the rule
declaration has been extracted from the corresponding service in OWLS-TC,
but the value of the local value used in argument1 has been replaced with the
corresponding datatype. This has been done for all rules in order for them to
stand alone.

1 <rdf:Description rdf:about=”http://127.0.0.1/rules/SWRL/
bookperson price service SWRL.owl#AuthorizedPerson”>

2 <rdf:type rdf:resource=”http://www.wsmo.org/ns/wsmo−lite#Condition”/>
3 <rdf:value rdf:parseType=”Literal”>
4 <swrl:AtomList xmlns:swrl=”http://www.w3.org/2003/11/swrl#” xmlns:rdf=”

http://www.w3.org/1999/02/22−rdf−syntax−ns#”>
5 <rdf:first>
6 <swrl:ClassAtom>
7 <swrl:classPredicate rdf:resource=”http://127.0.0.1/ontology/core−plus−

office.owl#Authorized”></swrl:classPredicate>
8 <swrl:argument1 rdf:resource=”http://127.0.0.1/wsdl/PersonbookPrice#

BOOK”></swrl:argument1>
9 </swrl:ClassAtom>

10 </rdf:first>
11 <rdf:rest rdf:resource=”http://www.w3.org/1999/02/22−rdf−syntax−ns#nil

”></rdf:rest>
12 </swrl:AtomList>
13 </rdf:value>
14 </rdf:Description>

Listing 1.4. WSMO-Lite Condition Rule (SWRL) Example.

5 WSMO-Lite TC Implementation

WSMO-LITE-TC is available from the SEALS Testdata repository17. Through
this URL the metadata of the test collection can be accessed. To retrieve the test
data ZIP file, the value of the Accept header in the HTTP request needs to be
changed to ”application/zip”18. The URL also indicates the rule language used
for annotations (suffix SWRL) and whether the collection contains binary or
graded relevance values for the matching judgements (suffix b or g respectively).
The metadata for describing testdata is provided by the SEALS metadata on-
tology19.

The test collection, encapsulated in a ZIP file, includes the testsuite meta-
data, within the file named Metadata.rdf, which is used to describe and retrieve
testdata. The metadata defines a Suite, which consists of multiple SuiteItems,

17 http://seals.sti2.at/tdrs-web/testdata/persistent/WSMO-LITE-TC-SWRL/1.0-4b
18 To change the Accept header the Firefox add-on Modify Headers can be used
19 http://www.seals-project.eu/ontologies/SEALSMetadata.owl

45



10 L.Cabral and N. Li and J. Kopecký

which in turn contain DataItems. A DataItem refers to the location of a file
containing evaluation data. An example of the testsuite metadata instance for
WSMO-LITE-TC is shown in Listing 1.5. This instance describes the SWS Dis-
covery testsuite20. Each suiteItem represents a testdata consisting of data items
describing a goal and related services and expert judgements.

The repository also offer RESTfull services to access data items within a
specific suite item in the test collection. For example, the repository allows access
to a specific service description21, goal description22 or judgement document
(with binary relevance values)23 within a testdata.

1 @prefix purl: <http://purl.org/dc/terms/> .
2 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
3 @prefix seals: <http://www.seals−project.eu/ontologies/SEALSMetadata.owl

#> .
4 <#testdata22> a seals:SuiteItem;
5 purl:identifier ”22”;
6 seals:hasDataItem :binaryRelevance22, :goal22, :service707, :service805
7 ...
8 :binaryRelevance22 a seals:DataItem;
9 purl:identifier ”binaryRelevance22”;

10 seals:hasComponentType ”JudgementDocument”;
11 seals:isLocatedAt ”./relevance/ binaryRelevance22.xml” .
12 :goal22 a seals:DataItem;
13 purl:identifier ”goal22”;
14 seals:hasComponentType ”GoalDocument”;
15 seals:isLocatedAt ”./goals/shoppingmall cameraprice service.wsdl” .
16 :service707 a seals:DataItem;
17 purl:identifier ”service707”;
18 seals:hasComponentType ”ServiceDocument”;
19 seals:isLocatedAt ”./services/printedmaterialperson service.wsdl” .
20 :service805 a seals:DataItem;
21 purl:identifier ”service805”;
22 seals:hasComponentType ”ServiceDocument”;
23 seals:isLocatedAt ”./services/shoppingmall cameraprice service.wsdl” .

Listing 1.5. Testsuite Metadata Example.

The files within the test collection (ZIP file) are organized into six folders
as follows. The ontology folder contains all the original SAWSDL ontology files
referred to by any other files. It also contains the ServiceCategories Ontology
(described in Section 4). The rules folder contains files describing WSMO-Lite
conditions and effects (SWRL rules), which were generated from the original ones
in OWLS-TC with names appended with the sufix ” SWRL”. The services folder
contains the service files (WSDL) generated from the original SAWSDL-TC and
extended with WSMO-Lite annotations. The goals folder contains the goal files

20 ../WSMO-LITE-TC-SWRL/1.0-4b/suite/
21 ../WSMO-LITE-TC-SWRL/1.0-4b/suite/22/service707
22 ../WSMO-LITE-TC-SWRL/1.0-4b/suite/22/goal22
23 ../WSMO-LITE-TC-SWRL/1.0-4b/22/binaryRelevance22

46



Building the WSMO-Lite Test Collection 11

(WSDL) generated from the original SAWSDL-TC and extended with WSMO-
Lite annotations. The relevance folder contains XML files which describe, each,
the binary (or graded) relevance judgements between a goal and a set of services.
The liftingSchemaMapping folder contains the lifting schema mapping files from
the original SAWSDL-TC.

6 Discusssion

The WSMO-LITE Test collection described in this paper is intended for evalua-
tion of SWS discovery tools. However, the test collection itself can be evaluated
on the coverage of the features of the underlying formalism and in our case we
covered most of the WSMO-Lite constructs intended for discovery. More impor-
tantly, a test collection can be evaluated on how useful it is for tool developers,
their testing and cross-tool comparisons. As we have built WSMO-LITE-TC as
a counterpart of the existing SAWSDL-TC and OWLS-TC, we believe that this
will complement previous efforts and benefit the comparison across the under-
lying formalisms.

When it comes to facilitate different service tasks, not all types of annota-
tions are always needed, namely informational, functional and non-functional.
For service discovery, an algorithm can operate on functional descriptions, i.e. ca-
pabilities or categories. The algorithm may check (in case conditions are present)
that the goal complies with the service’s conditions, and that the service effects
fit the goal. With categories, the goal specifies a need for services in a given
category, so the discovery algorithm can check for (sub)category membership as
a filtering mechanism. More generally, these three groups of semantic descrip-
tions should be working closely with each other to jointly decide the level of
match of offer services to a given goal in order to determine the final similar-
ity score. Compared to SAWSDL-TC, the features that have been added from
WSMO-LITE-TC are the service and goal’s functional categories and the oper-
ation’s (pre)conditions and effects. Non-functional properties can also be added
as annotations, but these were not present in the existing collections.

With respect to the way in which OWLS-TC and SAWSDL-TC use the same
template for both service descriptions and for goal descriptions (queries), we
consider that WSMO-Lite does not rely on any given representation for discovery
queries. We argue that SWS discovery test collections could have plain-text
discovery queries that discovery tool implementers can translate to any suitable
formal structure supported by their tools. A plain-text form can mirror closely
typical kinds of discovery queries as they would be formulated by users.

Regarding the underlying formalism, WSMO-Lite is intended as a step to-
wards convergence of earlier frameworks on top of SAWSDL as shown in Section
3. It is intentionally lightweight and independent of any nonstandard languages
and tools. In addition, WSMO-Lite is not constrained to WSDL-based services,
as it can also be applied to Web APIs.

7 Conclusions and Future Work

WSMO-LITE-TC is the first test collection in the evaluation community that
uses the WSMO-Lite service ontology to describe service semantics. We hope

47



12 L.Cabral and N. Li and J. Kopecký

that this test collection will foster the use of WSMO-Lite as well as clarify the
use of its annotation features.

There are currently very few WSMO-Lite-compatible discovery tools to allow
a fair evaluation. But, we envisage that a comparison across the languages in the
three corresponding test collections would be beneficial for the SWS community.

In this paper we have presented the implementation of the first variant of
the WSMO-LITE-TC, which uses OWL as the ontology language and SWRL
for the representation of conditions and effects. The details presented here can
be used by evaluators, who intend to provide their own test collections via the
SEALS platform.

In the future we intend to provide implementations of other variants of
WSMO-LITE-TC using different languages as mentioned in the introduction.
As WSMO-Lite is disassociated from the representation language, it allows us
to be flexible with respect to evaluation requirements while using the same test
collection design.

Acknowledgments. This work has been partially funded by the European
Commission under the SEALS project (FP7-238975).

References

1. Cabral, L. and Toma, I.: Evaluating Semantic Web Services Tools using the SEALS
Platform. In: IWEST Workshop at ISWC 2010, Shanghai, China (2010)

2. Kopecky, J. and Vitvar, T.: WSMO-Lite: Lowering the Semantic Web Services Bar-
rier with Modular and Light-weight Annotations. In proceedings of the 2nd IEEE
International Conference on Semantic Computing (ICSC 2008), Santa Clara, CA,
USA (2008)

3. Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S, Grosof, B. and Dean, M.:
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. Technical
report, Joint US/EU ad hoc Agent Markup Language Commit- tee. Available at
http://www.daml.org/2003/11/swrl/ (2003)

4. RIF Core Dialect. W3C Recommendation 22 June 2010. Available at
http://www.w3.org/TR/rif-core/ (2010)

5. SPIN. W3C Member Submission 22 February 2011. Available at
http://www.w3.org/Submission/2011/SUBM-spin-overview-20110222/ (2011)

6. Semantic Annotations for WSDL and XML Schema. Recommendation, W3C, Au-
gust 2007. Available at http://www.w3.org/TR/sawsdl/ (2007)

7. Sheth, A.: Semantic Web Process Lifecycle: Role of Semantics in Annotation,
Discovery, Composition and Orchestration. Invited Talk, Workshop on E-Services
and the SemanticWeb, at World WideWeb Conference. Available at http://lsdis.
cs.uga.edu/lib/presentations/WWW2003-ESSW-invitedTalk-Sheth.pdf (2003)

8. Sycara, K., Paolucci, M., Ankolekar, A. and Srinivasan, N.: Automated Discovery,
Interaction and Composition of Semantic Web services. Web Semantics: Science,
Services and Agents on the World Wide Web, 1(1):27–46 (2003).

48




