
Toward Deciding the Existence of
Adaptable Services

Christian Gierds

Humboldt-Universität zu Berlin, Department of Computer Science,
Unter den Linden 6, 10099 Berlin, gierds@informatik.hu-berlin.de

Abstract. Service adaptation allows two services to interact properly
using a mediator or adapter. In service discovery one question is whether
an adaptable service exists for a given service, i. e. whether a service exists
which can be interacted with properly by using an adapter.
We look at a setting where this question boils down to deciding distributed
controllability, and we present an idea for changing an algorithm for
controller synthesis which answers this question.

1 Motivation

In recent years the idea of service adaptation gained momentum within the
scientific community. Services already are a wide-spread paradigm also used in
industry. Thus the pool of independently developed services is huge. As services
are made to be coupled, the question of service discovery (viz. does a service exist
that my service can interact with) plays an important role in Service-Oriented
Architectures [6]. However, as a service might be developed without knowledge
about existence of potential partners, it is likely that service discovery fails
because of incompatibilities. In this case an adapter [8] might overcome these
incompatibilities. As indicated in Fig. 1a, the adapter acts as mediator between
two services S1 and S2 ensuring semantically correct processing of messages and
proper termination of the services. In case service discovery fails, i. e. there does
not exist any service for direct interaction with, the question concerning service
discovery now can be extended to the adapter setting.

AdapterS1 S2

(a) Normal Adapter Setting

Adapter

S1 S2

Engine E

Controller C

(b) Discovery of an Adaptable
Service

Fig. 1. Two different perspectives (dark-gray means given, light-gray means wanted)

Existence of an Adaptable Service: Is there another service and an adapter, such
that my service can communicate correctly with this other service using the
adapter?

This question actually is not easy to answer. It appears, that we may simply
apply an algorithm for service selection in order to pick S2 and an adapter.
Service adaptation proposes to create, not to select a mediating service though.
As it mainly works on a semantical rather than a functional level adapters are
not meant to be stored and be publicly available. Thus the question above would
suggest trying to create an adapter for each candidate S2.

Setting. Many newer approaches [1–4] recommend to first describe the semantical
constraints of an adapter and then to ensure also behavioral correctness (viz.
proper termination by coordinated transformation of messages). Figure 1b shows
one possible solution [4]: Let the services S1 and S2 be given, as well as a set
of message transformation rules describing valid transformations of messages.
These transformations are implemented in an engine service E ensuring the
semantically correct exchange of messages. If we find a controller C triggering
transformations as they are actually needed, then the composition of E ⊕ C is
an adapter.

For this approach we may assume to have S1 and at least the transformation
rules and thus the engine E given, when looking for a service S2. Checking the
Existence of an Adaptable Service then asks for a service S2 for which a controller
C exists, such that the composition S1 ⊕ E ⊕ C ⊕ S2 properly terminates.

Contribution. We provide an algorithmic idea to abstract from C and then ask
for the existence of an S2 using existing work on partner synthesis. As to the
best of our knowledge the question for the Existence of an Adaptable Service
has not been answered so far. The idea proposed in this paper is a first step in
solving the problem.

The ultimate goal is the characterization of all adaptable services. Then,
given a candidate in a repository, we could decide, whether an adapter can be
computed for this candidate or not. However, this problem will remain for future
work. So far, we simply want to be able to check, whether it is possible to find
such a candidate, or if no such service exists as the transformation rules are not
sufficient for adaptation.

In the following we first introduce service adaptation on a formal level (Sec. 2).
Then we briefly discuss the problem of distributed controllability (Sec. 3)—our
main question relates to this problem—before giving an idea for solving the
problem in the special case of adapters (Sec. 4). Finally we give an outlook
(Sec. 5) on how to extend the solution to partially solve the more general case of
distributed controllability.

2 Service Adaptation

In the last couple of years many approaches [1–3] (among others) emerged for
the adaptation of independently developed services. Many of these approaches

describe the semantical level of an adapter independently of its control structure.
The semantical level is described by message transformation rules defining the
transformation of a message in order to meet semantical constraints imposed by its
content. Typical transformations range from simple renaming to the combination
of several message into one message (or vice-versa), or the creation/deletion of
protocol message (e. g., acknowledgments).

We use previous work [4] by colleagues and myself based on Petri nets
to formally describe the setting (as shown in Fig. 1b). Using Petri nets gives
some advantages: they allow to easily describe distributed models, and message
transformation rules can be directly translated into a net structure.1 We use the
typical definition of a Petri net N = (P, T, F,m0) with finite sets of places P ,
transitions T , a flow relation F ⊆ (P × T) ∪ (T × P), and an initial marking
m0. A marking m : P → N assigns to every place a number of tokens. The
firing semantics are as usual: a transition t ∈ T is enabled in a marking m,
when all places in the preset are marked appropriatly ((p, t) ∈ F ⇒ m(p) > 0),
and t may fire only, if it is enabled and thus changes the marking to m′(p) =
m(p)− F (p, t) + F (t, p) ∀p ∈ P .

An open net additionally uses transition labels to express communication via
some channel c: a transition may asynchronously send a message (!c), receive
a message (?c)—thus restricting firing if c contains no message—, or it may
synchronize (#c). Further we provide a set Ω of final markings, indicating in
which state a service is allowed to terminate.

The approach for adapter synthesis then can be summarized as follows: let us
assume to have given service models S1 and S2 (as open nets) as well as message
transformation rules, which can be canonically translated into an open net E
(the engine). Each transition of E is synchronously connected to a controller port,
thus allowing full control about the application of transformation rules. We then
use existing algorithms for controller synthesis for constructing a controller and
thus an adapter, if any exists. The controller’s role is to ensure proper termination
as transformation rules may not be applied arbitrarily. In the following proper
termination is used synonymously to weak termination (viz. it is always possible
to reach a final state).

Figure 2 shows our (technical) running example. We use the typical graphical
notation for Petri nets. Additionally the dashed line shows the boundary of one
open net, places indicating a proper final state are depicted using a double line.
Communication labels are written inside a transition (omitting the synchronous
labels used for communication in the adapter between the lower engine and the
upper controller part). Service S1 (Fig. 2a) receives an initial message (?e), waits
for an external choice (either ?b1 or ?b2), sends an appropriate answer (either !t
or !c), and returns to its initial state. Service S2 (Fig. 2c) simply sends a message
(!m) and waits for a reply (?k); or it may decide to terminate. Within the engine
part of the adapter (Fig. 2b) we see the communication with S1 and S2 as well
as the transformation rules (r1 to r5). In more detail the rules are: r1 : m 7→ e

1 N.B.: The whole theory could be canonically translated into state machines. However
we decided to use Petri nets.

?e

?b1 ?b2

!t !c

(a) S1

e m

b1

b2

c k

t s

?mr1!e

r2

r3

!b1

!b2

r4

r5

?c

?t

!k

controller part (controlling transitions below)

engine part (arcs to controller omitted)

(b) Adapter (focus on engine)

!m

?k

(c) S2

Fig. 2. Running example: Adapter for two services S1 and S2

!a #s

?a #s

(a) 2 nets to be composed

a s

(b) The composed net

Fig. 3. Composition of open nets

(rename m to e); r2 : 7→ b1 (create b1); r3 : 7→ b2 (create b2); r4 : c 7→ k (rename
c to k); and r5 : t 7→ s (rename t to s). As we can see, rules canonically translate
into Petri net transitions, where the channel names translate into places. Please
note, that there are additional arcs between the engine and controller part that
we omitted for sake of simplicity.

Composition of two open nets A and B is realized by introducing a buffer
place pc for each asynchronous channel c and adding an arc (t, pc) for each
transition t with label !c, an arc (pc, t) for each transition t with label ?c, and
each pair of transitions with the same synchronous label #c is merged while
preserving their individual presets and postsets (Figure 3 shows an example).

We now want to change the perspective in order to check the Existence of
an Adaptable Service: let us assume we only know about service S1 and some
transformation rules. Does any service S2 exist, such that S1 and S2 are adaptable
given the transformation rules? Regarding Fig. 1a we have given services S1 and
E and are looking for services S2 and C (where the latter is of minor importance).
Nevertheless in our setting we are actually looking for two services that are not

allowed to communicate with each other directly—as S2 and C only communicate
with the engine E—but that we can match during construction.

Let us rephrase the problem a bit: given S1 ⊕ E, we are looking for a service
S2, such that we can be sure, an appropriate C also exists.

3 The Problem of Distributed Controllability

The problem we want to solve in the adapter setting—checking for the Existence
of an Adaptable Service—relates to the problem of distributed controllability [7].
Given a service A (S1 ⊕ E) with two distinguished ports for communication, do
two services B1 (service S2) and B2 (controller C) exist, such that the composition
of B1⊕A⊕B2 describes a proper system. In this setting, B1 communicates with
A over one port, and B2 over the other. However, B1 and B2 are not allowed to
directly communicate with each other.

The described problem is known to be solvable for acyclic services [7]; however,
for cyclic services there exists strong suspicion, that the problem is in fact
undecidable.2

Although checking the Existence of an Adaptable Service thus relates to a
problem suspected to be undecidable, we present an idea for tackling this problem
in the special case of adapters. This is possible as the engine of an adapter has a
very special structure—every transitions within the engine is under control. The
decisions of any controller are very determined, which helps us in predicting a
controllers decisions. Thus even in case of cyclic services we can actually decide,
whether an adaptable service exists.

In the next section we exploit this fact by actually foretelling some of the
controllers decisions and then checking for the Existence of an Adaptable Service
using existing algorithms for partner synthesis.

4 Existence of Adaptable Services

In this section we shortly sketch the idea for answering the question, whether a
service S2 exists for a given service S1 and a set of transformation rules, such
that S1 and S2 are adaptable with respect to the transformation rules.

First of all we have to fix an interface for S2. Otherwise it is not clear, which
messages used within the transformation rules are actually meant to be sent or
received—which actually is not always clear from the rules. However, in many
cases the rules suggest a certain direction and we leave it to future work to find
heuristics for allowing more flexibility in choosing the interface.

When trying to find S2 we have to take care of certain points: first, building
a central controller (one serving both ports) can be misleading. There exists S1
and E which have a central controller, but no distributed one (e. g., when S2
would need to react on messages exchanged between E and C). An algorithm
working on the central controller must be aware of this. Second, as we are
2 Personal communication with Karsten Wolf. Unpublished result.

?m r1

r2

r1

r2 r2

r3 r3

r2,r3 r2,r3

r4

!k

... ...

?m

Fig. 4. Automaton derived from S1 ⊕ E with branches leading to deadlocks removed

mainly interested in S2 we could abstract from the interface (i. e. remove all
communication) between engine and controller. This would respect somehow the
independence of S2 and controller C. However, this does not take into account
the possibility for design-time coordination of S2 and C, thus failing in finding
any S2 in many cases, when actually one exists.

The approach we want to follow is a mixture of both ideas: abstract from
the communication between engine and controller, but use information about
transitions being part of the engine to decide, whether bad states could be avoided
by an yet unknown controller.

The algorithm [5] for constructing a controller in the adapter setting presented
above is based on communicating automata which can be canonically derived
from the reachability graph of S1 ⊕ E. In our setting there might be many
states, where avoiding a deadlock or livelock seems impossible for S2 alone. For
a transition of the engine a controller can however decide not to fire it if it leads
unavoidably to bad states.

Our algorithm for finding an adaptable service S2 (without generating a
corresponding controller part C) can be summarized as follows: Let us have
given a service S1 and an engine E representing message transformation rules.
Translate the reachability graph of S1 ⊕E into a communicating automaton. If
there is a transition with a controller label—a label for communication between
engine E and controller C—which results in a state, where reaching a bad state
is unavoidable for any S2, then remove this transition and all states becoming
unreachable. If no such further transitions exist, remove all controller labels
(making corresponding transitions communicating with the controller part of an
adapter internal) and run the algorithm for partner synthesis.

This way we exploit the possibility to rely on a correct decision of C in case
it is necessary. As we are only removing transitions where reaching a final state
cannot be enforced anymore—neither by S2 or any controller C—communication
between engine and controller is not determined and a level of uncertainty remains,
which S2 has to cope with (viz. S2 is still not aware of communication between
E and C).

Running example: Let us consider the example in Fig. 2. The transition r3
(creating b2) should fire once for every m received, but never a second time. As
we know that r3 is part of the engine, we know that a C can decide to fire r3 one
time (as a final state is reachable in the example), but never a second time, when
no further m was received (as a final state might not be reachable anymore in
the example). Thus we remove all transitions related to the second firing of r3.
We can see the (partial) result of this operation in Fig. 4. Arcs and labels related
to engine transitions are gray, an unavoidable deadlock is indicated by a cross,
the removal of arcs by prohibition signs. When we start partner synthesis on the
artifact depicted in Fig. 4, then we get as result a service corresponding to the
net initially depicted in Fig. 2c. Thus we are able to compute a witness to show
that S1 is adaptable provided the given transformation rules.

5 Conclusion and Outlook

The use of adapters extends the setting of Service-Oriented Architectures by
some challenging questions. In the case of service discovery we may not only
be interested a (compatible) partner service, but also a partner service usable
through an adapter would serve our purposes. Thus the question arises if any
adaptable service does exist. In case we regard an adapter as a union of semantical
constraints and control flow we have provided an algorithmic idea to answer this
question. We have omitted a proof for the correctness of this approach. Surely it
highly relies on the very special structure of the engine (unique communication
labeling, controller always has complete knowledge about the state of the engine,
thus decisions are determined, etc.).

If we want to lift this approach to decide distributed controllability in a
more general setting, certain pitfalls are ahead that do not allow to directly
apply the idea on arbitrary services. Some major issues are transitions with
equal communication labels, a higher degree of uncertainty, and asynchronous
communication labels on both ports (asynchronous communication normally
needs to be restricted due to undecidability results, what the algorithm is not
yet aware of).

Nevertheless we want to refine the algorithm in a way, that if we abstract
an arbitrary two-port service S from one port and find a controlling service for
the second port, then only because S is distributed controllable. For the adapter
setting we want to show on a formal level, that the algorithm actually decides
the problem. Thus if S1 ⊕ E is distributed controllable, then the algorithm finds
some S2.

Further, we would like to characterize all adaptable service. This would allow
us to actually do Service Discovery more efficiently without synthesizing an
adapter for each candidate service S2. We could simply match S2 against the
characterization.

References

1. Benatallah, B., Casati, F., Grigori, D., Motahari Nezhad, H.R., Toumani, F.: Devel-
oping adapters for web services integration. In: CAiSE. pp. 415–429 (2005)

2. Brogi, A., Popescu, R.: Automated generation of BPEL adapters. In: ICSOC. pp.
27–39 (2006)

3. Dumas, M., Spork, M., Wang, K.: Adapt or perish: Algebra and visual notation for
service interface adaptation. In: Business Process Management. pp. 65–80 (2006)

4. Gierds, C., Mooij, A.J., Wolf, K.: Reducing adapter synthesis to controller synthesis.
IEEE Transactions on Services Computing 99(PrePrints) (2010)

5. Lohmann, N., Wolf, K.: Compact representations and efficient algorithms for operat-
ing guidelines. Fundam. Inform. 108(1-2), 43–62 (2011)

6. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson - Prentice Hall,
Essex (Jul 2007)

7. Wolf, K.: Does my service have partners? T. Petri Nets and Other Models of
Concurrency 2, 152–171 (2009)

8. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Trans. Program. Lang. Syst. 19(2), 292–333 (1997)

	Toward Deciding the Existence of Adaptable Services
	Motivation
	Service Adaptation
	The Problem of Distributed Controllability
	Existence of Adaptable Services
	Conclusion and Outlook

