
Contextsensitive Online Adaption of Workflows

Johannes Kretzschmar, Clemens Beckstein

johannes.kretzschmar@uni-jena.de

clemens.beckstein@uni-jena.de

Friedrich Schiller University, Jena, Germany

Abstract. A dynamic and complex process environment forces the au-
tomated execution and monitoring of processes to face a lot of hard
problems. This paper shows how the execution of agile workflows can be
assisted by AI planning techniques. In contrast to previous approaches,
this method allows for an online adaption of simple process models to
changes in the process environment. It can handle a manifold of unex-
pected events and guarantees the soundness and completeness of the
adapted workflow.

1 Introduction

Business processes today are commonly automated by formalizing and instanti-
ating them to workflows. Established comprehensive industry standards support
modeling, processing and monitoring of these workflow instances by a workflow
management system [8]. The inclusion of more dynamic and complex processes
and process environments, demands an extended support for agile workflows [17].
Agility allows the adaption of workflows to face a dynamic environment. The
classical distinction between modeling and execution of workflows is progres-
sively given up in order to adjust to changes and new demands at runtime. The
adjusting procedure should be fully automated, efficient, correct and able to
process expected as well as unexpected events. Workflow elements that are not
affected by events should be executable during the adaption and not prolong the
execution time of the underlaying business process. In order to guarantee the
correctness of the adapted workflows a comprehensive formal semantic annota-
tion of the process and its environment is needed. A more expressive model of
business processes on the one hand and a formal process semantic on the other
one suggest to combine AI planning techniques and workflow modeling for a
solution of the adaption problem.

Here, we will present and discuss an approach to workflow adaption via plan
repair. First, we will formally define how processes based on a simple plan model
can fail, i.e. the corresponding failure model. Next, we will give a sketch and an
example for adapting a plan by fragmentation and partial plan repair. Having
related our work to previous approaches we will then conclude with a short
summary and an outlook on future work.



2 Planning and Failing

For our approach, we assume a very basic workflow model. It consists of se-
mantically annotated real world operations and allows parallel and sequential
processing of (sub)workflows. This simple model can easily be transformed to a
partial order plan and vice versa.

A partial order plan in set theoretically representation is a tuple π = (Aπ ,≺)
consisting of a set Aπ of partially ordered actions [14]. The corresponding plan-
ning domain Σ = (S,A, γ) is defined by a set of states S ⊆ 2L over a finite
set L of propositional symbols (so called fluents), a set of actions A ⊇ Aπ
and a state-transition function γ, which defines the effect of an applied ac-
tion. An action a = (precond(a), effect+(a), effect−(a)) ∈ A is applicable in a
state s ∈ S, if precond(a) ⊆ s. The application of a in s results in a state
s′ = γ(a, s) = (s∪effect+(a))\effect−(a)). In the following Γ ∗((A,≺), s0) denotes
the set of states, which result from processing all linearizations of a plan (A,≺)
in s0. A linearization of (A,≺) is a sequential order of all actions a ∈ A that is
compatible with ≺. A partial order plan π is a solution for a planning problem
P = (Σ, s0, g) with a set of goal fluents g, if for all send ∈ Γ ∗(π, s0) : g ⊆ send.

Although there is the assumption of a static world in classical planning, we
have to handle the dynamics of real life scenarios as they are typical for workflow
applications. Plan execution therefore has to deal with a wide range of events,
which were not considered at the time of planning. These can affect all aspects
of a plan and the planning domain: states, sets of actions and goals. In the fol-
lowing we assume that the actions of a partial order plan π are processed one
after the other. As a consequence, the execution state sπ′ that results from the
linear plan fragment π′ ⊆ π of already executed actions is uniquely defined. An
unexpected event can influence this state by implicitly adding or deleting flu-
ents. Therefor we can define an (unexpected) external event as a pseudo action
ǫ = (∅, effect+(ǫ), effect−(ǫ)) which transforms sπ′ to the new state s′ = γ(ǫ, sπ′).
Internal unexpected events (planned actions that failed) can be formally treated
in the same way. Process dynamics can also unexpectedly influence the set of ac-
tions available for planning thus changing Σ to the new domain Σ′ = (S,A′, γ′).
Our approach also allows for (unexpectedly) changing the goals from g to g′

during plan execution. We assume, that an event or goal change always occur
in between the processing of two actions and that the plan domain is fully ob-
servable. In real world scenarios unexpected events of the mentioned types can
happen in combination.

Once an unexpected event eu is recognized in state s′ after execution of
the plan fragment π′ its impact on the overall plan π has to be assessed. If
the remaining plan πR = π \ π′ is not a solution for the planning problem
P ′ = (Σ′, s′, g′) the plan π failed. One way to fix the plan would be to find a
solution for P ′ that is to fix π by re-planning. The fix we propose is to repair

π by isolating and partially replanning only that part of πR which is affected
by eu. A plan fragment is called affected by eu, if it contains failed actions. An
action a ∈ πR is failed, if a 6∈ A′ or if there is a linearization of πR, where a is
not applicable.



3 Fragmentation and Replanning

In order to affect the plan or workflow execution as little as possible we identify
minimal parts of πR that fail and try to find alternatives for them.

For this purpose we first choose an inner fragment πE = (AE ,≺) of πr by
selecting a connected plan fragment, which contains all failed actions Afail ⊆ AE .
A plan fragment πE is called connected, if for all a, b ∈ AE and c ∈ Aπ, we have
that c ∈ AE if a ≺ c ≺ b. AE may also be empty if πR only fails due to
an unexpected goal change. The outer fragment πF is the plan containing all
actions, which are unordered to every action in πE and not contained in πE . So
πF is connected as well. Finally we define the remaining fragment πP as the
plan fragment containing all actions a ∈ AR which are neither in the inner nor
the outer fragment. By definition AE , AF and AP are disjoint, but contain all
actions of πR in union. Therefor we call (πE , πF , πP ) a fragmentation of πR (see
fig. 1).

Fig. 1. a valid fragmentation of the remaining plan πR

The plans πE and πF in a fragmentation (πE , πF , πP ) are independent and πE
contains all failed actions of π. The plan repair mechanism we propose searches
for an alternative π′E for πE which is similar to the original, can be executed
independently of πF and together with πF and πP is a solution of P ′. To ensure
the independent (unordered) execution of πF in relation to π′E , we introduce the
so called context of πF . The context CF of πF is a pair (HF ,SF ) of two fluent
sets: the soft criteria SF and the hard criteria HF . SF contains all fluents which
are used in preconditions or added, but not deleted by actions in πF .

SF :=

{

m :
∨

a∈AF

∧

b∈AF

(

m ∈ effect+(a) ∪ precond(a)
)

∧ ¬
(

m ∈ effect−(b)
)

}

The fluents in SF can also be used, added but not deleted in π′E without resulting
in plan flaws. On the other hand, fluents are not allowed to be added or used
if they are deleted in πF . These fluents make up HF := {m :

∨

a∈AF
m ∈

effects−(a)}.



With the help of the context, it is possible to formulate an extended planning
problem PE = (Σ′, sE, gE , CF ). Compared to a classical planning problem like P
an extended planning problem also takes into account the dynamic environment
described by the context CF . As described in section 2, a failure may occur after
the state where the unexpected event took place that triggered the plan repair.
This happens for example, if a state change event affects the applicability of
prospective actions in the plan. We therefore identify a fragment πV of πP that
contains all actions a ∈ AP with a ≺ aE for all aE ∈ AE . The plan fragment
πV is used to produce the starting state sE for the extended planning problem
PE from the state s′ which contains those fluents that for sure hold once πV is
completely executed: sE :=

⋂

{si : si ∈ Γ ∗(πV , s′)}. Thus our method is able
to repair parts of the plan which are far ahead of the current execution state
without expanding the inner fragment. Finally, the goal gE is constructed from
open preconditions in πP and the goal set g′. To simplify this procedure, the
goal is represented by an implicit goal action agoal = (g′, ∅, ∅) which is inserted
into πP after all other actions a ∈ AP . The goal gE for PE is then chosen to:

{

m ∈ L :
∨

a∈AP

m ∈ precond(a) and
∧

b∈AP∪AF

(

b ≺π a→ m 6∈ effects+(b)
)

}

.

In order to handle extended plan problems the planning procedure uses a gener-
alized definition of applicability which uses the context CF = (HF ,SF ) to avoid
flaws between the computed plan solution and πF . An action a is applicable in
a state s wrt. a context CF , if

precond(a) ⊆ s and
∧

m∈precond(a)

m 6∈ HF and
∧

n∈effects−(a)

n 6∈ SF .

The parameters for the extended planning problem and the resulting applicabil-
ity of actions are all determined by the selection of the inner plan fragment of
πE : the smaller πE , the bigger CF and the more constrained is the planning pro-
cess. For a good choice of πE we propose to first attempt the repair process with
the smallest πE possible followed by iterative attempts with bigger fragments
until πE = πR which amount to classical replanning. It can be shown, that the
solution π′E of PE can replace the defective πE without producing flaws wrt. πF .
By processing π′E all open preconditions of πP and all (maybe changed) goal
fluents will be satisfied: the repaired plan π′R is a sound and correct solution for
the plan problem P ′ that summarizes the failure of the original plan.

4 A Real World Usecase

The generic repair method, introduced in this paper, was developed in the con-
text of the Mops project1. The target of this joint research project is adaptive

1
Mops is funded by the European Union (European Regional Development Fund)
and the Federal State of Thuringia of Germany.



planning and secure execution of mobile processes for human agents in dynamic
scenarios [1]. Because the processes in those scenarios typically are long living,
a comprehensive event and failure model as well as support for process adaption
during runtime is needed. The workflow technology of Mops is based on Bpel

descriptions. In order to bridge the expressive gap between the Bpel model and
the plan model, the plan activities are encapsuled as semantically annotated ser-
vices. As a consequence, workflows can contain complex control flow structures
and detailled local event handling mechanisms, and still can be planned and
manipulated automatically on an abstract level.

The application of Mops is based on a generic scenario of service staff com-
pleting missions (on site repair jobs, delivery tasks, facility management). In
order to exemplify our repair method, let us assume an extremely reduced sce-
nario with 3 service technicians and 3 missions that can be represented by
the following simple set-theoretic planning domain with the fluent set L =
{a1 , ..., a3 , done1 , ..., done3 , 1doing1 , ..., 3doing3 }. For every technician, there is
a fluent aX , which means “technician X is available”. Likewise there is a fluent
doneX for every job, which means “job X is successfully accomplished.” For every
job and every technician there is a fluent XdoingY , which means “technician X

is assigned to job Y ”. The planning domain further contains two types of actions.
The first one actually assigns a job to a technician, if the technician is available.
assign1to2 = ({a1}, {1doing2}, {a1}), e.g., allocates job2 to technician1. The
second type of action initializes the execution of a job by its assigned technician.
1do2 = ({1doing2 }, {done2 , a1}, {1doing2 }), e.g., means “technician 1 is doing
job 2”. The solution of the planning problem P = (Σ, s0, {done1 , done2 , done3})
with s0 = {a1 , a2 , a3 } then results in a plan like π as shown in fig. 2.

Fig. 2. a sound and correct solution π for P

Let us now assume that the current execution state sπ = s0 and that in
this state a technician reports to be sick resulting in the new actual state
s′ = γ((∅, ∅, {a3}), sπ) = {a1 , a2 }. This event leads to a failure of the re-
maining plan π′, because action assign3to2 is no longer applicable. Because
this action is the only action affected by the failure we can reasonably set
AE = {assign3to2 }, which implies AF = {assign1to3 , 1do3 , assign2to1 , 2do1 }
and AP = {3do2 }. This fragmentation leads to a context CF with HF =
{a1 , a2 , 1doing3 , 2doing1 } and SF = {done3 , done1 }) and the extended plan-
ning problem PE = (Σ, ∅, gE, CF ) with the open precondition of 3do2 as goal
gE = {3doing2 } It is impossible to find a solution for this problem because job



2 can not be assigned to any other technician due to {a1 , a2} ⊂ HF (an as-
signment action deletes the availability fluent for its agent and therefore is not
applicable as long as the fluent is contained in the context). If we now widen
the inner fragment to AE = {assign3to2 , 3do2 } (hence AP = ∅) then the cor-
responding new extended planning problem PE = (Σ, ∅, {done2}, CF ) still has
no solution because AF and CF remained the same. A further widening of the
inner fragment to AE = {assign3to2 , 3do2 , 2do1 } (AP = AV = {assign2to1})
diminishes the outer fragment to AF = {assign1to3 , 1do3 } and the context to
SF = {done3} and HF = {a1 , 1doing3 }. The resulting extended planning prob-
lem PE = (Σ, {2doing1 }, {done1 , done2}, CF ) is now solvable with the plan
alternative π′R as shown in fig. 3

Fig. 3. the adapted plan π′R with alternative π′E and corresponding fragmentation

This little example already shows that the choice of the inner fragment AE
significantly influences the context and therefore the degrees of freedom for the
replanning problem. For this choice we propose to use the control-flow structure,
respectively the partial plan order: in order to maximize the part of the workflow
that can be executed concurrently to the adaption process for the failed part,
the outer fragment AF and AV of the remaining fragment should stay as big as
possible.

5 Related Work

A lot of workflow related approaches for adaption while runtime are based on the
reusability of pre-modeled workflow fragments. AdaptFlow [6], which is based
on Adeptflex [16], uses explicit event-condition-action (ECA) rules to change a
workflow. A similar, and widely-established approach, based on cased-based rea-
soning (CBR) [12], is implemented in Cbrflow [18], Phala [10] and Cake ii [13].
In case of a change request, a pre-modeled workflow fragment is chosen from
a case repository and integrated into the workflow. The retrieval is based on
a similarity measure of the structural, procedural and declarative knowledge.
The CBR related methods differ primarily in the type and complexity of the
underlying knowledge model. There are also approaches using AI planning tech-
niques like the traditional cased-based planner Chef [7], which can be applied
to simple workflow models. Codaw [11], e.g., is using a case repository imple-
mented as a hierarchical task network. Other workflow specific approaches like



Bpel’n’Aspects [9] or StPowla [5] use policy descriptions for implementing adap-
tive process logic. These descriptions are similar to the pre-modeled knowledge
of CBR cases and likewise triggered by ECA rules. In contrast to our approach,
all these approaches lack of a specified failure model and a goal oriented adap-
tion. The identification of events and the adaption is restricted to pre-modeled
use cases which do not cover unexpected events. Further, it is impossible to
recognize and handle any flaws which may occur by the adaption.

Besides case based approaches there are two strategies in AI planning for
performing a plan adaption: re-planning from scratch or plan repair. Nebel and
Koehler [15] show, that the local adaption and reuse of plans suffers from the
inherent structural worst case complexity of planning: failed plans should be
re-planned from scratch because in the worst case, the whole plan has to be re-
structured anyway. First, this consideration ignores the necessity of concurrent
plan execution and plan adaption as it is typical for, e.g., business processes. Fur-
ther, one of the few general domain independent approaches for plan repair, as
discussed by Arangu et. al. in [2] and used in the planner Mips-xxl [3], performs
great using local adaption techniques: an iterative two-step procedure identifies
the defective part of the plan and tries to find an alternative by gradually ex-
panding the planning problem, especially the set of planning operators. But in
contrast to our approach the scope of plan repair is fixed.

Usually there is no unique solution for a planning problem, thats why al-
ternatives have to be considered. Fox et. al, e.g., discuss in [4] a measure for
plan-similarity like those used in CBR: a heuristic assures that the alternative
plan is as close as possible to the original failed plan. This is justified by the
assumption that the original plan was modeled by or with the help of domain ex-
perts. Especially when using plans as workflow models, this measure also permits
maintaining commitments between process partners. Our context description of
process (fragments) could supply useful informations for a heuristic or similarity
measure in first principle planners as well as CBR or CBP approaches.

6 Conclusion and Future Work

We have introduced a domain independent method for adapting partial order
plans. In contrast to present approaches, this method follows a formally defined
complex failure model that captures the relevant characteristics of the underlying
process model. The approach is able to adapt processes at runtime, i.e. concur-
rently to process execution, and is guaranteed to produce sound and correct
solutions.

At the moment there still is a big gap between the expressive power of the
plan representation we used and that of state of the art workflow models but
we are working hard to generalize our method to more complex representations,
which are able to represent additional aspects of todays workflow languages —
among them complex control structures as well as explicitly coded data flow,
organizational and security aspects.



References

1. Mops — project description (2011), http://mops.uni-jena.de/us/

Homepage-page-.html, [Online; accessed 08-February-2012]
2. Arangu, M., Garrido, A., Onaindia, E.: A general technique for plan repair. In:

Tools with Artificial Intelligence, 2008. ICTAI ’08. 20th IEEE International Con-
ference on. vol. 1, pp. 515 –518 (nov 2008)

3. Edelkamp, S., Jabbar, S., Nazih, M.: Large-scale optimal pddl3 planning with
mips-xxl. In: 5th International Planning Competition Booklet (IPC-2006) (2006)

4. Fox, M., Gerevini, A., Long, D., Serina, I.: Plan stability: Replanning versus plan
repair. In: In Proc. ICAPS. pp. 212–221. AAAI Press (2006)

5. Gorton, S., Montangero, C., Reiff-Marganiec, S., Semini, L.: Service-oriented com-
puting - icsoc 2007 workshops. chap. StPowla: SOA, Policies and Workflows, pp.
351–362. Springer-Verlag, Berlin, Heidelberg (2009)

6. Greiner, U., Ramsch, J., Heller, B., Löffler, M., Müller, R., Rahm, E.: Adaptive
guideline-based treatment workflows with adaptflow. In: Proceedings of the Sym-
posium on Computerized Guidelines and Protocols (CGP 2004), Computer-based
Support for Clinical Guidelines and Protocols. pp. 113–117. IOS Press (2004)

7. Hammond, K.: Case-based planning: A framework for planning from experience.
Cognitive Science 14, 385–443 (1990)

8. Jablonski, S. (ed.): Workflow-Management. dpunkt-Verl., Heidelberg (1997)
9. Karastoyanova, D., Leymann, F.: BPEL’n’Aspects: Adapting Service Orchestra-

tion Logic. In: Proceedings of 7th International Conference on Web Services ICWS
2009. pp. 222–229. IEEE Computer Society (2009)

10. Leake, D., Kendall-Morwick, J.: Towards case-based support for e-science workflow
generation by mining provenance. In: Althoff, K.D., Bergmann, R., Minor, M.,
Hanft, A. (eds.) Advances in Case-Based Reasoning, Lecture Notes in Computer
Science, vol. 5239, pp. 269–283. Springer Berlin / Heidelberg (2008)

11. Madhusudan, T., Zhao, J.L., Marshall, B.: A case-based reasoning framework for
workflow model management. Data Knowl. Eng. 50, 87–115 (July 2004)

12. Minor, M., Bergmann, R., Görg, S., Walter, K.: Towards case-based adaptation
of workflows. In: Montani, S., Bichindaritz, I. (eds.) Case-Based Reasoning. Re-
search and Development, 18th International Conference on Case-Based Reasoning,
ICCBR 2010, Alessandria, Italy, July 19-22, 2010. Proceedings. pp. 421–435. LNAI
6176, Springer (2010)

13. Minor, M., Schmalen, D., Kempin, S.: Demonstration of the agile workflow man-
agement system cake ii based on long-term office workflows. In: BPM (Demos)’09
(2009)

14. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA (2004)

15. Nebel, B., Koehler, J.: Plan reuse versus plan generation: A theoretical and empir-
ical analysis. Artificial Intelligence 76, 427–454 (1995)

16. Reichert, M., Dadam, P.: Adept flex - supporting dynamic changes of workflows
without loosing control. Journal of Intelligent Information Systems 10, 93–129
(1998)

17. Weber, B., Wild, W.: Towards the agile management of business processes. In:
Althoff, K.D., Dengel, A., Bergmann, R., Nick, M., Roth-Berghofer, T. (eds.) Pro-
fessional Knowledge Management, Lecture Notes in Computer Science, vol. 3782,
pp. 409–419. Springer Berlin / Heidelberg (2005)

18. Weber, B., Wild, W., Breu, R.: Cbrflow: Enabling adaptive workflow management
through conversational case-based reasoning. In: ECCBR. pp. 434–448 (2004)


