

Automatic Tests and Practical Tasks Generation in
Distance Learning Systems

Dmytro Kravtsov1

1 Kherson State University
hwndmaster@gmail.com

Abstract. This article deals with the problem of the developing and
implementation of the tests and practical tasks generator in the distance learning
systems. The object model of the tests and exercises generator is developed
based on the mathematical model.

Keywords: Smart-test, mathematical test, automatic tests building, remote
testing, remote practical tasks.

Key Terms: InformationTechnology, KnowledgeEngineeringMethodology,
Development, ModelBasedSoftwareDevelopmentMethodology.

1 Introduction

The software module that support practical tasks and academic performance ratings
during the learning process are the most important in distance learning systems (DLS)
[1]. A test is the major element of the academic performance ratings in DLS.
Generally, tests consist of the tasks (questions) that deal with the all topics of the
studied subject matter. Practical tasks and tests’ questions in some sciences, more
often exact sciences such as mathematics, physics, chemistry, informatics, etc., are
characterized with the similar wordings that may be shown with templates. Tasks
templates are the formal expressions that are described with the strict syntax and have
well-defined semantics. These expressions contain parameters with the exact given
range of values. A task instance is created with the substitution of the specific
parameters of the defined area of values into the sample.

The practical tasks and tests development is rather hard and tedious process of
tasks (questions) creation, possible answers defining, and correct answers detection
[2]. The following drawbacks of the test modules are typical for the majority of the
wide-used DLS:

─ time consuming process of tasks (questions) compilation;
─ requirement to develop a wide variety of similar tasks to provide students with

representative sets of questions or to solve a problem of students copying the each
others tasks solving;

Automatic Tests and Practical Tasks Generation … 45

─ possible mistakes committed by a tasks compiler.

The good example of the software implementation for this type of tasks is
Generator of examination tests in software environment «Examination tests delivery
system» [3].

2 Problem Definition

While DLS testing module engineering, the process of testing is usually understood as
a set of statements calls with a certain behavior in the context of a learning model.
The process of the automatic test compiling in DLS testing module is a work flow in
which a certain logics with the possibility of automation is implemented. It is
important to start with a determination of an abstract model, that contains all the
necessary data describing the learning aim and explaining the correlation between
objects of the specific instances of this model, to automate the compiling of tests’
questions as a work flow.

Let’s say smart-test is the instance of the test, generated by the given template with
the automatic test generation process that is described above.

The automatic generation of a smart-test will help to substantially simplify the
practical tasks compilation in the mentioned above sciences, reducing required time
and guaranteeing the unique character of each task generated, as well as it gives the
ability to automate the tests results evaluation without negative human factor effect.

In this work we consider the problem of creation of a smart-test generator abstract
model and tasks for solving the most of the practical tasks of the applied disciplines,
and the implementation work of the smart-tests generator in DLS. The abstract
generator model is a generalized model of mathematic tests [4]. The results of the
work will be illustrates with the examples of the specific mathematics discipline tasks.

3 Abstract Model

We define the smart-test as a set of learning tasks set and test settings: ST = <S(s1,
…, sL), P(P1, …, PN)>, where S(s1, …, sL) – a set of test settings, defined by a user (a
test compiler), and P(P1, …, PN) – a set of learning tasks, that define the term
mathematic tests [4].

To build the P – abstract model of the learning task – we use its mathematical
definition [4], that has the following view:

P = <M, Ф, Q>,

where
M – a set of the task input parameters, and is described as М(x1, …, xn), where x1,

…, xn – the task parameters;
Ф – a set of the task conditions, described as Ф(φ1, …, φk) , where φ1, …, φk – task

conditions;

46 D. Kravtsov

Q – the task result model, described as Q(q1, …, qm), where q1, …, qm – sets of
correlations, defining the results of the task.

This mathematic model is sufficient for further abstractions building and object-
realization with the high-level programming languages.

Let’s agree with the following terms to describe the mathematic model above in a
programming language:

P = <M, Ф, Q> – LrnTaskTemplate (abbreviated from Learning Task Template);
M – LrnTaskModel (abbreviated from Learning Task Model);
Ф – LrnTaskValidator (abbreviated from Learning Task Validator);
Q – TResponse, that is the element of the software module «Solver»

LrnTaskSolver<TModel, TResponse>, that will be described below.
The interrelations scheme of the objects described above is introduced at fig.1.

Fig. 1. Smart-test object model elements interrelations scheme.

On this scheme ISmartTestModule is a template library of the learning tasks
generators for smart-tests compilation.

A template library of the learning tasks generator module is a program class
(LrnTaskTemplate), which contains all the functions necessary for building the
learning task instances, their correction, and solvings with the use of named model.

Task generator template functions use general (TestSettings) and local
(LrnTaskTemplateSettings) settings, given by a user (test compiler) as input
parameters. These settings may provide the template with generation and validation
parameters of the specified learning tasks as: instruction to use preferable types of
questions [7], number of answers to generate, module fine-tuning with
including/excluding certain templates, field of input parameters, etc. The number of
such settings may differ depending on the module and its templates. It is expected that
the test compiler tune the settings while adding a smart-test to the system.

Learning task model (LrnTaskModel) is the program class that aim to store the
input parameters of the learning task. Depending on the specified aims, the learning

Automatic Tests and Practical Tasks Generation … 47

task model may contain advanced parameters, necessary to describe the task settings.
The number of the parameters is not limited by the system.

The next learning tasks generator element is LrnTaskValidator class. The aim of
this program class is validation of the model instance to correspondence to the task
settings. This program class is also used in reconciliation of the generated learning
task model that is described further.

A solver (LrnTaskSolver) is the final element of the template. The aim of the
solver is to solve the specified task (achieve results), using the LrnTaskModel
parameters with the conditions given in LrnTaskValidator. The results of the solver
are the formal expressions in the signature of the certain subject field that may be
defined in the LrnTaskResponseModel class inheritor. In particular, atomic
expressions may be there – a number, a string, a date.

4 The Model of the Smart-test Implementation Software Module

The model of the learning tasks generator template module is shown at fig. 2.

Fig. 2. The model of the learning tasks generator template module.

The list of the main functions of the tasks generator is below:
1. GenerateModel is a method of learning task model instance creation

(LrnTaskModel).
2. ReconcileModel is a method of generated learning task reconciliation. This

function is necessary to solve the problem, when the system generates similar
tasks at the first stage of task generation in the set of the final smart-test. The
correction algorithm must be implemented locally for each type of the learning
tasks. The aim of the correction is to change the learning task model by making it
unique comparing with other tasks in the set of the tasks in the smart-test.

3. CreateQuestion is a method of the question description creation. This method
creates a program class instance that describes the question. This class model is
shown at fig. 3:

48 D. Kravtsov

Fig. 3. Base model of the program class containing question description.

Here is the description of model properties:

─ Title - title-text of the task. This property consists of the short text, that explains
students the subject of the question;

─ Description - the description of the task that will be shown to the student. An
author of the specified learning tasks module implementation should consider
possibility to create description text on one of the system languages (for example,
Russian, Ukrainian, English);

─ Tip - a hint text, that the student may use answering the question. This field is
optional and may be left empty. Usage of the tip is fixed and processed by the
system;

─ QuType - type of the question. An author of the specified learning tasks module
implementation may use one of the multiple questions types, mentioned in the
specifications [7];

─ Mark - a grade that a system assigns for the correct answer for the question.

4. Solve - a method of the task solving. This function uses the learning task model
(LrnTaskModel) as the input parameter and solves it, using the functions of the
LrnTaskSolver program class. The results of the solving returns as the object,
consisting of the correct answer for this learning task.

5 Examples of Smart-tests Implementation in DLS Kherson
Virtual University [5]

Here is the example of learning tasks templates implementation on “Quadratic
equation” topic [4, 6]. Below you can see the objects implementation, which inherit
properties and methods of the abstractions described above:
1. QuadraticEquationTestModule learning tasks module, functions and properties of

the program interface ISmartTestModule (fig.4):

Automatic Tests and Practical Tasks Generation … 49

Fig. 4. QuadraticEquationTestModule program class.

2. Template 1 - QuadraticEquationTestTemplate1, that implements functions and
properties of the program interface ILrnTaskTemplate. This template will generate
tasks with the title: “Solve the quadratic equation with integer coefficients”;

3. Template 2 - QuadraticEquationTestTemplate2, that implements functions and
properties of the program interface ILrnTaskTemplate. This template will generate
tasks with the title: “Find the sum of the squares of the roots of a given quadratic
equation” (fig. 5):

Fig. 5. QuadraticEquationTestTemplate1 and QuadraticEquationTestTemplate2 program
classes.

4. QuadraticEquationLrnTaskModel implements the functions of the abstract
program class LrnTaskModel (fig. 6). This model is actual for the both templates:

50 D. Kravtsov

Fig. 6. QuadraticEquationLrnTaskModel program class.

5. QuadraticEquationLrnTaskValidator implements the functions and properties of
the abstract program class LrnTaskValidator (fig. 7). This validator is actual for
the both templates:

Fig. 7. QuadraticEquationLrnTaskValidator program class.

6. Template 1 Solver - QuadraticEquationLrnTaskSolver implements functions and
properties of the abstract program class LrnTaskSolver (fig. 8):

Fig. 8. QuadraticEquationLrnTaskSolver program class.

Executing the solution from the parameters of the mentioned model, this solver
returns the object of the QuadraticEquationLrnTaskResponse type (fig. 9), that
contains a pair of numerical values: x1, x2:

Automatic Tests and Practical Tasks Generation … 51

Fig. 9. QuadraticEquationLrnTaskResponse program class.

7. Template 2 solver - QuadraticEquationLrnTaskSolverU, which implements
functions and properties of the abstract program class LrnTaskSolver (fig. 10).
Executing the solution from the parameters of the mentioned model, this solver
returns one numerical value x:

Fig. 10. QuadraticEquationLrnTaskSolverU program class.

8. Test setting class - QuadraticEquationTestSettings implementing the program
interface ILrnTaskTemplateSettings (fig. 11):

Fig. 11. QuadraticEquationTestSettings program class.

In this example it is supposed to specify valid values in the test settings for
quadratic equation coefficients: a, b and c.

52 D. Kravtsov

Now let us turn to the algorithm of creating smart-test and learning tasks using the
object model, mentioned above.

The process of the smart-test creation begins with the connecting necessary
modules to the system interface. We should mention that in this example the user has
just one module: QuadraticEquationTest. The user should point in the module settings
the templates to use (there are only two in this example – Template 1 and Template
2), and the settings of each of the template. The test compiler also sets number of
questions: N, which should be generated. One of the parameters, that the user should
specify, is the parameter of the rate set, which specifies the coefficients of usings of
module templates in the smart-test.

When all the settings are made by the user, a smart-test is triggered after each
request of a student in the testing group of the distance learning system. Below you
can see the algorithm of the test instance generation (fig. 12).

Fig. 12. Algorithm of the final test instance generation scheme.

A number of questions estimation. Assume N - a number of questions, needed to
generate the test, T = <t1, …, tk, q1, …, qk, s1, …,sk> - a set of used templates from all
the connected modules, where ti – the instance of template class, qi – rate of using of
i-template to the all number of templates T, si – template settings, made by the test
compiler.

Automatic Tests and Practical Tasks Generation … 53

Example. Assume N = 20, T = <t1, t2, 0.3, 0.7, s1, s2>.
Then the final test will consist of 20 questions, based on the templates t1 and t2.

30% of the questions (6 questions) will be generated based on the first template. 70%
of the questions (14 questions) will be generated based on the second template.

Learning tasks modules creation. Below you can see the algorithm scheme of the
learning task module creation and correction (fig. 13).

Fig. 13. Scheme of the sub-program algorithm of the learning task model generation and
correction.

As one can see from the scheme above, model correction is implemented
immediately after it is generated. It allows, first of all, using rough method of the
model values generation, using the system random number generator. Then in the
correction function the model parameters are changed not to coincide with the other
models, generated in the cycle before.

Generation of the final questions sets (TestQu). The process of the final set of
questions creation, based on the already generated and adjusted ones, occurs with the
same enumeration as a generation of the learning tasks models - first all the templates
of the connected modules are enumerated, and then the number of this template
questions is searched through.

54 D. Kravtsov

The sub-program of the learning task model question instance creation is shown at
fig. 14.

Fig. 14. The question instance generation sub-program algorithm scheme.

Thereby, smart-test is initializes and registers in the distance learning system, and
then it becomes ready for students to pass it.

6 Conclusion

The structural model of the software module for the smart-tests generation and use,
based on the method of automatic generation with the assigned tests or practical tasks
template is build on the basis of mathematical model.

The software module classes, algorithms of learning tasks and questions models
generation and verification, and smart-test answers processing are described. The
described model was tried and tested on the examples of the smart-test for the exact

Automatic Tests and Practical Tasks Generation … 55

sciences: mathematics, physics, chemistry, computer science. Also it seems possible
to make smart-tests in the field of some other disciplines: some biology sections,
psychology, music, sociology, etc.

This method of automatic test generation, in the long view, may be used while
creation of adaptive tests with the use of smart-tests.

References

1. Bykov V. Yu.: Models of the Open Education Organizational Systems: Monograph. – Kyiv:
Atika, (2009) – p. 684. (In Russian)

2. H. Kravtsov, D. Kravtsov.: Knowledge Control Model of Distance Learning System on IMS
Standard / Innovative Techniques in Instruction Technology, E-learning, E-assessment, and
Education. – Springer Science + Business Media V.B. pp.195 – 198 (2008) (In Russian)

3. Kruchinin V.V., Magazinnikov L.I., Morozova Yu.V.: Control tasks generator, VIII
International scientific conference and exhibition “Unified educational information
environment: problems and development trends”, Tomsk, 17 (2009),
http://www.ict.edu.ru/vconf/index.php?a=vconf&c=getForm&r=secDesc&d=mod&id_vcon
f=30&id_sec=174. (In Russian)

4. Lvov M.S.: Mathematical tests in the systems of computer mathematics of the educational
purpose. / M.S. Lvov // Control systems and machines. - 2011. - №6. (In Russian)

5. Distance learning system Kherson Virtual University, http://dls.kherson.ua/dls.
6. Quadratic equation, the Free Encyclopedia, Wikipedia,

http://en.wikipedia.org/wiki/Quadratic_equation.
7. IMS Question & Test Interoperability Specification, http://www.imsglobal.org/question/

