
LoLa: A Modular Ontology of Logics,
Languages, and Translations

Christoph Lange1, Till Mossakowski2,3, and Oliver Kutz2

1 School of Computer Science, University of Birmingham
2 Research Centre on Spatial Cognition, University of Bremen

3 DFKI GmbH Bremen

Abstract. The Distributed Ontology Language (DOL), currently being
standardised within the OntoIOp (Ontology Integration and Interoper-
ability) activity of ISO/TC 37/SC 3, aims at providing a unified frame-
work for (1) ontologies formalised in heterogeneous logics, (2) modular
ontologies, (3) links between ontologies, and (4) annotation of ontologies.
This paper focuses on the LoLa ontology, which formally describes DOL’s
vocabulary for logics, ontology languages (and their serialisations), as
well as logic translations. Interestingly, to adequately formalise the logi-
cal relationships between these notions, LoLa itself needs to be axioma-
tised heterogeneously—a task for which we choose DOL. Namely, we use
the logic RDF for ABox assertions, OWL for basic axiomatisations of
various modules concerning logics, languages, and translations, FOL for
capturing certain closure rules that are not expressible in OWL4, and cir-
cumscription for minimising the extension of concepts describing default
translations.

1 The Distributed Ontology Language (DOL) – Overview

An ontology in the Distributed Ontology Language (DOL) consists of modules
formalised in basic ontology languages, such as OWL (based on description logic)
or Common Logic (based on first-order logic with some second-order features).
These modules are serialised in the existing syntaxes of these languages in order
to facilitate reuse of existing ontologies. DOL adds a meta-level on top, which
allows for expressing heterogeneous ontologies and links between ontologies.5
Such links include (heterogeneous) imports and alignments, conservative exten-
sions (important for the study of ontology modules), and theory interpretations
(important for reusing proofs). Thus, DOL gives ontology interoperability a for-
mal grounding and makes heterogeneous ontologies and services based on them
amenable to automated verification.

DOL is standardised within the OntoIOp (Ontology Integration and Interop-
erability) activity of ISO/TC 37/SC 36. The international working group com-
prises around 50 experts (around 15 active contributors so far), representing
4 For the sake of tool availability it is still helpful not to map everything to FOL.
5 The languages that we call “basic” ontology languages here are usually limited to
one logic and do not provide meta-theoretical constructs.

6 TC = technical committee, SC = subcommittee

a large number of communities in ontological research and application, such
as different (1) ontology languages and logics (e.g. Common Logic and OWL),
(2) conceptual and theoretical foundations (e.g. model theory, proof theory),
(3) technical foundations (e.g. ontology engineering methodologies and linked
open data), and (4) application areas (e.g. manufacturing, bio-medicine, etc.).
For details and earlier publications, see the project page at http://ontoiop.org.

The OntoIOp/DOL standard is currently in its final working draft stage and
will be submitted as a committee draft (the first formal standardisation stage)
in September 2012.7 The final international standard ISO 17347 is scheduled for
2015. The standard specifies syntax, semantics, and conformance criteria:

Syntax: abstract syntax of distributed ontologies and their parts; three concrete
syntaxes: a text-oriented one for humans, XML and RDF for exchange among
tools and services, where RDF particularly addresses exchange on the Web.
Here, we will use the DOL text syntax in listings but also explain the RDF
vocabulary; for further details on the DOL syntaxes, see [6].

Semantics: (1) a direct set-theoretical semantics for the core of the language,
extended by an institutional and category-theoretic semantics for advanced
features such as ontology combinations (technically co-limits), where basic
ontologies keep their original semantics; (2) a translational semantics, em-
ploying the semantics of the expressive Common Logic ontology language for
all basic ontologies, taking advantage of the fact that for all basic ontology
languages known so far translations to Common Logic have been specified
or are known to exist8; (3) finally, there is the option of providing a collapsed
semantics, where the semantics of the meta-theoretical language level pro-
vided by DOL (logically heterogeneous ontologies and links between them)
is not just specified in semiformal mathematical textbook style, but once
more formalised in Common Logic, thus in principle allowing for machine
verification of meta properties. For details about the semantics, see [9].

Conformance criteria provide for DOL’s extensibility to other basic ontology
languages than those considered so far, including future ones. (1) A basic on-
tology language conforms with DOL if its underlying logic has a set-theoretic
or, for the advanced features, an institutional semantics. Similar criteria ap-
ply to translations between languages. (2) A concrete syntax (serialisation)
of a basic ontology language conforms if it supports IRIs (Unicode-aware
Web-scalable identifiers) for symbols and satisfies further well-formedness
criteria. (3) A document conforms if it is well-formed w.r.t. one of the DOL
concrete syntaxes, which particularly requires explicitly mentioning all logics
and translations employed. (4) An application essentially conforms if it is ca-
pable of processing conforming documents, and providing logical information
that is implied by the formal semantics.

7 The standard draft itself is not publicly available, but ISO/TC 37 has passed a
resolution to make the final standard document open, as has been done with the
related Common Logic standard [3].

8 Even for higher-order logics this works, in principle, by using combinators.

2 A Graph of Logic Translations

CL

HOL

Prop

SROIQ
(OWL 2 DL)

FOL=

FOLms=

OBOOWL

EL++
(OWL 2 EL)

DL-LiteR
(OWL 2 QL)

DL-RL
(OWL 2 RL)

DDLOWL

ECoOWL

ECoFOL F-logic

bRDF

RDF

RDFS

OWL-Full

Rel-S

subinstitution

theoroidal subinstitution

simultaneously exact and
model-expansive comorphisms

model-expansive comorphisms

grey: no fixed expressivity

green: decidable ontology languages

yellow: semi-decidable

orange: some second-order constructs

red: full second-order logic

OBO 1.4

CASL

UML-CD

CL-

Fig. 1. The logic translation graph for the DOL-conforming languages

Fig. 1 is a revised and extended version of the graph of logics and translations
introduced in [8]. New nodes include UML class diagrams, OWL-Full (i.e. OWL
with an RDF semantics instead of description logic semantics), and Common
Logic without second-order features (CL−). We have defined the translations
between all of these logics in earlier publications [9, 8]. The definitions of the
DOL-conformance of some central standard ontology languages and translations
among them will be given as annexes to the standard, whereas the majority will
be maintained in an open registry (cf. Sec. 3). Sec. 4 provides a more fine-grained
view on translations (and projections).

3 A Registry for Ontology Languages and Mappings

The OntoIOp standard is not limited to a fixed set of ontology languages. It
will be possible to use any (future) ontology language, logic, serialisation, or
mapping (translation or projection) with DOL, once its conformance with the
criteria specified in the standard has been established. This led to the idea of
setting up a registry to which the community can contribute descriptions of any
such languages, logics, serialisations, or mappings. In the current, early phase
of the standardisation process, we are maintaining this registry manually. With
the release of the final international standard, everyone will be able to make
contributions, which an editorial board will review and approve or reject. Fig. 2

Common Logic

SROIQDL-LiteR

CLIF

XCL

Manchester Syntax

OWL 2 XML

RDF / XML

Turtle

OWL 2 DL

RDF

RDFS

Common Logic

RDFS

RDF

OWL 2 QL

OWL 2 RL

OWL 2 EL

DL-RL

EL++

Serializations Ontology Languages Logics

supports serialization sublanguage of

induced translation exact logical expressivity

translatable to

sublogic of

Fig. 2. Subset of the OntoIOp registry, shown as an RDF graph

shows a subset of the OntoIOp registry: a subgraph of Fig. 1 in the “logic”
column, as well as related ontology languages and serialisations. Note that the
relation between ontology languages and logics generally is not bijective: e.g.
first-order logic is supported by various languages such as Common Logic, TPTP
and CASL.

Any entry of the registry shall be identified by an IRI, so that DOL ontologies
can refer to it. At these IRIs, when treated as URLs, there shall be a machine-
readable description of the resource according to the linked data principles (cf.
[5]), so that, e.g., any agent given a basic ontology can find out the languages
this ontology can be translated into (cf. Sec. 6 for an example), or that for
any language translation, its definition as well as implementations are available.
The most widely supported format for linked data is RDF; we have realised the
RDF vocabulary for the OntoIOp registry as a subset of the vocabulary used for
serialising DOL ontologies as RDF.9

Starting with a plain RDFS vocabulary, we soon realised that we could de-
liver added value to tools supporting DOL by encoding additional information
about the semantics of, e.g., translations into the vocabulary using some OWL
constructs, and eventually arrived at a richer formalisation that goes beyond

9 RDF only allows for describing, not for fully formally defining logics and translations.
To that end, we are planning to alternatively offer full formalisations in the richer
OMDoc language from the same IRIs.

OWL: the LoLa ontology. To realise the benefit of a machine-comprehensible
representation of this semantics in a rich ontology language, consider DOL’s
understanding of an ontology language translation: Unless a direct translation
on the language level has been specified (e.g. from Common Logic to CASL),
one can translate an ontology from a language La to La′ if the expressivity of
these languages is exactly captured by two logics Lo and Lo′, and Lo can (possi-
bly transitively) be translated to Lo′. In a plain RDF graph, this would require
multiple lookups.

4 Architecture of the LoLa Ontology

LoLa, the ontology of logics and languages, is implemented as a heterogeneous
ontology in DOL, consisting of the following modules:

– An OWL core provides classes and properties for the basic concepts, includ-
ing a basic axiomatisation.

– We use additional FOL axioms for closure rules not expressible in OWL,
such as non-expressible role compositions.

– We use circumscription [7, 1] for minimising the extension of default trans-
lations.

The OntoIOp registry, is implemented as an RDF dataset, acting as the
ABox of the LoLa ontology. The OntoIOp registry is available through a collec-
tion of linked data IRIs in the paths http://purl.net/dol/{logics,languages,

serializations,translations}, e.g. http://purl.net/dol/logics/SROIQ for the
logic SROIQ. We made it originally available in RDF/XML, the most widely
supported linked data format, but other syntaxes can be provided as well. It
can be browsed with frontends like uriburner; try, e.g., http://linkeddata.

uriburner.com/about/html/http/purl.net/dol/logics/SROIQ.

The OWL core of the LoLa ontology comprises classes for ontology languages,
logics, mappings (translations or projections) between ontology languages and
between logics, as well as serialisations. The LoLa properties relate all of the
former classes to each other, as shown in Fig. 2, e.g. an ontology language to
the serialisations that it supports, or to the logic that exactly formalises its
expressivity, or an ontology language mapping to the logic mapping it has been
derived from.

Fig. 3 shows the top-level classes of LoLa’s OWL module, axiomatising logics,
languages, and mappings to the extent possible in OWL. Concerning meta-level
classes (that is, classes for describing the graph of languages and logics), Fig. 2
already has illustrated the interplay of ontology languages, logics and serialisa-
tions.

Object-level classes (that is, classes providing the vocabulary for expressing
distributed ontologies) comprise ontologies, their constituents (namely entities,
such as classes and object properties, and sentences, such as class subsumptions),
as well as links between ontologies.

Fig. 3. Top-level classes in the OWL ontology

Mappings are modelled by a hierarchy of properties corresponding to the dif-
ferent types of edges in Fig. 1. For example, object properties such as translatableTo
model the existence of a translation between two languages. mappableToLanguage
models the fact that a language can be mapped to another one.

However, this only allows for covering the default translations between logics.
E.g., we can express that the default translation from SROIQ to F-logic is a
model-expansive comorphism. Besides further alternative translations that the
community may contribute, there is, however, also another translation, which can
be obtained from our graph, by composing the SROIQ →FOL= and FOL=→F-
logic translations, resulting in a subinstitution. For expressing such alternatives,
LoLa additionally reifies mappings into classes, whose hierarchy corresponds to
that of the mapping properties.

Fig. 4 shows the inferred class hierarchy below the class Mapping, as computed
within protégé. Notice that our ontology produces several cases of multiple
inheritance. Mappings are split along the following dichotomies:

– logic mapping versus ontology language mapping, cf. Fig. 2.
– translation versus projection: a translation embeds or encodes an ontology

into another one, while a projection is a forgetful operation (e.g. the projec-
tion from first-order logic to propositional logic forgets predicates with arity
greater than zero). Technically, the distinction is that between institution
comorphisms and morphisms [4].

– plain mapping versus simple theoroidal mapping [4]: while a plain mapping
needs to map signatures to signatures, a simple theoroidal mapping maps
signatures to theories. The latter therefore allows for using “infrastructure
axioms”: e.g. when mapping OWL to Common Logic, it is convenient to rely
on a first-order axiomatisation of a transitivity predicate for roles etc.

Moreover, we have a class DefaultMapping for mappings that are assumed auto-
matically as default when no mapping is given in a certain context.

Other classes concern the accuracy of the mapping, see [8] for details. These
classes have mainly been introduced for the classification of logic mappings; how-
ever, via the correspondence between logics (mappings) and ontology languages
(mappings), they apply to ontology languages as well. Sublogics are the most
accurate mappings: they are just syntactic subsets. Embeddings come close to
sublogics, like injective functions come close to subsets. If the model translation
is surjective (“model expansion”) or even bijective, the mapping is faithful in
the sense that logical consequence is preserved and reflected, that is, inference

systems and engines for the target logic can be reused for the source logic (along
the mapping). (Weak) exactness is a technical property that guarantees this
faithfulness even in the presences of ontology structuring operations [2].

The full OWL ontology is available at http://purl.net/dol/1.0/rdf#; it serves,
as said above, simultaneously as an RDF vocabulary for the linked dataset
that constitutes the OntoIOp registry, and for serialising DOL ontologies in
RDF—therefore the “rdf” name.

Fig. 4. The part of the OWL ontology concerning mappings

5 Putting It Together in DOL

DOL allows us to put together the pieces collected so far. First, we specify that
the RDF registry conforms with the OWL ontology. This is achieved by projecting
the registry from RDF to OWL10, and stating an interpretation of theories of
this into the OWL ontology.

We use circumscription [7, 1] for minimising the extent of the class Default-
Translation and thus implementing a closed world assumption. This feature
has been integrated into DOL in a logic independent way: in OWL, it has the
effect that classes and object properties are minimised, while in first-order logic,
extensions of predicates are.

10 Basically, this projection turns the RDF graph into an OWL ABox. Impredicativity
is escaped from by splitting names that are used in several roles into several distinct
names.

Furthermore, we use first-order logic to formulate logical axioms that exceed
the expressiveness of OWL. We here use the Common Logic Interchange For-
mat (CLIF) [3]. One such axiom states that supported logics propagate along
language translatability; see the ontology LoLaRules below.

%prefix(: <http://purl.net/dol/>

dol: <http://purl.net/dol/1.0/rdf#>

log: <http://purl.net/dol/logics/>

ser: <http://purl.net/dol/serializations/>

trans: <http://purl.net/dol/translations/>)%

distributed-ontology LoLa

%% projecting the RDF ABox to OWL

ontology ABox = registry hide along RDF2OWL end

%% TBox

ontology TBox = dol: end

%% the RDF registry conforms with the OWL ontology

interpretation conformant : ABox to TBox end

%% integrating RDF ABox with OWL TBox while minimising default mappings

logic log:OWL syntax ser:OWL/Manchester

ontology MinimizedABox =

ABox and TBox

minimize DefaultMapping %% circumscription-like minimisation

end

%% first-order rules for infering new facts in the registry

logic log:CommonLogic syntax ser:CommonLogic/CLIF

ontology LoLaRules =

(forall (subLa superLa lo)

(if (and (dol:translatableTo subLa superLa)

(dol:mappableToLanguage subLa superLa)

(dol:supportsLogic subLa lo))

(dol:supportsLogic superLa lo)))

...

end

%% combining OWL ontology with first-order rules

logic log:CommonLogic syntax ser:CommonLogic/CLIF

ontology LoLa =

dol: translate with OWL2CommonLogic

and

LoLaRules

end

6 Using LoLa to Query the OntoIOp Registry

DOL-conforming applications can explore and query the OntoIOp registry to
find out useful information about the logics and languages of concrete given
ontologies, or about logics and languages in general.

The following query in the SPARQL RDF query language, e.g., returns all
languages a given ontology is translatable to:

PREFIX dol: <http://purl.net/dol/1.0/rdf#>

SELECT DISTINCT ?target-language WHERE {

first determine, by querying the ontology itself, its language

<http://ontohub.org/ontologies/my-ontology>

dol:language ?theLanguageOfTheGivenOntology .

find out everything the language is translatable to

?theLanguageOfTheGivenOntology

dol:translatableTo ?targetLanguage ;

just to be sure: We are only interested in mappings to languages.

dol:mappableToLanguage ?targetLanguage .

(The use of two properties is owed to the orthogonal design of LoLa.)

}

This query assumes that both the information about the ontology and about
the OntoIOp registry are available in RDF and ready to be queried as SPARQL.
At the moment this cannot be taken for granted; however, we are working on
Ontohub, an ontology repository engine, which we will, at the same time, also
use to host the OntoIOp registry instead of the current static file deployment
[6].

Aiming at wide tool support, the linked data graph that we deploy has all
inferences of the LoLa ontology applied; this means in particular that, from a
translation between two logics, it is inferred that the corresponding ontology
languages are translatable into each other, and that the transitive closure of
the translation graph has been computed. Therefore, the query shown above
operates on a plain RDF graph, and the query engine does not have to have
further inferencing support built in.

The following query focuses exclusively on the OntoIOp registry. It answers
a frequent question in knowledge engineering: Which logic is the right one for
formalising my conceptual model? For the sake of this example, we focus on
knowledge representability and thus assume that a logic is suitable if it has
translations from and to many other logics. This ignores questions of availability
of reasoners for the respective logics, of tools performing the translations, and of
their performance. Such information is not yet available in the OntoIOp registry
itself, but could be compiled in a separate linked dataset that the registry would
link to.

PREFIX dol: <http://purl.net/dol/1.0/rdf#>

SELECT ?logic, COUNT(?targetLogic) AS ?t, COUNT(?sourceLogic) AS ?s WHERE {

?logic a dol:Logic ;

dol:translatableTo ?targetLogic ;

dol:translatableFrom ?sourceLogic .

} ORDER BY ?t, ?s

7 Conclusion and Future Work

We have presented LoLa, an ontology of logics, languages, and mappings be-
tween them. This ontology formalises the semantics not only of these aspects of
the Distributed Ontology Language DOL, but also of the vocabulary employed
in the OntoIOp registry for extending the DOL framework with further logics,
languages and mappings. LoLa is a heterogeneous ontology consisting of a core
OWL module, which declares the vocabulary and provides a basic formalisation,
a Common Logic module providing additional first-order rules; furthermore we
employ DOL’s logic-independent circumscription facility to minimise the exten-
sion of default translations. Along with our plans to publish not only machine-
comprehensible descriptions of logics and mappings, but full formalisations, we
will also expand LoLa to formalise further features of the DOL language, such as
the vocabulary that describes the accuracy of a mapping (cf. Sec. 4).

Acknowledgements

The development of DOL is supported by the German Research Foundation
(DFG), Project I1-[OntoSpace] of the SFB/TR 8 “Spatial Cognition”; the first
author is additionally supported by EPSRC grant EP/J007498/1. The authors
would like to thank the OntoIOp working group within ISO/TC 37/SC 3 for their
input, particularly Michael Grüninger for his advice regarding the hierarchy of
types of ontology translations.

References
1. Bonatti, Piero A., Carsten Lutz, and Frank Wolter, ‘The complexity of

circumscription in dls’, J. Artif. Intell. Res. (JAIR), 35 (2009), 717–773.
2. Borzyszkowski, Tomasz, ‘Logical systems for structured specifications’, Theoret-

ical Computer Science, 286 (2002), 197–245.
3. ‘Common Logic (CL): a framework for a family of logic-based languages’, Tech.

Rep. 24707, ISO/IEC, 2007.
4. Goguen, Joseph, and Grigore Roşu, ‘Institution morphisms’, Formal aspects of

computing, 13 (2002), 274–307.
5. Heath, Tom, and Christian Bizer, Linked Data: Evolving the Web into a Global

Data Space, 1 edn., Synthesis Lectures on the Semantic Web: Theory and Technol-
ogy, Morgan & Claypool, San Rafael, CA, 2011.

6. Lange, Christoph, Till Mossakowski, Oliver Kutz, Christian Galinski,
Michael Grüninger, and Daniel Couto Vale, ‘The Distributed Ontology Lan-
guage (DOL): Use cases, syntax, and extensibility’, in Terminology and Knowledge
Engineering Conference (TKE), 2012.

7. McCarthy, John, ‘Circumscription - a form of non-monotonic reasoning’, Artif.
Intell., 13 (1980), 1–2, 27–39.

8. Mossakowski, Till, and Oliver Kutz, ‘The Onto-Logical Translation Graph’, in
Oliver Kutz, and Thomas Schneider, (eds.), Modular Ontologies, IOS, 2011.

9. Mossakowski, Till, Oliver Kutz, and Christoph Lange, ‘Three semantics for
the core of the distributed ontology language’, in FOIS, 2012.

