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ABSTRACT
Cross-ontology concept subsumption relationships facilitate the

integration of ontologies by explicitly defining the generalization of
a concept over other concepts in different ontologies. However,
existing methods for discovering these relationships show poor
performances and one of the problems is the lack of instance
data in ontologies that can be used to identify cross-ontology
subsumptions reliably. To address the problem, we present a novel
method, SURD (SUbsumption Relation Discovery), which uses
annotations on biomedical text corpora for populating ontologies with
instances. Subsumption relationships between pairs of concepts are
then determined based on their shared instances. SURD shows
good performance when applied to biomedical ontologies, achieving
precision values of 0.786 and 0.729 for cross-ontology subsumptions
between the ontology pairs GRO-UMLS Metathesaurus and GENIA-
UMLS Metathesaurus respectively. As a practical application,
we used SURD’s subsumptions for automated ontological corpus
annotation and achieved F-measures of 0.693 and 0.783 on the
GRO and GENIA corpora respectively. These results are superior to
the results of using subsumption relations inferred from equivalence
relations (F-measures of 0.569 and 0.645) and subsumption relations
identified with Hearst patterns (F-measures of 0.002 and 0.096).

1 INTRODUCTION
Ontologies are continually being developed to model sub-domains
of the biomedical sciences. While the proliferation of ontologies
brings about greater expressivity in knowledge representation, it
also creates a new problem in knowledge sharing. Applications
using different ontologies face inter-operability issues when
relationships (e.g. equivalence, subsumption) between concepts
in different ontologies are not explicitly stated. The process of
discovering relationships between concepts in different ontologies
is known as Ontology Alignment (Euzenat and Shvaiko, 2007) and
extensive research has been performed in this area. However, the
majority of existing Ontology Alignment research focuses solely
on the discovery of equivalence relationships between concepts in
different ontologies. Equivalence relationships alone are insufficient
to fully support inter-operability, especially in the Biomedical
Science domain where ontologies are often orthogonal (Ghazvinian
et al., 2010) and few concepts from different ontologies are
semantically equivalent. Subsumption relationships complement the
equivalence relationships by explicitly stating the generalization of
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a concept over other concepts. In this paper, our objective is to
find subsumption relationships directly, without inferring them from
equivalence relationships.

For example, consider the integration of two populated
ontologies, O1 and O2, and a query of listing all instances of Ci

in the integrated ontology where Ci is originally a concept in O1.
The answers of the query consist of the instances of Ci and its
descendants in O1, as well as the instances of O2 concepts which
are semantic equivalences and descendants of Ci. We can find some
of the O2 instances by using equivalence relations between O1 and
O2 concepts. For example, if there is an ancestor concept of Cj ,
Cja, which is equivalent to Ci or one of its descendant concepts,
Cid, we can infer through description logics that Cj v Ci:

Cj v Cja ≡ Cid v Ci

However, it is not always possible to find equivalent concepts Cid

and Cja that act as bridges for inferring meaningful subsumption
relations. For example, if two ontologies are orthogonal, it is
most likely that only a few top-level concepts (e.g. Thing) are
shared by the two ontologies, and the subsumption relations of such
generic concepts are not very useful for knowledge sharing. We will
show that there are many subsumption relations between biomedical
ontologies that cannot be deduced from equivalence relations and
that they are highly useful for inter-operability between ontologies.

We propose an instance-based technique, SURD (short
for SUbsumption Relations Discovery) to find cross-ontology
subsumption relations directly. This technique determines whether
a subsumption relationship exists between a pair of concepts based
on the common instances they share. However, many existing
ontologies are schema ontologies with no instances (Ehrig et al.,
2005). We resolve this issue using a novel technique that uses
ontological annotations on biomedical literature as instances. Apart
from ontology integration, subsumption relations can also be used
for (semi-) automatic ontology annotation. This is most useful in
the biomedical domain in which comprehensive lexical resources
like UMLS exist. We further elaborate this application in Section 5.

The outline of the paper is as follows: Related work is presented
in Section 2. Section 3 describes the SURD technique that finds
subsumption relations between different ontologies while in Section
4, we describe the experiments we carried out and present the
results. We show applications of our technique in Section 5, before
finally concluding the paper in Section 6.
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2 RELATED WORK
The discovery of relationships between concepts in different
ontologies has been extensively researched and previous works
have been surveyed in (Euzenat and Shvaiko, 2007) and (Chua
and Goh, 2010). Techniques like ASMOV (Jean-Mary et al.,
2009) use logical inference on equivalence relationships to find
subsumption relationships as explained in the Introduction. The
subsumption relations found using these techniques have poor
coverage as there are many cases where subsumption relationships
can exist without equivalence relationships. We address this issue
by proposing an instance-based approach. van Hage et al., 2005
make use of text corpora for finding subsumption relations by
using Hearst patterns (Hearst, 1992). While Hearst patterns
work well in the general domain, their effectiveness is limited
when the domain is restricted to a specialized domain like the
biomedical domain where authors can safely assume that readers
have sufficient background knowledge. Therefore, the type of an
entity is seldom explicitly specified using such Hearst patterns as
“Ci such as/including/especially Cj” where Ci and Cj are concepts
from different ontologies. We tested the Hearst patterns on 1200
biomedical documents and could find less than 20 subsumption
relations between concepts from ontologies of our interest (see
Section 5 for details). In contrast, SURD shows much better
coverage for biomedical ontologies.

Instance-based methods (Doan et al., 2004; Kirsten et al.,
2007) have been used for finding equivalence relationships between
ontologies. However, these techniques cannot be widely applied
due to the difficulties in finding common sets of instances shared
by ontology-pairs. By using different ontological annotations on
the same set of biomedical documents, we are able to alleviate
the problem and allow instance-based techniques to be applied for
finding both equivalence and subsumption relationships.

Spiliopoulos et al., 2010 use machine learning to find
subsumption relations in the absence of instances. A model is
trained using intra-ontology subsumption relations in a pair of
ontologies before applying the trained model to concept-pairs in the
two ontologies to find cross-ontology subsumption relations. The
approach, known as Classification-Based Learning of Subsumption
Relations (CSR), is effective if both ontologies have similar
hierarchical structures. However, the biomedical ontologies we
analyze in this paper have quite different structures: For example,
the UMLS Metathesaurus’ hierarchical structure is rather flat,
considering its size, but GRO has a relatively deep hierarchical
structure. The SURD approach does not face this problem since it
is able to populate the ontologies with instances and is not heavily
dependent on the structures of ontologies.

3 METHODOLOGY
Given a pair of ontologies Oi and Oj , we want to find all triplets
< Ci, R, Cj > where Ci ∈ Oi, Cj ∈ Oj and R ∈ {≡
, @, A,⊥}. Ci ≡ Cj means that Ci and Cj are equivalent
concepts. Ci @ Cj indicates that Ci is a sub concept of Cj ,
while Ci A Cj means the inverse subsumption relation. Ci ⊥ Cj

means Ci and Cj have no subsumption or equivalence relationship.
SURD discovers equivalence and subsumption relationships by
populating the ontologies with instances from textual annotations
and using heuristics based on the shared instances of two concepts

to determine if a subsumption relationship exists between them. We
give an outline of SURD in Figure 1.
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Fig. 1. Overview of the Subsumption Relations Discovery (SURD)
technique

3.1 Using Annotations as Instances
We propose to populate ontologies with annotated phrases of
text from publicly available biomedical literature. Two types
of resources can be used: 1) Corpora manually annotated with
ontology concepts (e.g. GENIA Corpus (Kim et al., 2003), GRO
Corpus (Kim et al., 2011)) and 2) automatic ontology concept
annotations by using tools such as MetaMap (Aronson, 2001),
which is based on the UMLS Metathesaurus, and the NCBO
Annotator (Jonquet et al., 2009), an ontology-independent tool.
In this paper, we compare the GENIA and GRO corpora, which
are based on the GENIA ontology and the Gene Regulation
Ontology (GRO) respectively, with the UMLS Metathesaurus-based
annotations by MetaMap.

Given a pair of ontologies Oi and Oj , a corpus P consisting
of n documents, and two annotators Ai and Aj which annotate
the documents using Oi and Oj , respectively, we annotate the
documents in P using Ai and Aj to get two annotated corpora
Pi and Pj . Each phrase (or mention) mα in document dβ of P
annotated with a concept Cγ ∈ Oi(j) is then made an instance of
Cγ . Essentially, our objective is to compare two sets of annotations
on the same set of documents to find out which pairs of concepts
are frequently used to annotate the same mentions as subsumption
relationships potentially exist between these pairs.

The first step of our method is to locate mentions annotated by
both annotators. This is not always straightforward because different
annotators have different guidelines for annotation, particularly with
regards to mention boundary. For example, given the sentence “spi-
B, like spi-1, was found to be expressed in various murine and
human hematopoietic cell lines...”, annotator A1 might annotate
the mention hematopoietic cell lines with the concept Cell while
annotator A2 might annotate the mention cell lines with the concept
Cell Line. In this example, cell lines and hematopoietic cell lines
refer to the same semantic entity and thus, the concepts Cell and
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Cell Line share the same mention and form a candidate pair for
subsumption. We consider two mentions to be matches if they have
the same head noun.

3.2 Finding Subsumptions based on Shared Instances
We use an indicator known as the Co-Annotation Ratio (CAR)
to determine subsumption relationships. The Co-Annotation Ratio
between two concepts Cp ∈ Op and Cq ∈ Oq , CARpq , computes
the ratio of mentions annotated with both Cp and Cq to the number
of mentions annotated with Cp, and is expressed by the following
equation:

CARpq =
|{mp|mp : Cp, mq : Cq, mp ≡ mq}|

|{mp|mp : Cp}|

where the notation m : C, defines m to be an instance of concept
C and mp ≡ mq is true if mp and mq are matched in the mention-
matching step. CAR is asymmetric and we compare CARij and
CARji in order to determine the relationship between Ci and Cj .
We propose the following heuristics using the two indicators to
determine the concept relation:

1. If CARij is high and CARji is low, then Ci @ Cj

2. If CARij is low and CARji is high, then Ci A Cj

3. If CARij is high and CARji is high, then Ci ≡ Cj

4. If CARij is low and CARji is low, then Ci ⊥ Cj

The first rule states that, if a large proportion of the instances
(or mentions) belonging to Ci also belongs to Cj but only a small
proportion of the instances belonging to Cj belong to Ci, then
Ci is highly possible to be a subsumee of Cj . In fact, this is a
relaxation to the definition of a subsumption relation which depicts
that Cα @ Cβ if and only if all instances of Cα are also instances
of Cβ . We introduce the relaxed heuristic in order to enhance the
sensitivity of subsumption relation identification. The second rule
represents the converse of the first. The third rule states that if a
large proportion of the instances belonging to Ci also belong to Cj

and vice versa, we consider the two concepts to be equivalent. This
method of statistical analysis allows us to identify both equivalence
and subsumption relations at the same time. Lastly, if both Ci and
Cj have large proportions of instances which are not common, Ci

and Cj are most likely disjoint. In SURD, we consider a CAR≥ 0.5
to be high and a CAR < 0.5 to be low.

4 EXPERIMENT AND RESULTS
Experiments were performed on two pairs of ontologies using
two different corpora. The first is the GRO corpus with 200
PubMed abstracts and the second is the 2008 version of the GENIA
corpus consisting of 1000 PubMed abstracts. The two corpora
were manually annotated by human experts with concepts of
biological entities from two ontologies, namely the Gene Regulation
Ontology (Beisswanger et al., 2008), and the GENIA ontology (Kim
et al., 2006), respectively. 10400 mentions in the GRO Corpus
were manually annotated using 212 unique GRO concepts while
54533 mentions were manually annotated using 46 unique GENIA
concepts. We then annotated each corpus automatically using
MetaMap to get annotations based on the UMLS Metathesaurus.
17119 mentions in the GRO Corpus were annotated using 3063
unique UMLS concepts by MetaMap while 99626 mentions in the
GENIA Corpus were annotated using 5796 unique UMLS concepts.

Since the Metathesaurus is not a formal ontology1, we adopted the
OWL version of the Semantic Network ontology2 and extended it
by adding the Metathesaurus concepts used by MetaMap in the
annotation of the GRO Corpus and the GENIA Corpus to get
two ontologies, UMLSGRO and UMLSGENIA, respectively3.
SURD is then used to discover subsumptions between GRO and
UMLSGRO , and also between GENIA and UMLSGENIA.
Henceforth, we use UMLS to indicate either UMLSGRO or
UMLSGENIA when the corpus being referred to is clear.

The three ontologies were chosen because they have different
granularities. The GENIA ontology is a coarse-grained ontology
with leaf concepts which are general like Protein Molecule and
Carbohydrate. On the other hand, the Metathesaurus has a wide
coverage and its leaf concepts are mostly fine-grained and very
specific (e.g. p56 and Glucose). Therefore, we can expect to find
many subsumption relations between the two ontologies. GRO is
relatively coarse-grained, as compared to the Metathesaurus, but
has very specific concepts regarding the domain of gene regulation.
We show that SURD works well with the domain-specific ontology
GRO as well as with the generic GENIA ontology.

The output of SURD is a set of triplets ASURD(Oi, Oj) =
{< Ci, R, Cj >}. We evaluated this output ASURD(Oi, Oj)
by measuring the precision of a randomly chosen subset
AR

SURD(Oi, Oj) through manual validation by a biologist. We
were not able to measure the recall as we do not have a complete
reference set of subsumption relations between GRO-UMLS and
GENIA-UMLS. Since subsumption relations can be inferred from
equivalence relations, we also mark the triplets in ASURD(Oi, Oj)
which are inferrable from equivalence relations. This allows us to
find the discovered subsumption relations which are not redundant
and truly useful. The steps taken in our evaluation are as follows:

1. Finding relations in ASURD(Oi, Oj) that are inferrable from
equivalence relations
a. We use BOAT (Chua and Kim, 2012), a matcher for finding

equivalence relations, to find all equivalence relations
between Oi and Oj to get ABOAT (Oi, Oj).

b. ABOAT (Oi, Oj) is expanded to include subsumption
relations which can be inferred from equivalence relations.
For each equivalence correspondence Ci ≡ Cj , we add the
relations Cid @ Cja and Cia A Cjd for all Cid and Cjd,
descendants of Ci and Cj , respectively, as well as all Cia

and Cja, which are ancestors of Ci and Cj , respectively.

c. Triplets in ASURD(Oi, Oj) that are found in ABOAT (Oi, Oj)
are marked as inferrable.

2. Estimating the precision of ASURD(Oi, Oj)
a. Randomly select a subset of n triplets AR

SURD(Oi, Oj),
from ASURD(Oi, Oj).

b. A biologist familiar with the domain and ontologies
involved examines each concept pair (Ci, Cj) from triplet
< Ci, R, Cj >∈ AR

SURD(Oi, Oj) and assigns a relation
Rm ∈ {@, A,≡,⊥} to the pair.

1 http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html
2 http://krono.act.uji.es/people/Ernesto/UMLS SN OWL
3 The extended ontologies are available at http://nlp.sce.ntu.
edu.sg/SURD
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c. A triplet < Ci, R, Cj >∈ AR
SURD(Oi, Oj) is correct if

R = Rm.

d. Precision = Number of correct triplets in AR
SURD(Oi, Oj)

n

Table 1 shows examples of trivial (inferrable from equivalence
correspondences) and non-trivial subsumption correspondences
found by SURD where the source concept (from GRO or GENIA)
subsumes the UMLS concept in the same row. The correspondence
in row 1 is trivial because Cell from GRO is equivalent to Cell in
the Semantic Network (SN). Since Blood Cell is a subtype of Cell,
it can be inferred that Blood Cell v SN:Cell ≡ GRO:Cell → Blood
Cell v GRO:Cell. On the other hand, it is not possible to infer the
subsumption correspondence in row 3 because NF-kappa B is not a
subclass of any concept that matches GRO:TranscriptionFactor or
any of its descendants. SURD’s strength is that it is able to discover
subsumption correspondences even if there are no equivalence
correspondences linking concepts in the two ontologies. The list of
correspondences found using SURD can be downloaded from our
project Web site at http://nlp.sce.ntu.edu.sg/SURD.

Table 2 shows our evaluation results where we randomly selected
subsets of extracted relations and asked the biologist to manually
validate them due to the lack of reference dataset. SURD shows high
precisions of 0.786 and 0.729 for finding subsumption relations
between GRO-UMLS and GENIA-UMLS respectively. Note that
significant proportions of the relations correctly identified (42.3%
for GRO-UMLS and 86.6% for GENIA-UMLS) are non-trivial.
The percentage of correct non-trivial relations for GENIA-UMLS is
higher than that for GRO-UMLS because much fewer equivalence
relationships were discovered between GENIA and UMLS (19)
as compared to those for GRO and UMLS (79). With the high
precision and non-triviality on both ontology pairs, we used SURD
for automatic corpus annotations which we describe in the next
section.

No. Source Concept Source Ont UMLS Concept Trivial
1 Cell GRO Blood cell Y
2 Virus GENIA Sendai Virus Y
3 TranscriptionFactor GRO NF-kappa B N
4 Peptide GENIA Enkephalin N

Table 1. Examples of trivial and non-trivial subsumption relations found
by SURD

Relations Relations Correct Prec. Correct
Found Validated non-trivial

GRO-UMLS 1952 514 (26%) 404 0.786 171 (42.3 %)
GENIA-UMLS 5200 790 (15 %) 576 0.729 499 (86.6 %)

Table 2. Results of validation on relations found by SURD

5 AUTOMATIC CORPUS ANNOTATION
We make use of the subsumption and equivalence relations
discovered by SURD for automatic ontological corpus annotation.
This application is dependent upon UMLS, which is a well-known
lexical resource in the biomedical domain. By using MetaMap,

which automatically recognizes UMLS terms in text, we can locate
the instances of the UMLS Metathesaurus concepts and then link
them to the corresponding concepts of GENIA ontology and GRO
through the subsumption and equivalence relations. Note that we
can infer generalizations, but not specificities. In other words,
we can use CGRO w CUMLS relations, but not CUMLS A
CGRO relations. For example, we can infer that a mention NF
kappa B annotated with the concept Transcription Factor is also
a Protein if Transcription Factor @ Protein is true. However, we
cannot infer anything about the same mention from the subsumption
SOX9 @ Transcription Factor. The automatic annotation of
text with GRO concepts is a three-step process, as shown in
Figure 2. Sentences are first automatically annotated with UMLS
Metathesaurus concepts using MetaMap. Next, GRO concepts
which are equivalent to or more general than the UMLS concepts
are retrieved from the correspondences found by SURD. Lastly, the
retrieved GRO concepts are used to annotate the mentions which
their corresponding UMLS concepts were used to annotate.

The upstream region of the human homeobox gene HOX3D is a target for

regulation by retinoic acid and HOX homeoproteins.

The upstream region of the human homeobox gene

[UMLS: C1415679 (HOX3D)] HOX3D is a target for regulation by

[UMLS: C0040845 (Retinoic Acid)] retinoic acid and

[UMLS: C0242617 (Homeoproteins)] HOX homeoproteins.

The upstream region of the human homeobox gene

[GRO: Homeobox] HOX3D is a target for regulation by

[GRO: Organic Chemical] retinoic acid and

[GRO: Protein] HOX homeoproteins.

UMLS: C1415679 (HOX3D) < GRO: Homeobox

UMLS: C0040845 (Retinoic Acid) < GRO: Retinoic Acid

UMLS: C0242617 (Homeoproteins) < GRO: Protein

1) Annotate sentence with MetaMap

3) Convert MetaMap annotations to GRO annotations

using subsumptions

2) Look up subsumptions between UMLS and GRO

concepts

Fig. 2. Example of automatic ontological corpus annotation

To evaluate the performance, we use a cross-validation approach
where Precision, Recall and F-Measure are used as performance
measures. The following steps were carried out to evaluate SURD
when used for the automatic annotation of GRO Corpus with GRO
concepts by using MetaMap. The process was repeated for the
annotation of GENIA corpus with GENIA ontology concepts by
using MetaMap and any reference to GRO can be replaced with
GENIA for the second experiment.

1. Split the document sets, PUMLS and PGRO (i.e. the
GRO corpus annotated with UMLS and GRO concepts,
respectively), into 10 folds: F0, F1, . . . F9.

2. For each iteration t from 0 to 9, find the set of
triplets At

SURD(GRO, UMLS) using SURD, based on the
annotations in the documents in all folds but Ft.
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3. Filter At
SURD(GRO, UMLS) to keep only those triplets <

CGRO, R, CUMLS > where R ∈ {≡, A}
4. For each mention mi of fold Ft annotated with CUMLSi

by MetaMap in PUMLS , we annotate mi with each
concept CGROiα where < CGROiα,w, CUMLSi >∈
At

SURD(GRO, UMLS).

5. Consequently, a mention mi in fold Ft of PUMLS is annotated
with zero or more GRO concepts, which forms a set Xi =
{CGROiα|CUMLSi v CGROiα}. We use the reference
concept C′GROi to determine if mi is cross-annotated correctly,
where C′GROi is the concept used to manually annotate m′

i,
the matching mention of mi in PGRO . We find the average
Precision, Recall and F-Measure over all folds for a corpus
containing k mentions using:

• Precision = Σk
i |{CGROiα∈Xi|CGROiαwC′GROi}|

Σk
i
|Xi|

• Recall = Σk
i |{C′GROi|∃CGROiα∈Xi,CGROiαwC′GROi}|

Σk
i
|{C′

GROi
}|

• F-Measure = 2×Precision×Recall
Precision+Recall

Automatic annotation was also performed using the subsumption
relations found by BOAT (as described in 4) as well as those found
using Hearst patterns. We were not able to compare with CSR as
the tool is not publicly available. After manually validating all the
Hearst patterns in the two corpora, we were able to find only 3
subsumption relations for GRO-UMLS and 14 for GENIA-UMLS.

Table 3 shows the performance of automatic ontology annotation
using subsumption relations from the three techniques. Though the
annotations made using BOAT’s inferred relations have the highest
recall for the GRO Corpus, it is achieved at the cost of precision.
Similarly, the high precision of the Hearst method on the GENIA
Corpus is achieved at the expense of recall. SURD has the highest
precision for the GRO Corpus, the highest recall for the GENIA
Corpus, and the highest F-measures for both corpora. The last row
of Table 3 shows the average distance between reference annotation
C′GRO and its closest match CGRO identified using automatic
annotation, for all C′GROs that have matches. An average distance
close to 0 means that the automatic annotations are mostly identical
to the manual annotations, while a large average distance means that
mentions are often matched to more general concepts than those
of manual annotations. SURD has very small average distances
for both corpora. This shows that in addition to having higher
coverage, automatic annotations using SURD are almost identical
to the manual annotations.

GRO UMLS GENIA UMLS
SURD BOAT Hearst SURD BOAT Hearst

Precision 0.866 0.491 0.8 0.839 0.843 0.896
Recall 0.577 0.664 0.001 0.735 0.539 0.050

F-Measure 0.693 0.565 0.002 0.783 0.658 0.096
Avg. Dist 0.038 1.4 0 0 3.1 1.0

Table 3. Automatic ontological corpus annotation results

6 CONCLUSION AND FUTURE WORK
We have presented a novel technique for discovering cross-ontology
subsumption relations which uses ontological annotations on

biomedical text corpora to determine subsumption relations between
concepts that share mentions. The relations discovered are highly
precise and have wide coverage and can thus be used for integrating
a pair of ontologies with minimal expert curation. We also showed
that they can be effectively used for automated cross-ontology
annotations on biomedical corpora. For future work, we plan to
apply SURD to other biomedical ontologies and also complement
the equivalence relations found by BOAT with the subsumption
relations found by SURD for the integration of ontologies populated
with annotations so as to effectively perform semantic querying on
biomedical literature.
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