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Abstract—The history of science gateway development has, in 
many ways, been a story of the “Haves” vs. the “Have-nots.” 
Large infrastructure projects led the way, building thick client 
portals to provide coherent interfaces to an incoherent 
environment. Contrast this with the way the modern web is 
designed using light, front end components and outsourcing 
much of the heavy lifting to a mash-up of REST APIs, and it is 
easy to see why modern web applications can be prototyped and 
refined into stable products in the time it previously took thick 
client portals to do an initial release. This paper argues that a 
“build for today” philosophy can lead to the rapid development 
of science gateways to serve the “Have-nots.”  Also presented is a 
set of responsive front end components built on top of the iPlant 
Foundation API that provide the boilerplate for rapid 
development of lightweight science gateways using only HTML, 
JavaScript, and CSS. Using these components, developers can 
easily stand up new gateways or quickly add new functionality to 
existing ones. 

Keywords— Science Gateway, REST, API, web service, 
AGAVE, HTML5, JavaScript, web 

I.  INTRODUCTION 
The history of science gateway development has, in many 

ways, been a story of the “Haves” versus the “Have-nots.” 
Large infrastructure projects led the way, building thick client 
portals to piece together incongruent service stacks and provide 
cohesion to an incoherent environment. The field was 
dominated so thoroughly by these heavyweight portals, that the 
terms portal and gateway became interchangeable. A gateway 
was no longer just a means of access, it was an ecosystem of 
moving parts that all had to be managed and maintained over 
time for the gateway to work. The concept of modular design 
became a relative term. If one could take a component out of 
one monolithic framework instance and add it to another 
monolithic framework instance, then the component was 
modular. Disregard the background processes, supporting 
services, and database that needed replication in order for the 
module to work. If the UI could be reused, the component was 
considered modular. 

The resources required to build and maintain such portals 
made finding portals with long-term success rare. Whereas at 
one time portals were built as thick desktop clients, one of the 
reasons that portals gravitated from the desktop to the web was 
the ongoing cost of maintaining software on multiple operating 
systems. Even applications written entirely in Java require 
some platform-specific attention. That means multiple sets of 
unit tests, multiple testing environments, and most importantly, 

multiple investments of time writing system-specific code 
when the web only requires a single investment. 

Despite the cost and complexity, projects that could afford 
to make the investment in a portal did so gladly because the 
end product was well worth the cost. Portals brought cohesion 
to complicated infrastructure and made computational science 
accessible to researchers without computer science degrees. 
They pulled the focus away from the machines and put it back 
onto the science. 

Portals such as Cipres [1], GridChem [2], UltraScan [3], 
Galaxy [4], and NanoHub [5], just to name a few examples in 
the United States, continue to provide tremendous value to 
their user communities. The researchers using these portals 
have made discoveries leading to hundreds of published 
papers, multiple thesis and dissertations, and insights that 
would have taken significantly longer to realize, if at all. One 
cannot deny the value of such portals in today’s scientific 
process. 

The challenge portal-driven science faces is that for every 
scientist that has a portal like Cipres at their disposal there are 
hundreds more in the same domain who do not. No portal can 
meet the needs of everyone. Successful portals find their niche 
and focus on providing value to the researchers in that niche. 
Inherent in the design of a successful portal is the realization 
that it cannot and will not meet the needs of the vast majority 
of scientists who could otherwise derive value from similar 
tools. Thus, even within the highly technical research 
landscape there is a digital divide [6] between those who have 
advanced portal technology to facilitate their work and those 
who do not.  

Exact numbers are difficult to obtain, but a rough 
approximation is possible. The National Science Foundation’s 
Science and Engineering Indicator Report for 2012 (SEI) states 
that as of 2010, the US Science and Engineering (S&E) 
workforce is 6.65 million people [7]. Of them, 31% describe 
research and development (R&D) as a major work activity. If 
we consider only those with doctorates, 12% of those who 
describe R&D as a major work activity remain. This indicates 
that there are at least 247,000 PhD level workers in S&E 
actively conducting research in the US. Add to this the 
estimated 100,000 medical researchers in the US according to 
the Bureau of Labor and Statistics and we come to a lower 
bound of 347,000 for the number of researchers who could be 
impacted by portal technologies [8]. 

Looking again at SEI, we see a reasonably proportional 
investment in R&D across US S&E companies of roughly 6%. 



Given that the Pareto Principal applies to revenue distribution 
among businesses, we can infer an 80/20 split among industrial 
researchers [9]. With 20% having access to the latest high 
technology tools to perform their research and 80% utilizing 
effective, but cost-restricted technologies. In academia, SEI 
shows that the top 100 spending universities spent 80% of the 
academic R&D money in the US. This is significantly more 
lopsided ratio, but as a lower bound, the Pareto Principal holds 
for academic research as well. Thus, it is reasonable to assume 
at least an 80/20 split between the haves and the have-not 
across US R&D in both sectors today, indicating there are at 
least 277,000 underserved researchers in the US alone. 

II. BUILDING FOR TOMORROW 
How does one go about reaching the 277K scientists on the 

other side of the digital divide? Raising taxes to build 10,000 
portals is not realistic. It also does not address the 
fundamentally deeper issue of utility. That portals provide 
value to their users is well documented [10][11][12]. What 
value they provide and at what cost are less well-documented 
questions. We look at 5 portals from the XSEDE Gateways 
Program [13] as short case studies. 

 
Galaxy is an open, web-based platform for data intensive 

biomedical research. Scientists can download a copy of 
Galaxy for private use or they can use the hosted Galaxy 
instance, often called Galaxy Main. The Galaxy Main portal 
contains over 2500 application codes in its “Shed” that users 
can leverage for their work. Historically, the vast majority of 
users select a small number of codes that they use for all their 
work. In 2012, users ran over 100k jobs a month through 
Galaxy Main. In addition to application registration and job 
submission, Galaxy also supports visualization and data 
publication. Both are popular features, but neither is the 
primary focus of the portal. Does that mean that they were a 
waste of time? No. Galaxy Main serves over 28k users. There 
are many other features built into Galaxy, but the point of this 
observation is that as a portal, Galaxy casts a wide net and 
tries to provide something of value to every one its users. The 
price of doing so is added complexity, greater development 
costs, and a larger investment in supporting infrastructure to 
run the application. Initially funded by two awards totaling 
just under $1.4M in 2006 from the National Science 
Foundation (NSF), the additional use cases necessitated 
another round of funding totaling $1.1M from NSF. Recently, 
to support the expanding user community and support 
different resource utilization patterns, another round of 
funding totally $5.8M was obtained from the National Institute 
of Health to carry the project through 2018. Even for a 
successful portal like Galaxy Main, maintaining continuous 
funding and retaining talent are ongoing concerns.  

 
GridChem is a desktop application supporting the 

computational chemistry community. Its mission is to enable 
computational and experimental scientists to do more 
computational chemistry by providing capability computing 
resources and services at their fingertips. To that end, the first 

release of GridChem provided federated identity management, 
job tracking, system monitoring, scheduling, enforcement of 
proprietary software license agreements, distributed account 
management, large data management, full experiment 
reproducibility, and integration with application codes 
installed on the user’s local system. Many of the features took 
a significant amount of time to build which pushed back the 
first release of the software by nearly a year. However, after 
its first 3 years in production GridChem had enabled 500 plus 
researchers to publish over 60 papers and complete 6 
dissertations. The software was used as a teaching tool in 
undergraduate chemistry classes at The Ohio State University, 
the University of Illinois, and the University of Kentucky to 
expose hundreds of students each semester to computational 
chemistry. The value of GridChem is obvious, however that 
value came at the up front cost of 6 man-years of development 
at a cost of $2.7M to provide enough features to 
simultaneously support undergraduate students and full 
professors alike. Further operation led to another $1M in 
funding to support workflow integration and expanded support 
for determining appropriate parameters for use in different 
experiments. 

 
The Cipres Science Gateway is a public resource for 

inference of large phylogenetic trees. As of this writing, 
Cipres exposes 30 different tools for use on a preconfigured 
set of systems ranging from large shared compute clusters to 
private virtual machines. Users access these tools through a 
form-driven web interface. The process of developing Cipres 
included building multiple interfaces for each applications, job 
scheduling heuristics, data management, accounting systems, 
identity management, and integration with multiple 
infrastructure providers. These features took a significant 
amount of time, $4.5M in funding from NSF, and a very 
talented team of programmers to develop. The result of that 
work was a wildly successful portal. Cipres now serves over 
700 users and has been used to run nearly 100k simulations 
burning over 15M compute hours. After 18 months in 
production, Cipres’ usage was outgrowing its infrastructure. 
Due to the heavyweight nature of the infrastructure it took 
another year of development and $1.5M in funding from NSF 
to allow them to scale out to other systems and move away 
from a community account model. While growth is a common 
problem of success, this particular problem came at the end of 
the project’s original funding. Had it not been for the talent 
and passion of the development team, Cipres would not have 
been able to address its growing pains and, as such, would 
have stalled until the next round of funding arrived. 

 
NanoHub is web application built upon the Joomla CMS 

[14] and designed to support nanotechnology research and 
education. It provides over 270 simulation tools, 3800 
seminars, tutorials, and teaching materials, 200 distinct user 
groups, and a mature workflow engine called Pegasus, which 
supports job execution across heterogeneous systems. Behind 
NanoHub lies a series of web services, command line tools, a 
full CMS, and an application-authoring tool. The portal as a 



whole was built to support a large community and it does so 
very well. In 2010, NanoHub saw 10k users run 380k 
simulations. In 2011, 11k users ran 400k simulations. In 2012, 
12k users ran 410k simulations. Clearly a lot of people are 
doing a lot of work and the growth is cumulative year over 
year. Such usage indicates that the portal is reaching a 
significant number of people, exposing them to some 
functionality, helping them accomplish a specific task, and a 
percentage are coming back year after year. The numbers are 
impressive, but the behavior is consistent with other portals. 
Users come in, find a few tools and/or features of value to 
them, and make a routine using those specific tools and/or 
features for the duration of their interaction with the portal.  

 
Success comes at a price, and the price of building 

NanoHub was $14M from NSF. Sustaining NanoHub amid 
rapid growth has been an even more expensive activity. Their 
latest round of funding is $21.9M from NSF starting in 2013. 
To put that in perspective, NanoHub is a Joomla instance with 
a lot of custom plugins and some back-end services to support 
running nanotechnology simulations at an average rate of one 
simulation every 78 seconds. Looking at the CMS alone, the 
site receives 8.5 million hits a month. That is roughly half the 
traffic of edublogs.com, the leading educational blog provider 
in the world with 1.6 million blogs since 2005 [15]. Given 
comparable expenditures and team sizes between the two 
organizations, the cost of custom development and supporting 
the back-end infrastructure of NanoHub costs roughly 200% 
more than the total cost of running the website alone. 

 
The Extreme Science and Engineering Discovery 

Environment (XSEDE) [16] is a National Science Foundation 
(NSF) funded national cyberinfrastructure (CI) that provides a 
set of large resources for scientific simulation and analysis. 
The XSEDE User Portal (XUP), led by TACC, is the primary 
interface for users to XSEDE. It provides user account 
management, project management, documentation, data 
management, and a myriad of other features to help users be 
productive on the XSEDE CI. It was built on the Liferay 
Portal platform [17], an enterprise open-source Java portal 
framework. The Liferay platform itself provides many features 
out of the box, including a content management system, wikis, 
calendaring, web forms, user forums, security and access 
control, and user notifications. Liferay also provides a plugin 
development platform for extending the portal with plugins 
and portlets. As an enterprise portal, Liferay is one of the 
leaders in the field, but there is a significant financial and 
human cost associated with its use.  The cost of training, 
professional consulting, and enterprise support must be 
considered.  

 
XUP has a very different focus than the previously 

mentioned science gateways, and it is more of a “destination 
portal” then “science gateway”. But it is another example of a 
large, enterprise project that is designed to be a one-stop shop 
that provides users of XSEDE everything they need to be 
productive on XSEDE, excepting streamlined job execution. 

The development of the XUP is a continuation of the previous 
5 years of development of the TeraGrid User Portal [18]. The 
initial cost of development for the first TeraGrid User Portal 
was on the order of $800k. Since then another $1.7M has been 
invested in the dedicated team of developers maintaining 
active development on XUP, adding features, addressing user 
issues, and providing the general maintenance required of a 
portal with over 12,000 registered users that supports a variety 
of user communities within the XSEDE organization, each 
with different needs.  

 
In order to provide all of this functionality, the XUP, and 

to a lesser extend the XSEDE website, rely on a suite of 
services that provide the backend information services. These 
services include relational databases, non-relational “NoSQL” 
databases, SOAP and REST web services, flat file parsers, and 
many other services that interact directly with the resources in 
the XSEDE CI. The front end is built from many custom 
developed and specialized portlet applications, as well as out-
of-the-box Liferay portlets. The system works because the 
development team has administrative access to the entire 
XSEDE infrastructure. They are able to obtain information 
that other gateways simply do not have access to. As a result, 
the portlets developed for XUP and the functionality they 
provide cannot easily be replicated simply by copying over the 
portlet code. 

 
Each of the above portals is different in focus and function, 

but they are all successful science gateway projects and 
provide broad functionality. That functionality is often 
targeted at a small set of users who, for a given portal, will 
only ever use a subset of the features. The cost of these portals 
in terms of time and effort are all measured in multiple man-
years and millions of dollars before they ever had a single 
user. They were designed to accommodate thousands of users 
when they went live and they made sure they could support a 
thousand users before they tried to support one. From their 
inception they were targeting long-term operational goals 
rather than short-term results. To be clear, there is nothing 
wrong with that, but it is an important distinction to make. The 
image of a successful science gateway promoted over the last 
decade was a portal built to support users of tomorrow rather 
than something that will get the results they need today. 

III. BUILDING FOR TODAY 
The reality for many scientists on the wrong side of the 

digital divide is that they do not need portals built for 
tomorrow; they need gateways built for today. They are 
content using their current workflows, but are willing to adopt 
technologies that make their workflows more efficient, more 
powerful, or less painful. They will gladly set down Outlook 
for Gmail, their departmental FTP server for Dropbox, and the 
server under their desk for a virtual machine on Amazon. 
These scientists are not pushing the boundaries of size and 
scale, but they are, in aggregate, performing the bulk of the 
science done today. 

 



These scientists do not live in an enterprise world and 
their experimental processes are much less rigid than those of 
the organizations building the previously mentioned portals 
above. These scientists look for silver bullets, or the next best 
thing, to accelerate the time between proposal and discovery. 
And if a miracle doesn’t come, simply squeezing an extra 5% 
out of their week would be a huge win for them. 

 
Whether they realize it or not, these scientists have 

embraced the spirit of Agile [19] development that drives 
today’s web ecosystem. In contrast to the monolithic 
deliverable approach historically taken by portal projects, 
today's web creates and innovates at a blazing pace. Working 
from incremental release to incremental release, actively 
engaging users, and obsessing over a results-first focus 
enables high quality sites and services to be created and 
refined into stable products in the time it takes most portals to 
make their first release. One notable example being an 
application called Burbn, which over a seven-month 
timeframe morphed from a web application to an iPhone app 
to a cross-platform application, then changed its focus and 
relaunched as Instagram [20]. A second example is the social 
bulletin board site Pinterest, which spent 3 months in 
development before launch, then constantly adapted to user 
feedback over the next year before expanding as an iPhone 
app and exploding into the giant of today [21]. A third 
example is a relatively new startup called GivePulse [22], 
which spent 4 months iterating over designs and features with 
local philanthropic organizations before publicly launching as 
a site enabling the promotion, matchmaking, and coordination 
of volunteers with events. While each of these examples gives 
launch timelines in terms of months, their feature development 
cycles were on the order of 1-2 weeks with updates and bug 
fixes pushed out daily. 

 
In each of these examples, the product that went to market 

was markedly different from the project that was originally 
conceived. They survived due to their ability to leverage 
existing open source technologies, prototype ideas, and add 
small bits of functionality that they could present to their 
audience and find out if it had enough promise to invest more 
time into its continued development. 

 
When attempting to serve the needs of the lower half of 

the digital divide, developers would do well to learn from 
Instagram, Pinterest, and GivePulse and take these lessons to 
heart. Start first by understanding that not every project can or 
should be the next big thing. Providing a tool that helps a 
researcher to see a problem in a different light and enables the 
discovery of a solution is a significant contribution in its own 
right. The gateway does not need to serve every conceivable 
user community to be a success.  

 
While much of what one interacts with on the web is 

provided as a hosted service, i.e. Facebook, Gmail, DailyMile, 
etc., there is no reason that every gateway should be a hosted 
service. Most new desktop computers have more CPUs, 

memory, and disk available than the virtual machines 
powering the hosted services we rely upon. Furthermore, 
modern web browsers are constantly evolving with powerful 
new features both for the user and the developers of web 
applications. At the same time, as more browsers have adopted 
web standards put forth by the W3C [23] these features are 
more available for use natively in the browser without the 
need for polyfills such as Adobe Flash [24]. Some of these 
features can even leverage advanced capabilities of the 
underlying system such as GPU accelerated CSS rendering 
and animations. The latest CSS modules, such as transforms 
[25] and transitions [26] are even beginning to push the 
boundaries of 3D graphics. Combined, this makes the 
development of feature-rich, high-performance, and reliable 
web applications using only HTML, CSS, and JavaScript a 
reality.  

 
By moving away from monolithic frameworks and large, 

server-side stacks to client-side applications built using only 
HTML, CSS, and JavaScript and leveraging RESTful APIs, 
one can rapidly develop powerful, targeted applications that 
can be quickly deployed, are highly scalable and “cloud-
friendly.”  

 
One example is a tool created by Andre Mercer, an 

undergraduate student at the University of Arizona. Andre 
created a simple web page that submitted a request to the 
iPlant Foundation API to run a GeneSeqer job [27]. He spent 
an afternoon creating the page, then showed it to his 
supervisor, iterated a handful of times on the wording and 
default settings, then pushed it out into the group’s website. 
Jon Duvick, a bioinformatician in a sister group saw the tool 
and decided to add it to his site as well as embedding it as part 
of his cloud-based annotation pipeline. Based on the success 
of the original tool, Andre is now adding data browsing via a 
jQuery [28] dialog box to the form so users can run analysis 
on files stored in the Cloud as well their desktop. 

IV. BUILDING ON A SOLID FOUNDATION 
One of the reasons that applications can be built with such 

light front ends is that they now rely upon a growing number 
of web-friendly APIs for much of the work. The API 
watchdog Programmable Web has tracked the growth and 
adoption of APIs since 2005 and has seen an explosion of new 
APIs in the last 2 years [29]. Much of this growth has been 
attributed to the fact that, “APIs are helping companies do 
business, with the tradeoff between adding an external 
dependency being out-shined by the ability to move faster 
building upon someone else’s expertise [30].” In short, APIs 
allow companies to run lighter and move faster. 

 
For new applications the abundance of APIs completely 

changes the established paradigm. API providers offering 
access to cloud storage, authentication, identity management, 
and Backend-as-a-Service (BaaS) [31] have redefined how 
applications are built. Things that used to take months to build 
and test are now leveraged as hosted services and integrated in 



an afternoon. One well-known benefactor of building on the 
shoulders of other APIs is the communication platform 
provider Twilio [32]. From its inception Twilio has leveraged 
Amazon Web Services to handle spikes in demand and offload 
much of its compute load while focusing on the core part of 
their service, the communication platform. 

 
Of the thousands of public APIs available today, and the 

hundreds targeted towards science, there are remarkably few 
that provide a generic platform for computational science. The 
SoapLab [33] project provides mechanisms for accessing 
SOAP services through a common interface, but it does not 
deal with federated identity, sharing, or access control. The 
NEWT project exposes HPC systems on the web, but is 
restricted in scope to systems and services at NERSC [34]. 
Recently, the CHAIN project has promoted an end-to-end 
solution for science gateway development based on open 
standards including JSR 168 and 268, OpenLDAP, SAGA, 
and PKSC-11 [35]. The framework is still relatively new at the 
time of this writing and as such, could not be included in the 
evaluation process leading up to the development of the 
solutions described in this paper. Based on early successes, 
CHAIN seems like an exciting project to watch going forward. 
The target audience and advertised use case, however, are 
more in line with traditional portal development than 
lightweight gateways creation. The gUSE project provides a 
mature web service framework for running workflows, storing 
data, and registering applications [36]. Further, it has existing 
integration with the WS-PGRADE portal to provide an out-of-
the-box front end based on Liferay. As with CHAIN, the 
PGRADE and gUSE project timelines ran parallel to that of 
the work in this paper. Futhermore, the approach taken by 
gUSE to provide a SOAP-based service stack runs counter to 
the desire of current web developers to interact with REST 
services in an asynchronous manner. 

 
In response to the dearth of platform APIs available for 

general science the iPlant Collaborative created the 
Foundation API [37]. The Foundation API is a RESTful 
Science-as-a-Service platform for building modern 
applications. It includes services that allow consumers to 
securely conduct science, manage data, and share and curate 
their work. Foundation exists as a hosted, multi-tenant cloud 
service that is freely available to the open science community. 
Version 1 of Foundation supports the following services. 

 
• Apps: Allows users to register and discover scientific 

codes that can be run via the Jobs service. There are 
currently over 160 scientific codes both public and 
private that can be run across multiple high 
performance compute systems. 

• Auth: token-based authentication service. Issues 
limited use tokens that can be restricted to a 
timeframe and number of uses and revoked when 
needed. 

• Data: Acts as a Rosetta stone for biological data. 
Supports the conversion of data between known 
formats. 

• IO: provides multiprotocol data movement and 
management. 

• Jobs: Handles the end-to-end execution of registered 
applications on a heterogeneous set of systems 
ranging from HPC to raw VMs. 

• Monitor: constantly monitors Foundation and its 
dependent services. Provides real-time and historical 
monitoring test results. 

• PostIt: pre-authenticated URL shortening. 
• Profile: search and view profiles of other users within 

the API. 
• Systems: provides information about systems 

available from Foundation including status, stats, and 
accessibility. 

 
Since its initial release in November 2011, the Foundation 

API has supported over 250 unique projects representing 10k 
scientists worldwide. Users burned nearly 9M SUs running 
over 10k jobs, leveraging 200 application codes installed on 
HPC systems at PSC, SDSC, and TACC. Version 2, due out 
prior to the publication of this paper, will add the following 
services as well as expanded support for system registration, 
federated identity management, additional execution 
platforms, and a more mature callback system. 
 

• Systems: discovery and register storage, 
authentication, and execution systems for use 
throughout the API. 

• Transfer: move data from anywhere to anywhere 
using multiple protocols. 

• Metadata: create, search, and infer metadata about 
any resource (file, job, person, system, etc.) within 
the API. 

 
By hiding all the heavy lifting of accessing systems, 

moving data, running simulations, and establishing 
relationships between people, data, and devices, consumers 
are freed up to focus on their science and developers are able 
to focus on innovation at the application layer rather than 
infrastructure at the system level. 

V. YOUR NEXT SCIENCE GATEWAY 
Turning back to Andre’s GeneSeqr form, this tool is as 

basic an example of a science gateway as one can find, but it 
gets the job done. A scientist with remedial programming 
capabilities can stand up a static web page on their personal 
computer, a public web server, or on a CDN such as their 
public Dropbox folder, Amazon S3, or even a free Yahoo 
Sitebuilder page. When technology is that easy to adopt and 
reuse, the possibility for it to reach a broad audience increases 
dramatically. The question then becomes, how can we build 
tools to accomplish tasks requiring a bit more complexity and 
interaction and yet make them as simple to adopt and reuse as 
Andre’s GeneSeqr form?  



In recent years, a variety of toolkits and frameworks for 
developing modern web applications have emerged that aid in 
the development of lightweight, responsive, standards-driven, 
front-end components. These projects are open source, have 
very large user communities, and are supported by real 
companies such as Twitter (Hogan.js, Bootstrap) [38][39], 
DocumentCloud (Backbone.js, Underscore.js) [40][41], and 
Google (Yeoman.io) [42]. Furthermore, as HTML5 has come 
into its own and the development of single-page applications 
has become commonplace in the commercial web, it makes 
sense to begin using these technologies in science gateways. 
 

With the goal of building tools that are simple to adopt 
and reuse in mind, we have developed a toolkit using these 
frameworks with the intention of doing for science gateways 
what jQuery did for JavaScript and Web 2.0. We leverage the 
iPlant Foundation API as a backend, and provide plugins for 
Backbone.js that allow a Backbone.js application to easily use 
the Foundation API without the developer needing detailed 
knowledge of its inner workings. These plugins provide 
implementations of the objects in the API as Backbone 
Models and Collections that can be readily used to build 
science gateways. This allows the gateway developer to focus 
more on gateway development and less on handling the web 
service calls to the backing API. 

TABLE 1. THE FULL LIST OF FOUNDATION API BACKBONE.JS PLUGINS 
AND THE FUNCTIONALITY THEY PROVIDE. 

Plugin Name Functionality Provided 
backbone-foundation Core support for using Foundation API 
backbone-foundation-apps Application discovery and registration 
backbone-foundation-data Data transformation and staging 
backbone-foundation-io Data management and movement 
backbone-foundation-jobs Job submission and monitoring 
backbone-foundation-profile Identity management 
backbone-foundation-systems Resource discovery and monitoring 
backbone-foundation-post-it Pre-authenticated URL shortening 

 
The Backbone-Foundation library is broken into separate 

plugins that can be included in an ad hoc manner based on the 
needs of the application. At the core is the main backbone-
foundation.js file, which provides functionality for basic 
interaction with the Foundation API.  By providing extensions 
of the default Backbone Model and Collection objects, the 
Foundation API can be used transparently through the 
standard Backbone API. Also in this plugin is an 
implementation of the Foundation Auth API and Model 
objects for authenticating and obtaining API tokens for 
authenticated use of the API. Finally, we include an Events 
object that can be used to manage API-aware events across the 
application. 

 
Support for the remaining Foundation services is provided 

by the additional Backbone plugins listed in Table 1. Each 
plugin depends on the Backbone-Foundation core library to 
provide the API integration. The only other dependency of the 
Backbone-Foundation library is Backbone.js itself. 

 

We selected Backbone as platform for multiple reasons. 
Backbone adheres closely to our build-for-today design 
philosophy. It is specifically designed for developing rich, yet 
lightweight client-side applications that utilize a RESTful API 
backend. Backbone applications follow the Model-View-
Controller (MVC) design pattern making for code that is easy 
to develop, maintain, and extend. As a JavaScript application 
framework, it can be easily integrated into other environments 
and web platforms such as Liferay or Drupal. Finally, 
Backbone is a widely used and popular framework with an 
active user community and multiple examples of large-scale 
applications built on top of it. Two examples of large-scale 
Backbone users are the Khan Academy [43] and Coursera 
[44], both providers of massively open online courses 
(MOOC). One can imagine the benefits of having a 
computational science course with labs and homework that 
included hands-on access to a computational environment 
where students can gain experience using actual large-scale, 
high-performance computational systems. Using the 
Backbone-Foundation plugins we have developed, these 
MOOC providers could easily integrate the Foundation API 
into coursework offered through those sites. 
 

 
Figure 1. A standalone boilerplate gateway built using Backbone.js and 
the Backbone-Foundation plugins. This application leverages the iPlant 
Foundation API to provide authentication, data management, application 
discovery, and job submission with no backend other than the 
Foundation API. 

 
We have also developed a complete Backbone application 

(Figure 1) as a boilerplate science gateway using the 
Backbone-Foundation library. The Backbone-Foundation 
library and Foundation API are white-label components that 
can be readily and easily used to develop your own science 
gateway. This application is built using Backbone for the 
application framework, Twitter Bootstrap for the front-end 
components and HTML structure, and has no backend other 
than the Foundation API and a web server to host the static 
assets (which could also be hosted out of the Foundation API).  



               
 

Figure 2. Embedding gateway widgets as a page in privately hosted CMS. From left to right: Wordpress, Drupal, Joomla, and Liferay sites. 
 
The development of this boilerplate application took a single 
developer less than a month to complete and includes 
authentication, data management, application discovery, and 
job submission. 
 

Lastly, we have developed a collection of embeddable 
“widgets” that provide discrete slices of functionality that can 
be used immediately to add advanced capabilities to any web 
page or existing portal or gateway with no more effort than 
adding a Twitter “Tweet this” or Facebook “Like” button. 

 
These widgets are also built on top of the Backbone-

Foundation plugin library. To include a widget in a page, the 
page author only needs to add a reference to the widgets script 
and a single div tag with the widget configuration contained in 
data attributes on the tag. The widgets script acts as a scout 
script to discover the widget div, determine the desired widget, 
and then inject the appropriate widget into the page. 
 

Foundation widgets can be easily used in any HTML page 
and many CMS platforms such as Wordpress, Drupal, or 
Joomla (Figure 2). And because they leverage the Foundation 
API backend and don’t require local server configuration to 
use, they can be used even on cloud-hosted sites such as 
Wordpress.com. 

 
The widgets available at the time of this writing include a 

drag-and-drop file uploader, an application discovery widget, 
and a job execution widget. The uploader widget gives a drag-
and-drop upload functionality using the HTML5 FileAPIs 
allowing users to drag files from their desktop into the web 
browser in order to upload to the iPlant Data Store. The 
application discovery widget allows embedding up-to-date 
lists of available iPlant applications into any page essentially 
providing an application catalog for browsing and searching 
applications. The job execution widget allows the embedding 
of an application-specific job submission form in any page.  

VI. GETTING FROM TODAY TO TOMORROW 
The discussion on building for today has been targeted at 

researchers developing new gateways up to this point. 
Previous sections have demonstrated how one can bootstrap 
an idea into a functional science gateway with a relatively 
short ramp-up using existing APIs and services like the 
Foundation API. However, these same development principles 
can benefit existing gateways and portals, enabling the rapid 

development and deployment of new features in a results-
driven fashion no matter how established an existing portal 
may be. 

 
 Consider the example of the Liferay enterprise platform. 

Just as with the CMS platforms mentioned above, one can 
drop in a Foundation application using only HTML and 
JavaScript, and utilizing the Liferay Web Content Display 
portlet as shown in Figure 2. Or, if something more robust is 
needed, the application can be wrapped in a portlet and 
deployed it in the same way one would deploy any custom 
portlet. 

 
Whether this functionality is packaged as content (HTML 

and JavaScript) or as a plugin, module, extension, or JSR 268 
portlet for a specific platform, migrating the functionality from 
a lean prototype gateway using these tools, to an enterprise 
solution with all the bells and whistles is a trivial process. 
Deploying features built entirely on the front end is not a 
deliverable that consumes months of time and effort. On the 
contrary, it is more akin to migrating static content from one 
site to another. 

 
Finally, as mentioned above, forward integration isn’t 

limited to wrapping bits of functionality as pages. It is possible 
to embed custom widgets to provide one-off functionality such 
as activity streams, share buttons, data drop boxes, submission 
forms, and directory trees just to name a few. 

 
The process of embedding a widget is the same as that of 

adding a page. However, for easier adoption, an AJAX driven 
widget generator is provided on the Foundation API 
developer’s website to help users create widgets based on their 
unique constraints such as styling, default values, and 
restricted permissions.  

VII. CONCLUSION 
Science gateway development has historically been an 

enterprise effort. In recent years, the introduction of 
lightweight web technologies and REST APIs have changed 
the way modern applications are built. By leveraging the 
technologies of today and decoupling complex infrastructure 
from gateway front ends, developers can respond to change 
faster, innovate more quickly, prototype more easily, and 
drastically reduce their time to production. This paper presents 
a set of reusable, white labeled, front end components written 



entirely in HTML, JavaScript, and CSS that leverage the 
Foundation API and enable just such a transformation. By 
utilizing the backbone-foundation plugins as fully functional, 
interchangeable components, both new and existing gateways 
can shift their attention from tedious integration to rapid 
innovation that can impact researchers today rather than 
tomorrow. Both the gateway components and the Foundation 
API are freely available for use today at 
https://foundation.iplantcollaborative.org. 
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