
ICAT Job Portal: a generic job submission system
built on a scientific data catalog

Stephen M Fisher
Scientific Computing Department
Rutherford Appleton Laboratory

Didcot, OX11 0QX, UK
Email: dr.s.m.fisher@gmail.com

Kevin Phipps
Scientific Computing Department
Rutherford Appleton Laboratory

Didcot, OX11 0QX, UK
Email: kevin.phipps@stfc.ac.uk

Daniel J Rolfe
Central Laser Facility

Research Complex at Harwell
Rutherford Appleton Laboratory

Didcot, OX11 0QX, UK
Email: daniel.rolfe@stfc.ac.uk

Abstract—The value of metadata to the scientist is well known:
with the right choice of metadata, data files can be selected
very quickly without having to scan through huge volumes of
data. The ICAT metadata catalog[1] (which is part of the ICAT
project[2]) allows the scientist to store and query information
about individual data files and sets of data files as well as storing
provenance information. This paper explains how a generic
job management system, exposed as a web portal, has been
built on top of ICAT. This gives the scientist easy access to a
high performance computing infrastructure without allowing the
complexities of that infrastructure to impede progress.

The aim was to build a job and data management portal
capable of dealing with batch and interactive work that would
be simple to use and that was based on tried and tested, scalable,
and preferably open source technologies. For the team operating
the portal, it needed to be generic and configurable enough so
that they can, without too much effort, modify their software
to run within the portal, add new software, and create new
dataset types and parameters. Modifications to existing software
should be limited to saving and loading their datasets in a slightly
different way so that instead of just being saved to disk, they are
registered within the system along with recording any provenance
information.

I. INTRODUCTION

The ICAT Job Portal (IJP)[3] builds upon the tried and
tested ICAT data catalog, an existing component written
specifically to catalog datasets produced by scientific facilities.
It uses ICAT as the central database component which also
provides authorization via a flexible rules based system. This
means that users will only be shown datasets readable by them,
and any datasets produced whilst using the Job Portal will also
be protected by relevant permissions.

While developing a prototype portal to meet the needs of
one group it became apparent that it could be made generic
and configurable enough to be used by a wide range of teams
within the scientific community.

A. ICAT the metadata catalog

ICAT is a data catalog specifically aimed at scientific facili-
ties into which data are stored based on the following hierarchy
of entities: Facility, Investigation, Dataset and Datafile. The
“Facility” produces the data for a group of users associated
with an “Investigation”. Within the investigation “Datafiles”
are grouped into “Datasets”.

Each entity has a small agreed set of attributes. To make
the system extensible, parameter types can be defined and
associated with one or more of the entity types. Actual
parameters of those types can then be associated with the
corresponding entities. For example a parameter type could
be defined for current measured in milliamps or elapsed time
measured in seconds.

Further entities Application, Job, InputDataset and Output-
Dataset allow the provenance of datasets to be stored within
the catalog, such that it is possible to trace the derived dataset
back through a chain of applications and intermediate datasets
to the original raw dataset.

ICAT is implemented as a SOAP based web service using
the mechanisms provided by the Java Persistence Architecture
(JPA) to connect to a relational database. ICAT has rule
based authorization and a powerful query language which is
translated into the JPA query language (JPQL).

The data files are not stored within ICAT itself, but are
stored within an ICAT Data Service (IDS)[4] as explained
below.

B. IDS the ICAT Data Service

This is a component, defined by its interface which is able
to store files and register their metadata in ICAT. It makes use
of ICAT for authorization. If ICAT allows the file metadata
to be written then the IDS will allow the file to be written.
Control of who can read follows the same pattern.

II. BACKGROUND

A. Use Case

This work was motivated by a request from the Lasers
for Science Facility (LSF) of the UK Science and Technology
Facilities Council (STFC) to help them with their data. The
LSF operates the OCTOPUS imaging cluster[5], a central
core of lasers coupled to a set of advanced interconnected
microscopy stations that can be used to image samples from
single molecules to whole cells and tissues. They had accu-
mulated a large number of data files stored in a directory
structure. They had both a range of applications to process
and visualise that data[6] and an interactive program with an
easy to use GUI that would scan through a selected part of the
file system to collect information in memory about their data
then offer lists of raw datasets and lists of processed datasets

and offer the ability to process those datasets with a fixed set of
interactive jobs. The main problem with this solution was that
it was not scalable; the user had to restrict himself1 to a small
part of the available data each time the GUI was launched
as the program had to scan the data afresh each time it was
started which took time proportional to the volume of data.
In addition the user needed a machine allocated to him with
a personal account on that machine to allow him to run his
work. This machine was hidden from off site users by a firewall
requiring his presence on site or the use of a VPN. Relieving
the bottlenecks of data, job and user management would enable
a significant improvement to the user experience and enable
more effective exploitation of the OCTOPUS facility.

After development of a prototype solution it was realised
that there was a need for a generic solution so that LSF could
quickly and easily add new dataset types and job types without
needing to go back to the developers to make coding changes.
Our funders also favoured a generic solution that could be
deployed for other facilities which led to formulating a set of
requirements some of which are listed in the next section.

B. Requirements

Following analysis of the prototype the requirements were
refined. Some of the key requirements are listed below.

1) System accessible via both GUI and command line
from on and off site.

2) All the systems should have automated installation of
OS and software updates.

3) Centralised user/group management.
4) A file server must be able to store raw data from

microscopes, analysed data and other user data. All
data must be backed up and “old” data migrated with
an easy mechanism to restore it when needed.

5) All data should be managed with a single point to
consult the metadata to find out what is where.

6) Ability to upload and download data.
7) The ability to submit batch jobs to a set of Linux

nodes, some with CUDA GPU capability. Listing,
cancelling and retrieving output from jobs must also
be supported.

8) The ability to run interactive GUI based analy-
sis/visualisation jobs able to access data.

9) Select and submit multiple datasets for processing
through applications. This must cover both multiple
jobs with one dataset per job, or a job which will
process all selected datasets.

10) Any menus must be configurable, as must the types
of datasets that can be stored, jobs that can be run
and job parameters associated with a job type.

C. Possible solutions

Consideration was given to OMERO[7]; however this is
more suited to viewing and performing simple analysis of
images rather than the specialised analysis codes developed
by LSF and it it does not meet requirement 10.

1Gender specific terminology should be interpreted as non-gender specific
throughout this paper.

https rdp

Remote
Desktop

client

ICAT Job Portal webapp

Torque batch server

Prepare
job

Facility
software

Torque worker node

Worker Node nWorker Node 1Head Node

Submit batch job

Assign
interactive

job

Assign
batch

job

Run batch job

Web
browser

User's PC

Fig. 1. Architecture overview

JEE Application Server

ICAT

IDS

Job Portal

Torque batch server

XML Job Descriptions
and Job Dataset
Parameters

 File
storage

 Jobs
database

Metadata
database

Head Node

Fig. 2. The head node

IBM’s Platform Application Center[8] provides a means to
describe jobs in XML and submit them however though it does
meet requirement 10 it fails 4 and 5.

The Galaxy portal[9] is quite close to meeting our require-
ments and also provides workflow support. Its main drawback
is that it describes itself as a genomics workbench and as
such is too focused on one discipline. This paper also contains
interesting comparisons with other genomics workbenches.

As we have a good metadata catalog: ICAT, and a matched
data service: the IDS, we decided to build directly on those
components.

III. SYSTEM ARCHITECTURE

The architecture shown in Fig. 1 is based around a single
head node acting as a central point for all communications and
an extensible number of worker nodes which can be added to
in the future in order to increase the job handling capacity of
the system.

The head node which is shown in more detail in Fig. 2
hosts an application server (currently Glassfish) running the
Job Portal, ICAT and IDS software and acts as the head node
for a batch system (currently Torque[10]).

Worker nodes have this role within the batch system but
may also be assigned temporarily to a user for interactive work.

They should be capable of running all the facility software that
users require and they are able to communicate with ICAT for
metadata and with the IDS for data, both of which run on the
head node.

A. Batch jobs

It is essential that a batch job belonging to one user cannot
access the account of any other user. To achieve this a batch
job is submitted to run on an account chosen randomly from
a pool. Each worker node is configured to run a very small
number of concurrent jobs. The job has a prologue which is
run before the user’s job. This tries to get a lock by creating
a directory to ensure that two jobs cannot run simultaneously
under the same account. If it fails it will issue a return code
that causes the job to be requeued. The epilogue, which is
run after the job, frees the lock if it is run by the same job
that created it. The batch pool should be sufficiently large that
requeuing is rare. There is a mechanism to tidy up if things
go wrong.

B. Interactive Jobs

Although most batch systems do have some kind of interac-
tive job capability we found it convenient to provide the desired
functionality outside the batch system. For these jobs, the most
lightly loaded worker node is found, any running batch jobs
are suspended, the node is made temporarily unavailable for
new batch jobs, and the user is given exclusive use of that node
to run the interactive job. To achieve this, the user is supplied
with a username taken from a pool and a temporary password,
allowing a remote desktop connection to be established via the
RDP protocol to the worker node. This will typically be either
via the Remote Desktop Connection application in Windows
or using the rdesktop command on Linux systems. The account
will have been configured such that the interactive job that the
user has requested will start automatically. The user is only
given a short time to connect to the worker node machine
before the password is removed. Once the user has logged out
the system will remove the account, along with any local files
that may be left, and will release any suspended jobs that were
on the machine and make the machine available to the batch
system again.

C. Ganglia monitoring

All nodes within the system are configured to make use of
the Ganglia Monitoring System. Currently this is being used
to select the most lightly loaded machine in the cluster when
an interactive job is requested. It allows a single XML stream
from the Ganglia host on the head node to be parsed, giving
an instant overview of the loading of each machine. Nagios
monitoring is also installed but it is not an essential part of
the system.

D. Job Status Information

The batch system is not well suited for holding job status
information for an extended period. In addition the portal needs
to hold information about jobs that are not known to the batch
system. Therefore the portal maintains its own records and
periodically harvests information from the batch system.

E. Command Line Interface

With the addition of a RESTful web service on the server,
a Python client has been provided to allow interaction with
the Job Portal via a command line interface. Both of these are
very thin layers totalling only a few hundred lines of code. This
provides an alternative to the GUI interface which may prove
to be the preferred way for more proficient users to interact
with the portal, and would be the interface of choice for anyone
looking to write a script to handle their data processing.

F. Automated Configuration

The installation, configuration and upgrading of the soft-
ware has been set up using the Puppet Open Source[11]
framework. This means that, starting with computers with an
operating system and configured to use the network, it is
possible to install the head node within an hour and each
worker node can be added in a few minutes. The result is
a working system including the Java Development Kit, a
Glassfish Application Server (running ICAT, IDS and the Job
Portal software), database servers and required databases, batch
system, monitoring (Ganglia and Nagios) and the scientific
software provided by the team operating the portal.

IV. CREATION AND USE OF METADATA

The use of metadata is essential to the operation of the
IJP. Because it is a generic tool, the portal itself is not able to
look inside domain specific datasets. It is entirely reliant on
the metadata inserted into the ICAT database, and uses only
this metadata for searching and displaying information.

When an instrument produces data this is typically written
to a local file store from which they can be ingested into the
IJP system. The best people to define the metadata to associate
with this raw data are the team conducting the experiment.
An IJP job can be submitted each time that data need to be
ingested. This job must be able to derive the metadata from
the available information and upload the data files themselves
to the IDS as well as creating entries in the ICAT database for
the metadata.

When data are processed by an IJP job this results in new
data and metadata being stored. It is the responsibility of the
job to identify useful pieces of metadata to allow datasets to
be subsequently selected. As it is difficult to identify all the
metadata that might eventually be useful, jobs can be written
to look at the data and add metadata to ICAT to hold more
information about existing datasets.

The three categories of job described here: ingestion,
derivation of processed data and augmentation of metadata are
all just jobs for the IJP and must be installed by the facility
for its users.

V. A USER’S VIEW OF THE PORTAL

Users access the job portal via a web browser as shown
in Fig. 3. This was developed in Java using the Google
Web Toolkit[12] and communicates with a number of servlets
running on the application server on the head node. Once
logged in, the user is presented with a number of search
options tailored to the user base of the portal, and a generic
search widget listing all of the dataset parameters that are

Fig. 3. Screenshot of IJP

searchable. The widget provides relevant search options for
each parameter: =, !=, >, >=, <, <=, LIKE and BETWEEN
depending on its type - string, numeric or date/time. The list
of parameters and their types is read from the underlying ICAT
database so that the portal software remains generic.

Within ICAT all datasets have to be of a type which has
been pre-defined before the dataset is registered. This allows
for easier searching of datasets. Once a user has selected the
type of dataset in which they are interested, they can narrow
down their search if they wish using the search options, then
click search. A list of matching datasets then appears in the
central panel. When one of these datasets is selected, all of its
dataset parameters are displayed in the lower panel. Having
selected a dataset, the central Options select box lists all of
the jobs that it is possible to run on that dataset type. After
selecting the desired job, a Job Options Form is displayed
allowing the user to pass particular parameters to the job, if
required. This form is automatically generated from an XML
file defining the job within the system, as shown in Fig. 4.
The options displayed can also be tailored so that only options
relevant to the chosen dataset are offered.

Submitting the form results in the job being submitted to
the server and the user receiving a response containing the ID
assigned to the job in the batch system. The user can then use
the Job Status tab to follow the progress of the job through the

batch system, checking the output and error logs if required
and monitoring the status until the job is complete.

As well as handling interactive and batch jobs, the portal is
able to handle jobs that take either a single dataset or multiple
datasets as input. Users are able to select multiple datasets and
the portal uses the job definition to work out whether to submit
multiple jobs each with a single dataset as input, or a single
job with multiple datasets as the input. Where it is ambiguous,
the user is asked to confirm what was intended.

Datasets remain registered within ICAT and available via
the IDS. They are suitably protected via a rule based per-
mission system which should have been configured to ensure
that users can at least read the data they have created. These
data will remain within the system. Should the user wish to
download a copy of their data, this is possible via “Download”
in the Options select box. There is also an option to display a
URL to obtain the dataset from the IDS.

VI. AN ADMINISTRATOR’S VIEW OF THE PORTAL

Configuration of the portal is defined by XML files. Each
team using the portal to run their software needs to have at least
one person who is familiar enough with the team’s software
and the datasets it uses, to be able to set up each piece of
software so that it can be run as a “job” by the portal. Firstly,

Fig. 4. Configuration of job options

there are two fairly straightforward tasks which need carrying
out:

• picking out the characteristics of each dataset type
which lead to different options being made available
in the Job Options Form.

• creating an XML file describing each piece of soft-
ware: whether it runs as an interactive or batch job,
which type of datasets it needs, whether it accepts
multiple input datasets, along with all of the various
command line options that it accepts.

These two tasks are linked by the concept of Job Dataset
Parameters. For each type of dataset, an XML file is set up
allowing the administrator to define a named quantity and how
it may be derived from an ICAT query. While the query can
span all information the logged in user is allowed to see, a
query might reasonably take into account information from
the metadata associated with the dataset or any of its files
and might make use of JPQL aggregate functions SUM, AVG,
MIN, MAX and COUNT.

The administrator has thus defined named quantities spe-
cific to a dataset type and derivable by an ICAT query;
examples include: the number of files of a particular type
or the size of the largest file in a dataset. When a dataset
is selected within the browser, the server runs the database
queries specified within the relevant XML file, generates a
map of name-value pairs and sends it back to the browser to
control what appears in the Job Options Form.

Within the XML specifying each of the command line
options for a job, as shown in Fig. 4, a condition can be
specified in terms of the named quantities defined in the
XML which if met, causes this option to appear on the Job
Options Form. This takes the form of a logical expression such
as numChannels == 3 && numHdfFiles > 500. If
multiple datasets are selected, only the options that are com-
mon to all of those datasets are offered to the user.

In addition to setting up these XML descriptor files, there
is a certain amount of work that needs to be done in order
to make the team’s existing software compatible with the job
portal. This can be done either by modifying the existing
applications or by providing job wrappers to perform tasks
such as obtaining data from the IDS and laying it out as the
program expects, storing resulting datasets back in the IDS and
recording provenance information. Python libraries are being
established to simplify these operations - there is a generic
library and we recommend using a facility specific library that
knows the facility conventions for layout of data.

VII. CURRENT STATUS

Having developed a prototype to prove the concept and
help the users to define the features that they need from the
IJP, we are currently completing the work and plan to have a
first deployment for production use in a few months time.

VIII. FUTURE DEVELOPMENTS

We anticipate that requirements will be clarified further
once we receive feedback from users of the deployed pro-

duction system. Based on existing feedback we are already
planning the following enhancements.

A. Visualisation of Provenance

Provenance information is stored within ICAT when a new
dataset is stored but there is currently no way to visualise
this information within the portal. A new panel will be added
to represent the provenance information in a graphical format.
This will allow the user to select the dataset they are interested
in and expand it to see the input and output datasets and files
associated with it. Those datasets and files can, in turn, be
selected and expanded to follow the chain of provenance.

A further development would be the addition of a prove-
nance based search facility which would allow searches such
as all datasets derived from a given dataset or all datasets
produced directly or indirectly by a specific version of an
application.

B. Workflow Support

It would be a particularly useful feature to have the Job
Portal integrated with a Workflow Management System. This
would make it possible to set off a chain of data processing
jobs with the output of the first job becoming the input
to later jobs, and so on. As the job relating to each stage
of the process completes, the next job in the workflow is
automatically submitted on behalf of the user.

One workflow management system which would be of
particular interest would be Taverna[13]. It is open source,
domain independent and written in Java, and therefore should
integrate well with the server side of the portal software which
is also written in Java. Taverna has already been used behind
a portal[14] by a number of projects which demonstrates its
suitability to being used in this way.

C. Software as Data

Initially our preferred solution for deploying facility soft-
ware was to use the native packaging system of the operating
system - typically RPMs or DEBs. While convenient for the
IJP developers this may not meet the needs of some of our
users who would like more freedom to run the software of their
own choosing without arranging to have it officially installed
and who want to have multiple versions of the software
available. Following a suggestion[15], we are considering the
implications of storing a job as a dataset known to ICAT.
A job wrapper would then first download the application
software before setting up the data and running the downloaded
application. This would probably require some kind of caching
mechanism and would require a means of specifying software
dependencies to ensure that the correct packages are available
for the desired software. This solution, which will require some
operations to be run as root to install dependencies, needs
careful evaluation.

D. Administration console

The system is currently rather opaque to the administrator
and requires the use of the native batch system commands
to find out what is going on. We plan to provide a browser
based web application allowing administrators to monitor and

control the system and the jobs it is running. This will support
common tasks such as monitoring job distribution and loading
on the worker nodes, pausing and terminating jobs, taking
worker nodes offline and bringing them back online, user and
group administration, modification of authorization rules and
removal of unwanted datasets.

E. Alternative remote desktop mechanism

A possible alternative to using either Remote Desktop
Connection in Windows or rdesktop on a Linux system is to
have the remote desktop session also run within the browser.
Currently, the RDP server port needs to be accessible on
each of the worker nodes which is not a problem within the
local site network. The system is, however, intended to be
used remotely from other institutions, which may contravene
security policies. Having the possibility of running the Remote
Desktop session via https within a browser may be the solution.

One solution of interest to solve this problem is
Guacamole[16], an HTML5 client-less remote desktop. It
supports remote desktop protocols such as VNC and RDP,
and is able to deliver a remote desktop within a web browser
without the need for any browser plugins or client software
installation.

F. Alternative batch system

We only support Torque as a batch system. We plan to
include Maui as a scheduler because the inbuilt Torque sched-
uler (pbs sched) is very basic. Maui would enable scheduling
policies to be defined to allow more control of which job is
selected to be run when a slot becomes free.

We also plan to make the choice of batch system config-
urable. The batch system might even act as a front-end to a
grid or cloud solution. We already have a request to support
IBM Platform LSF[17].

G. Portability

The Puppet configuration is only available for Ubuntu[18]
and has only been tested on version 12.04 (64 bit). This is a
concern for existing infrastructures which are not able to easily
accommodate these decisions. We plan to make the system
easy to install on other platforms and to support alternative
subcomponents where practical.

We have a request to support Red Hat Enterprise Linux[19]
version 6 (64 bit) and will probably include CentOS[20]
version 6.4 (64 bit) at the same time.

IX. CONCLUSION

We have successfully built a job portal for ICAT users
on top of the basic metadata catalog and the IDS. The initial
prototype was very valuable as it allowed us to get something
out quickly to ensure that we were on the right track and to
understand what needed generalising.

Though the generalisation was not a trivial task; the result
is a tool that we believe is now very easy to configure for
many scientific disciplines.

The IJP allows rapidly changing, mature and wrapped
“legacy” software to be made available, side by side, with

a uniform and modern style of interface to a scientific com-
munity.

We already have a number of groups from the existing
ICAT community interested in the project and we anticipate a
good uptake of the software.

ACKNOWLEDGMENT

The authors would like to thank Dave Clarke from STFC’s
Lasers for Science Facility for supporting this work and
attracting funding.

We would like to acknowledge the assistance and funding
from STFC’s Harwell Imaging Partnership, which has sup-
ported this development from inception (http://www.stfc.ac.uk/
hip).

The diagrams in this paper were produced by Noris
Nyamekye.

Finally we thank our colleagues Brian Mathews, Alistair
Mills and Erica Yang who all provided helpful comments on
drafts of this paper.

REFERENCES

[1] The ICAT Metadata Catalog website. [Online]. Available: http:
//code.google.com/p/icatproject/

[2] The ICAT project website. [Online]. Available: http://www.icatproject.
org/

[3] The ICAT Job Portal website. [Online]. Available: http://code.google.
com/p/icat-job-portal/

[4] The ICAT Data Service website. [Online]. Available: http://code.
google.com/p/icat-data-service/

[5] D. T. Clarke, S. W. Botchway, B. C. Coles, S. R. Needham,
S. K. Roberts, D. J. Rolfe, C. J. Tynan, A. D. Ward, S. E. D.
Webb, R. Yadav, L. Zanetti-Domingues, and M. L. Martin-Fernandez,
“Optics clustered to output unique solutions: A multi-laser facility
for combined single molecule and ensemble microscopy,” Review of
Scientific Instruments, vol. 82, no. 9, p. 093705, 2011. [Online].
Available: http://link.aip.org/link/?RSI/82/093705/1

[6] D. Rolfe, C. McLachlan, M. Hirsch, S. Needham, C. Tynan,
S. Webb, M. Martin-Fernandez, and M. Hobson, “Automated
multidimensional single molecule fluorescence microscopy feature
detection and tracking,” European Biophysics Journal, vol. 40, no. 10,
pp. 1167–1186, 2011. [Online]. Available: http://dx.doi.org/10.1007/
s00249-011-0747-7

[7] The OMERO website. [Online]. Available: http://www.openmicroscopy.
org/site/products/omero

[8] The IBM Platform Application Center. [Online]. Available:
http://www.ibm.com/support/entry/portal/documentation expanded
list/software/platform computing/platform application center

[9] J. Goecks, A. Nekrutenko, J. Taylor, and The Galaxy Team, “Galaxy:
a comprehensive approach for supporting accessible, reproducible,
and transparent computational research in the life sciences,” Genome
Biology, vol. 11, no. 8, p. R86, 2010. [Online]. Available:
http://genomebiology.com/2010/11/8/R86

[10] Adaptive Computing’s Torque website. [Online]. Available: http:
//www.adaptivecomputing.com/products/open-source/torque/

[11] The Puppet Open Source website. [Online]. Available: https:
//puppetlabs.com/puppet/puppet-open-source/

[12] The Google Web Toolkit website. [Online]. Available: https:
//developers.google.com/web-toolkit/

[13] P. Missier, S. Soiland-Reyes, S. Owen, W. Tan, A. Nenadic, I. Dunlop,
A. Williams, T. Oinn, and C. Goble, “Taverna, reloaded,” in SSDBM
2010, M. Gertz, T. Hey, and B. Ludaescher, Eds., Heidelberg,
Germany, June 2010. [Online]. Available: http://www.taverna.org.uk/
pages/wp-content/uploads/2010/04/T2Architecture.pdf

[14] Taverna: Behind a portal. [Online]. Available: http://prototype.taverna.
org.uk/introduction/taverna-in-use/portal/

[15] Rich Wareham, Cambridge, private communication, 2012.
[16] The Guacamole website. [Online]. Available: http://guac-dev.org/
[17] IBM Platform LSF. [Online]. Available: http://www.ibm.com/systems/

technicalcomputing/platformcomputing/products/lsf/index.html
[18] The Ubuntu website. [Online]. Available: http://www.ubuntu.com/
[19] Red hat enterprise linux. [Online]. Available: http://www.redhat.com/

products/enterprise-linux/
[20] CentOS: The Community ENTerprise Operating System. [Online].

Available: http://www.centos.org/

