
Satisfiability Model Visualization Plugin for
Deep Consistency Checking of OWL Ontologies

Martins Barinskis and Guntis Barzdins

Institute of Mathematics and Computer Science
University of Latvia

martins.barinskis@gmail.com, guntis.barzdins@mii.lu.lv

Abstract. We present an original Protégé plugin developed for the deep
consistency checking of OWL ontologies. The plugin constructs and vi-
sualizes a minimal satisfiability model of the ontology, which is likely
to uncover potential ontological errors: if the constructed model contra-
dicts the author’s intentions, then the ontology itself is either wrong or
incomplete. A satisfiability model is generated using Mace4 , a first-order
logic (FOL) finite model builder, from the FOL formulas corresponding
to the OWL ontology definition. The constructed satisfiability model is
visualized using an original music score notation plugin of Protégé.

1 Introduction

The ontology satisfiability is a property that indicates whether all classes defined
in the ontology are satisfiable. A class is deemed to be unsatisfiable if it cannot
possibly have any instances [1]. Satisfiability implies consistency.

The problem of checking consistency (i.e., finding the existence of a model)
of an arbitrary FOL formula is not decidable. However, for the description logic
fragments of FOL, on which OWL DL (SHOIN) and OWL 1.1 (SROIQ) are
based, satisfiability (consistency) checking is decidable [2]. The only “inconve-
nience” with these description logic fragments is that in some cases their only
satisfiability (consistency) model can turn out to be infinite [3]. This is not
a problem for the tableau algorithm at the heart of FaCT++[4] and Pellet[5]
reasoners, which wind this infinite model into a finite structure. However, a con-
sequence of this “inconvenience” is that FaCT++ and Pellet reasoners do not
generate the actual satisfiability (consistency) model.

Meanwhile it would be problematic to use a consistent ontology with only
infinite satisfiability model in the Semantic Web context - no finite set of individ-
uals (raw RDF data) would ever satisfy conditions of such ontology. Therefore
further we consider only ontologies with finite satisfiability models.

The Protégé plugin described in this paper [6] uses Mace4 [7], a generic
FOL finite model builder, to generate and visualize a minimal finite satisfiabil-
ity model of an ontology. The proposed approach complements the traditional
ontology debugging tools[8]: if the automatically constructed minimal model con-
tradicts the author’s intentions, the ontology itself is either wrong or incomplete.

II

2 Ontology Description Using First-Order Logic

To illustrate our approach, let us consider a simple pizza ontology mapped to
first-order logic predicates, both shown side-by-side:

Ontology(formulas(sos).
Class(Pizza partial

restriction(hasTopping

someValuesFrom(PizzaTopping))

owl:Thing)

(all a Pizza(a)->

(exists b PizzaTopping(b)

& hasTopping(a,b)))

Class(MeatyPizza partial

restriction(hasTopping

someValuesFrom(MeatTopping))

Pizza)

& (all x MeatyPizza(x)->Pizza(x))

& (all a MeatyPizza(a) ->

(exists b MeatTopping(b)

& hasTopping(a,b)))
Class(CheeseOnlyPizza partial

restriction(hasTopping

someValuesFrom(CheeseTopping))

Pizza

restriction(hasTopping

allValuesFrom(CheeseTopping)))

& (all x CheeseOnlyPizza(x)->Pizza(x))

& (all a CheeseOnlyPizza(a)->(exists b

CheeseTopping(b) & hasTopping(a,b)))

& (all a all b CheeseOnlyPizza(a)

& hasTopping(a,b)->CheeseTopping(b))

Class(PizzaTopping partial

owl:Thing)
Class(CheeseTopping partial

PizzaTopping)

& (all x CheeseTopping(x)

->PizzaTopping(x))
Class(MeatTopping partial

PizzaTopping)

& (all x MeatTopping(x)

->PizzaTopping(x))
DisjointClasses(CheeseTopping

MeatTopping)

& (all a all b MeatTopping(a)

& CheeseTopping(b)->-(a=b))

DisjointClasses(PizzaTopping Pizza)
& (all a all b PizzaTopping(a)

& Pizza(b)->-(a=b))
ObjectProperty(hasTopping

domain(Pizza) range(PizzaTopping))

& (all a all b hasTopping(a,b) ->

Pizza(a) & PizzaTopping(b))
& (exists x1 exists x2 exists x3

exists x4 exists x5 exists x6

MeatyPizza(x1) & CheeseOnlyPizza(x2)

& CheeseTopping(x3)

& MeatTopping(x4) & Pizza(x5)

& PizzaTopping(x6)).

) end_of_list.

The satisfiability (which is a stronger requirement than consistency) is as-
serted in the last conjunction member of our FOL formula, i.e. we require that
there exists an individual in every class declared in the ontology.

The conversion from OWL to first-order logic is based on simple pattern
matching as illustrated by the example above.

3 Acquiring Satisfiability Model

The FOL syntax shown in the above listing is accepted by Mace4 , a FOL model
builder. It constructs a minimal (in the number of individuals) satisfiability
model for our ontology.

III

For the FOL formula shown above as input, Mace4 yields the following output
(irrelevant lines have been stripped out):

interpretation(4, [number=1, seconds=0], [
relation(CheeseOnlyPizza(_), [0, 0, 0, 1]),
relation(CheeseTopping(_), [0, 1, 0, 0]),
relation(MeatTopping(_), [0, 0, 1, 0]),
relation(MeatyPizza(_), [1, 0, 0, 0]),
relation(Pizza(_), [1, 0, 0, 1]),
relation(PizzaTopping(_), [0, 1, 1, 0]),
relation(hasTopping(_,_), [

0, 1, 1, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 1, 0, 0])

]).

This result shows that the minimal model is of size 4, i.e., the satisfiability model
of the given ontology consists of 4 individuals, a1, a2, a3 and a4. From Mace4
output one can see that, for example, individual a2 belongs to classes Cheese-
Topping and PizzaTopping, while relation hasTopping is established between
individual pairs a1 − a2, a1 − a3 and a4 − a2.

4 Satisfiability Model Visualization

The satisfiability model created with Mace4 can be visualized using an original
“music score notation” shown in fig. 1, which in our opinion is rather intuitive for
the debugging purposes. In this notation classes (gray) and individuals (green)
are visualized as lines that are interconnected by the notes representing the
predicates (relations) between the individuals (red) or between individuals and
classes (blue). The roles (domain, range) of the predicate (relation) arguments
could be written on the legs of the notes (useful for n-ary predicates), but is
omitted in fig. 1 for the sake of intelligibility.

The visualization is implemented as a plugin for the popular ontology editor
Protégé. It forms the FOL formula from the OWL ontology currently being
edited, passes it to the Mace4 model builder, retrieves the satisfiability model
and finally visualizes it.

5 Conclusions and Further Work

The proposed approach complements the traditional ontology debugging tools
with the possibility to identify ontologies that have trivial models (under-constrained
ontologies). With the introduction of more feature-rich ontology languages, such
as OWL 1.1 or even larger subsets of FOL [9], the usefulness of such automated
debugging tools is likely to grow.

IV

CheeseTopping
CheeseOnlyPizza

MeatTopping
MeatyPizza

Pizza

PizzaTopping

a1

a2

a3

a4

type type type type
has
Top
ping

has
Top
ping

typetype
has
Top
ping

type type

Fig. 1. Example pizza ontology minimal satisfiability model visualization

An obvious limitation of the proposed approach is the scalability in terms of
the model size both for Mace4 model builder and for the “music score notation”
to still be useful. The Mace4 scaling issue could be addressed by extending the
native FaCT++ or Pellet reasoners with the model generation functionality (for
cases when the model is determined to be finite). The “music score notation”
visualization could be complemented with filtering options to limit the amount
of concurrently displayed information.

References

1. Horrocks, I., Patel-Schneider, P.F.: Reducing owl entailment to description logic
satisfiability. LNCS (2870) (2003) 17–29

2. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible sroiq. In: KR 2006,
AAAI Press (2006) 57–67

3. Calvanese, D.: Finite model reasoning in description logics. In: Proceedings of the
Fifth International Conference on the Principles of Knowledge Representation and
Reasoning (KR’96), Morgan Kaufmann, Los Altos (1996)

4. OWL: Fact++. http://owl.man.ac.uk/factplusplus/
5. Pellet: An open source owl-dl reasoner in java. http://pellet.owldl.com/
6. Barinskis, M., Barzdins, G.: Satisfiability model visualizer for protégé.

http://apps.lumii.lv/satmodviz/index.html
7. McCune, W.: Mace4 reference manual and guide. Technical Report 264, Math-

ematics and Computer Science Division, Argonne National Laboratory, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (August 2003)

8. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging owl ontologies. In: WWW’05, ACM
Press (2005) 633–640

9. Horrocks, I., Voronkov, A.: Reasoning support for expressive ontology languages
using a theorem prover. In: FoIKS. Number 3861 in LNCS (2006) 201–218

