Terminological logics for schema design and
query processing in OODBs*

D. Beneventano®, S. Bergamaschi®, S. Lodi°, C. Sartori

Dipartimento di Elettronica, Informatica e Sistemistica
Universita di Bologna - CIOC-CNR

°Facoltd di Ingegneria, Universita di Modena

1 Introduction

The paper introduces ideas which make feasible and
effective the application of Terminological Logic (TL)
techniques for schema design and query optimization in
Object Oriented Databases (OODBs).

Applying taxonomic reasoning and TL in database
environment for traditional semantic data models led
to a number of promising results for database schema
design and other relevant topics, as query processing
and data recognition. In particular, in [Bergamaschi
and Sartori,1992] a general theoretical framework has
been presented, which supports conceptual schema ac-
quisition and organization by preserving coherence and
minimality w.r.t. inheritance, exploiting the framework
of terminological reasoning. Complex object data mod-
els, recently proposed in the area of OODBs, are more
expressive than actually implemented TL languages in
some aspects. For instance, most of the complex ob-
ject data models introduce a distinction between objects
with identity and values, which is not present in TL lan-
guages. Further, complex object models usually support
additional type constructors, such as set and sequence.
Most importantly, these models usually support the rep-
resentation and management of cyclic classes. These
problems have found a solution in [Bergamaschi and
Nebel,1992; 1993], by the adoption of an extended TL,
named ODL.

A real database specification always includes a set of
rules, the so-called integrity constraints, which should
guarantee data consistency. Constraints are expressed
in various fashions, depending on the data model: e.g.
subsets of first order logic, or inclusion dependencies and
predicates on row values, or methods in OO environ-
ments. In particular OO methods are programs whose
semantics cannot be inspected by an automatic reasoner.
A first, necessary, improvement is to express at least a
class of integrity constraints at schema level. Our pro-
posal is to generalize the notion of a database schema
including a declarative specification of a set of integrity
constraints and to exploit this knowledge together with

*This research has been partially funded by the project
M.U.R.S.T. 40%, ”Metodi Formali e Strumenti per Basi di
Dati Evolute”.

taxonomic reasoning for the different tasks of schema de-
sign and query optimzation. Let us examine separately
the two aspects of schema design and query optimiza-
tion.

2 Reasoning services in schema design

Provided that an adequate formalism to express integrity
constraints is available, the following question arises: Is
there any way to populate a database which satisfies the
constraints supplied by a designer? Means of answering
to this question should be embedded in automatic de-
sign tools, whose use i1s recommendable or often required
in the difficult task of designing non-trivial database
schemas.

Our proposal 1s to use the tableaux-calculus tech-
nique to guarantee schema consistency, therefore in-
cluding state constraint consistency. Such a solution
is actually a modification of existing algorithms for
Description Logics [Schmidt-Schauss and Smolka,1991;
Hollunder and Nutt,1990; Hollunder et al.,1990; Donini
et al.,1991].

In order to substantially enhance OODBs with rea-
soning features, the next step should be the design of a
front—end to the DB to validate insertions and updates,
with respect to the extended schema description.

2.1 Examples

Let us consider the organizational structure of a com-
pany in order to explain the purpose of our constraint
validation method. Assume the following: Employees
have name and salary. Managers are employees and
have a level composed of a qualification and a parameter.
Repositories have a denomination, wich can be either a
string or a structure composed by a repository name and
an address; a repository stocks a set of at least one and at
most five materials. Materials are described by a name
and a risk. Departments have a denomination (string),
and are managed by a manager. Warehouses have all
the properties of departments and repositories.

The above description 1s expressed in our formalism,
ODL extended, as follows:

o(Level) = [qualification:String,

parameter: Int]



o(Employee) Alname: String, salary: Int]

o(Manager) = EmployeellA[level:Level]
o(Repository) A[ denomination: Stringll
[rname: String,
address: String],
stock: {Material}(; s)]
o(Department) = Al[denomination:String,
managed-by: Manager]
o(Warehouse) Department [1Repository
o(Material) Alname: String, risk: Int]

Class and type descriptions use the tuple ([ ]) and set
({}) constructors, the latter with a cardinality inter-
val. The A operator enforces a distinction between ob-
ject classes, preceded by it, and value types. With re-
spect to the formalism in [Bergamaschi and Nebel,1993],
the general complement (=) and the union operator
(1), considered in many works on complex object data
models [Abiteboul and Kanellakis,1989] [Lecluse and
Richard,1989], have been added.

As an example of integrity constraint, let us assert
that an employee must earn less than his manager:

o(Technician) = Employeell
Alworks—-in: Department] 1
(Asalary < Aworks-in.
Amanaged-by. A salary).

As a further example, if the class shipment is introduced,
the following integrity constraint can be specified on it:
for all shipments it must hold that if the risk of the ma-
terial is greater than 3 then its urgency must be greater
than 10, that is: “for all z € Shipment if z is of type
Shipment M (Aitem. A risk > 3) then =z is of type
Shipment M (Aurgency > 10)”. The constraint can be
embedded in the class description, obtaining the follow-
ing type description for Shipment:

o(Shipment) =
Alurgency: Int, item: Material] M
(=(Aitem. A risk > 3)) U
(Aurgency > 10))

The coherence checking completion rules, devised by
TL researchers, are a suitable starting point also to solve
the corresponding problem in OODBs, as shown in [Ben-
eventano et al.,1994].

3 Reasoning services in query
optimization

The purpose of semantic query optimization is to use se-

mantic knowledge (e.g. integrity constraints) for trans-

forming a query into an equivalent one that may be an-

swered more efficiently than the original version.

In database environment, semantic knowledge is usu-
ally expressed in terms of IC rules, that is ¢f then rules on
the attributes of a database schema (i.e., roughly a Thox
of a Terminological Knowledge Representation System

(TKRS)). Informally, semantic equivalence means that
the transformed query has the same answer as the
original query on all databases satisfying the IC rules.
The notion of semantic query optimization for rela-
tional databases was introduced in the early 80’s by
King [King,1981a; 1981b]; Hammer and Zdonik [Ham-
mer and Zdonik,1980] independently developed very sim-
ilar optimization methods. During the last decade, many
efforts have been made to improve this technique and to
generalize it to deductive databases [Shenoy and Ozsoyo-
glu,1989; Siegel et al.,1992; Chakravarthy et al.,1990].
More recently, some efforts have been made to perform
semantic query optimization in OODBs [Chan,1992;
Jeusfeld and Staudt,1993; Pang et al.,1991; Buchheit
et al.[1994; Beneventano et al.;1993; Bergamaschi and
Nebel,1993]. The main point is that OODBs provide a
very rich type (class) system able to directly represent a
subclass of integrity constraints in the database schema.
By exploiting schema information as, for instance, inher-
itance relations between types (classes), it is possible to
perform semantic query optimization.

In order to develop a theory of semantic query opti-
mization, we propose a theoretical framework (in term of
subsumption) which includes the main query transforma-
tion criteria proposed in the database literature and 1s
based on inclusion statements between concepts, recently
proposed in [Donini et al.,1993]. This new perspective
perfectly fits the usual database viewpoint. In fact, ac-
tual database schemata are given in terms of base classes
(i.e. primitive concepts); further knowledge is expressed
as 1C rules. In particular, structural class descriptions
are expressed as rules where the antecedent is a name
of the class and the consequent is the class description.
More generally, rules allow the expression of integrity
constraints with an antecedent and a consequent which
are types of the formalism. Since query languages for
OODBs are more expressive than our formalism we, fol-
lowing [Buchheit et al.,1994], ideally introduce a separa-
tion of a query into a clean part, that can be represented
as a type in our formalism, and a dirty part that goes
beyond the type system expressiveness. Semantic opti-
mization will be performed only over the clean part of a
given query. The clean part of a query, in the following
referenced as query, corresponds to the so—called con-
junctive queries or single operand queries [Kim,1989] in
OODBs and is a virtual class (i.e. a defined concept).

The chosen strategy for optimization is the follow-
ing. Prior to the evaluation of any query, we com-
pile, once at all, the given schema (classes + IC rules),
giving rise to an enriched schema obtained by adding
(all the new) isa relationships which are logically im-
plied by the original schema. The compilation pro-
cess 1s based on the generation of the semantic expan-
ston in canonical form (i.e. a form which permits to
abstract from different syntactical representation of se-
mantically equivalent types) of the schema types. Fol-
lowing the approach of [Shenoy and Ozsoyoglu,1989;
Siegel et al.,1992] for semantic query expansion, the se-
mantic expansion of a type, say EXP(S) permits to incor-



porate any possible restriction which is not present in the
original type but is logically implied by the type and by
the schema. EXP(S) is based on the iteration of this sim-
ple transformation: if a type implies the antecedent of an
IC rule then the consequent of that rule can be added.
Logical implications between these types (the type to
be expanded and the antecedent of a rule) are evalu-
ated by means of the subsumption computation [Brach-
man and Schmolze 1985; Bergamaschi and Sartori,1992;
Bergamaschi and Nebel, 1993].1

At run time, we add to the compiled schema the
query ) and activate the process again for (), obtaining
EXP(Q), with possible new isa relationships is obtained.
If new isa relationships are found, it is possible fo move
the query down in the schema hierarchy. The main points
of our optimization strategy are:

1. The most specialized query among the equivalent
queries EXP(Q) is computed. During the trans-
formation, we compute also, and substitute in the
query at each step, the most specialized classes sat-
isfying the query.

2. A filtering activity (constraint removal) is per-
formed by detecting the eliminable factors of a
query, that 1s, the factors logically implied by the
query.

3.1 Examples

Let us extend the schema of the previous section with
the class dangerous-shipment, which has the same struc-
ture of shipment. The following integrity constraint can
be specified on it: for all shipments it must hold that if
the risk of the material is greater than 3 then its urgency
must be greater than 10 and it must belong to the class
dangerous-shipment. The constraint can be embedded
in the class description, obtaining the following type de-
scription for Shipment:

Alurgency: Int, item: Material]
N(—(Aitem. Arisk > 3))U
(DShipment M Aurgency > 10))

o(Shipment) =

Let us give two simple query optimization examples
related to our schema.
@: 7 Select all shipments involving a material with risk
greater than 8”

(@ = shipment M (Aitem. A risk > 8)

From the rule on Shipment, we derive:

EXP(Q)) = DShipment]

(Aitem. Arisk > 8)M
(Aurgency > 10)

The query is optimized by obtaining the most specialized
generalization of the classes involved in the query itself.

!The subsumption is similar to the refinement or sub-
typing adopted in OODBs [Cardelli,1984; Lecluse and
Richard,1989].

Furthermore, the factor (Aurgency > 10) can be added
if some advantageous access structure is available for it.
Another rewriting rule proposed in [Shenoy and Oz-
soyoglu,1989; Siegel et al.,1992] is the constraint removal,
i.e., removal of implied factors. We formalize constraint
removal by subsumption. As an example, consider the
query:
@: 7 Select all the shipments involving a material with
risk greater than 8 and urgency grater than 5”:

(@ = Shipment M (Aitem. A risk > 8)M

s
(Aurgency > 5)
—

S

In the schema with rules S is subsumed by S5’, as
explo(S) is subsumed by S in the schema without rules.
Thus, S’ can be eliminated from Q.

References

[Abiteboul and Kanellakis, 1989] S.  Abiteboul and
P. Kanellakis. Object identity as a query language
primitive. In SIGMOD, pages 159-173. ACM Press,
1989.

[Beneventano et al., 1993] D. Beneventano, S. Bergam-
aschi, S. Lodi, and C. Sartori. Using subsumption in
semantic query optimization. In A. Napoli, editor, 1J-
CAI Workshop on Object-Based Representation Sys-
tems - Chambery, France, August 1993.

[Beneventano et al., 1994] D. Beneventano, S. Bergam-
aschi, S. Lodi, and C. Sartori. Reasoning with con-
straints in database models. In S. Bergamaschi,
C. Sartori, and P. Tiberio, editors, Convegno su Sis-
temi Fvolutt per Bast di Dati, June 1994.

[Bergamaschi and Nebel, 1992]
S. Bergamaschi and B. Nebel. Theoretical founda-
tions of complex object data models. Technical Report
5/91, CNR, Progetto Finalizzato Sistemi Informatici
e Calcolo Parallelo, Roma, January 1992.

[Bergamaschi and Nebel, 1993]
S. Bergamaschi and B. Nebel. Acquisition and valida-
tion of complex object database schemata supporting
multiple inheritance. Applied Intelligence: The In-
ternational Journal of Artificial Intelligence, Neural
Networks and Complex Problem Solving Technologies,
1993. to appear.

[Bergamaschi and Sartori, 1992] S. Bergamaschi and
C. Sartori. On taxonomic reasoning in conceptual
design. ACM Transactions on Database Systems,
17(3):385-422, September 1992.

[Brachman and Schmolze, 1985] R.J. Brachman and
J.G. Schmolze. An overview of the KL-ONE
knowledge representation system. Cognitive Science,

9(2):171-216, 1985.

[Buchheit et al., 1994] M. Buchheit, M. A. Jeusfeld,
W. Nutt, and M. Staudt. Subsumption between



queries to object-oriented database. In EDBT, pages
348-353, 1994.

[Cardelli, 1984] L. Cardelli. A semantics of multiple in-
heritance. In Semantics of Data Types - Lecture Notes
. Computer Science N. 173, pages 51-67. Springer-
Verlag, 1984.

[Chakravarthy et al., 1990] U. S. Chakravarthy,
J. Grant, and J. Minker. Logic-based approach to
semantic query optimization. ACM Transactions on

Database Systems, 15(2):162-207, June 1990.

[Chan, 1992] Edward P.F. Chan. Containment and min-
imization of positive conjunctive queries in oodb’s. In
Principles of Database Systems, pages 202-11. ACM,
1992.

[Donini et al., 1991] F.M.
Donini, M. Lenzerini, D. Nardi, and W. Nutt. The
complexity of concept languages. In J. Allen, R. Fikes,
and E. Sandewall, editors, KR 91 - 2nd Int. Conf
on Principles of Knowledge Representation and Rea-
soning, pages 151-162, Cambridge - MA, April 1991.
Morgan Kaufmann Publishers, Inc.

[Donini et al., 1993] F.M. Donini, A. Schaerf, and
M. Buchheit. Decidable reasoning in terminologi-
cal knowledge representation systems. In 13th In-
ternational Joint Conference on Artificial Inteligence,
Chambery - France, September 1993.

[Hammer and Zdonik, 1980] M.M. Hammer and S. B.
Zdonik. Knowledge based query processing. In 6th
Int. Conf. on Very Large Databases, pages 137-147,
1980.

[Hollunder and Nutt, 1990] Bernhard Hollunder and
Werner Nutt. Subsumption algorithms for concept
languages. Technical report, Research Report RR-90-
4, Deutsche Forschungszentrum fuer Kuenstliche In-
telligenz GmbH, Kaiserslautern, Germany, April 1990.

[Hollunder et al., 1990] Bernhard Hollunder, Werner
Nutt, and M. Schmidt-Schauss. Subsumption algo-

rithms for concept languages. In Proc. ECAI-90,
Stockholm, Sweden, 1990.

[Jeusfeld and Staudt, 1993] M. Jeusfeld and M. Staudst.
Query optimization in deductive object bases. In Frey-
tag, Maier, and Vossen, editors, Query Processing for

Advanced Database System. Morgan Kaufmann Pub-
lishers, Inc., June 1993.

[Kim, 1989] W. Kim. A model of queries for object-
oriented database systems. In Int. Conf. on Very
Large Databases, Amsterdam, Holland, August 1989.

[King, 1981a] J. J. King. Query optimization by seman-
tic reasoning. PhD thesis, Dept. of Computer Science,
Stanford University, Palo Alto, 1981.

[King, 1981b] J. J. King. Quist: a system for semantic
query optimization in relational databases. In 7th Int.
Conf. on Very Large Databases, pages 510-517, 1981.

[Lecluse and Richard, 1989] C. Lecluse and P. Richard.

Modelling complex structures in object-oriented

databases. In Symp. on Principles of Database Sys-
tems, pages 362-369, Philadelphia, PA, 1989.

[Pang et al., 1991] H. H. Pang, H. Lu, and B.C. Ooi. An
efficient semantic query optimization algorithm. In
Int. Conf. on Data Engineering, pages 326-335, 1991.

[Schmidt-Schauss and Smolka, 1991]
M. Schmidt-Schauss and G. Smolka. Attributive con-
cept descriptions with unions and complements. Arti-

ficial Intelligence, 48(1), 1991.
[Shenoy and Ozsoyoglu, 1989] S. Shenoy and M. Oz-

soyoglu. Design and implementation of a semantic
query optimizer. IEEE Trans. Knowl and Data En-
gineering, 1(3):344-361, September 1989.

[Siegel et al., 1992] M. Siegel, E. Sciore, and S. Salveter.
A method for automatic rule derivation to support
semantic query optimization. ACM Transactions on

Database Systems, 17(4):563-600, December 1992.



