
What’s in a Federation?
Extending Data Dictionaries with Knowledge Representation Techniques

Wolfgang Benn
Chemnitz University of Technology • Management of Data

P.O. Box 964 • D-09009 Chemnitz
benn@informatik.tu-chemnitz.de

1. Introduction

Databases and knowledge representation languages
have a rather different view upon data: knowledge rep-
resentation languages describe a universe of discourse
in a taxonomy and allow a user to ask epistemic ques-
tions against the relationships between concepts and
roles. However, no data structures, data locations, nor
any information about the existence or availabilit y of
data can be found in a taxonomy -- even not if it in-
cludes an assertion that describes a particular data
item.

In the remainder of this paper we will briefly introduce
a module that coordinates a federation of systems and
that hosts a central data dictionary. It is the module,
which we will extend to provide users with an entity
view upon the information available in a federation.
We introduce the logical architecture of a prototypical
implementation of this module in section 2 and de-
scribe some extensions that we made in section 3. In
section 4 we specify some ideas of the mentioned ex-
tension, conclude in section 5 and give some literature
in section 6.Relational databases provide users with schemata.

Schemata describe in detail the data structures of sets
of persistent data items. Data dictionaries, included in
these systems, tell about data existence and its avail -
abilit y. Anyway, these tools do not provide the entity
view, relationships between entities are merely
implicit, and no question about the universe of dis-
course that is behind a schema will get an answer.

2. The Federal System Manager

The Federal System Manager (FSM) is a module that
coordinates a federation of autonomous systems.
These systems can be applications or services li ke
databases, which may link to the FSM to form a
federation for some particular tasks. Afterwards they
can leave the federation and run again as autonomous
systems. This idea is rather similar to the concept of
multi-agent systems.

Object-oriented databases provide users with class hi-
erarchies as schemata. They support the entity view --
is-a as well as part-of relationships are explicit. Never-
theless, an information about the universe of discourse
is not given as well.

The FSM performs a minimum of three tasks: The first
one is to run a protocol that enables the linkage
process and guarantees a negotiation of autonomy as-
pects to the components, if these want to join or leave
the federation. Second, the FSM must provide a uni-
form view upon all i nformation that is available to ap-
pli cations of the federation through a so-called Com-
mon Data Model (CDM). Third, it must support an ex-
change of information, i.e., data types and data itself,
between members of the federation. We will detail
these tasks and concentrate on the second one.

In a federation of systems -- databases and
applications, for instance -- the situation gets worse.
Databases may be heterogeneous in their modeling
technique: some will follow the object-oriented the
majority certainly follows the relational paradigm.
How does a user get to know what data is available in
a federation, if he wants to build a new application?
How does that user get to know how he may access a
particular data item? How does he know that the
selected data item is semanticall y correct concerning
the context of his application?

Comparing an FSM with the Common Object Request
Broker Architecture (CORBA) [1] the FSM is an
object broker that looks at databases as service pro-
viding objects and applications as clients that request
these services. Commonly known services from data-
base components are storage, retrieval, update, etc.

If he can access a federated data dictionary, it will pro-
vide him with the technical information about the data
in a common data model -- similar to the global con-
ceptual schema of a distributed database. If such a tool
does not exist, the user must read all available
schemata from all available federation components
(i.e., he must know about all l anguages, data models,
and dialects that the local components of the feder-
ation individually use).

Moreover, the FSM is an object itself! I t provides ser-
vices li ke data and type exchange. It contains a Fed-
eral Data Dictionary (FDD) that allows a user to re-

trieve the information contents of the actual federation
under several aspects. It is our aim to extend this
Federal Data Dictionary with knowledge
representation techniques to better support users in
their retrieval than before.

available for all programs written in this programming
language. Application objects described in our CDM
are (under certain conditions) transformable into all
data models that are represented in the FSM.

The Meta Layer
2.1. The FSM Prototype

An extension of the IRD standard was made for the
meta layer. If the FSM supports an exchange of data
between components, it must be able to transform data
between the different individual data descriptions.
These descriptions follow type or schema declarations,
which use data model elements. Thus, our meta layer
has to include a suitable sub-set of the component data
model for each involved component. Moreover, it
must include some rules that guide the transformation
of entities between these data model sub-sets.

The currently implemented FSM prototype has its
roots in an ESPRIT project, finished in 1991
[2,3,4,5,6]. The prototype mainly follows the reference
architecture for interoperable systems given in [7] and
includes a repository according to the Information
Resource Dictionary Standard IRDS [8].

This standard defines a four-layer architecture with
(top down)
• a meta-meta layer that describes the model of the

meta layer descriptions -- which is in our case the
Common Data Model of the FSM, a frame work that
basis on the Abstract Data Type (ADT) idea --,

However, the description of a data model sub-set is
somewhat more complex than the description of a
schema. While a schema merely consists of data struc-
tures, a data model usually includes data types and
data type semantics. The meta layer of our FSM in-
cludes both (the assignment of a set of operations to a
data type that makes up the type’s semantics in the
data model of a component is currently under
implementation).

• a meta layer where we find the description of sche-
mata -- which is in our case a description of the fed-
eration components data models --,

• a schema layer where the data descriptions are lo-
cated -- which is in our case the data types that are
defined in schemata of databases or in type declara-
tions of applications --, and

To enable the exchange of data and schema
information between components the system
administrator of each federation component defines
the relevant structural part of his component data
model types with the CDM types and assigns some
procedures that make up the semantics of these data
types. He inserts the necessary data model knowledge
into the meta layer using the meta-meta layer ele-
ments.

• an application data layer where we finall y find the
application data itself.

The Meta-Meta Layer

To enable the description of schema descriptions we
implemented a common data model.

In the literature we found many different approaches
to implement a CDM -- the approach most often used,
however, was the object-oriented. Thus, we asked our-
selves, what is the kernel idea of the object-oriented
paradigm that makes it suitable for a CDM. We found
out that it probably is the idea of Abstract Data Types.

For instance, from an object oriented data model the
administrator defines the structural parts of the
concept CLASS and assigns at least one particular
routine that performs inheritance similar to his
individual data model.

Thus, we implemented a frame work, which is actuall y
not a real data model but a tool box [2]. It allows a
user to describe the structure and semantics of those
elements, which he uses to describe a schema, similar
to the ADT concept (see next paragraph).

This information is provided through an interface,
which is the so-called Data-Model-Profile. It is an
ASCII f ile with a particular syntax that is parsed. Then
the information is kept in a knowledge base -- the
FSM Meta Knowledge Base.

The CDM that we implemented is very similar to the
Interface Description Language (IDL) of the CORBA
specification [1] -- because its purposes are rather
similar. IDL is a language, which describes object ser-
vices in an intermediate way and the CDM describes
entities (application objects) in an intermediate way.

The Schema Layer

Databases, as components of a federation, use
database schemata. Applications use data type
definitions to declare their application types.

An IDL description is mapped into a real
programming language and the object services are

The FSM reads these schemata and declarations and
interprets the used data types through the information

of the meta layer. Application entities are transformed
into entities of the CDM and then -- for storage
purposes -- transformed into entities of a database data
model.

The FSM-Bind-Agent acts as a client to the FSM-Bind
module, which is the server, and performs the link pro-
cess between FSM and component. It runs an imple-
mented protocol for start-up and shut-down situations
and uses the Remote Procedure Call (RPC) technique.The entity information in CDM-format is stored in the

Federal Data Dictionary (FDD) for retrieval purposes.
After linkage the FSM-Bind-Agent passes control to a
so-called FSM-Agent, which performs the information
exchange and the retrieval of schema information via
the Remote Data Access (RDA) protocol.

The Application Layer

Finally the data that comes from applications is stored
in databases that have joined the federation, that are
represented through meta-information in the Meta
Knowledge Base, and that are willi ng to perform the
storage process after a negotiation of their autonomy
rights.

What is still mi ssing, is a user friendly retrieval
facilit y that completes the Federal Data Dictionary.
We will describe our ideas in the next section.

3.1. Extensions of the FDD
Of course, the data is not stored as CDM-typed data
but is typed according to the data model of the
involved database system. The interpretation of binary
data runs the same way as the transformation of type
information: It goes from the data model of the
application towards the CDM and from the CDM to
the database data model, and vv.

Data dictionaries offer technical information to users -
- and exactly this can be expected from our Federal
Data Dictionary as it is currently implemented. If a
user wants to build a new application he looks into the
FDD and looks up some data structures that he wants
to re-use. Then he includes the chosen data structures
into his new schema (the FSM provides some
commands to do so) and runs his application.

3. Extensions of the FSM Prototype
This user is unable to check whether his new schema
violates the semantic integrity of the universe of dis-
course of the actual federation because he can not ask
the FDD to present him semantic relations between
entities.

Since 1991 the FSM prototype has been completed by
some student’s work.

The Federal Data Dictionary of the prototype
contained information about data type declarations,
the types of application entities, and the structure of
these entities -- as well , access rights were included. It
did not include any technical information about the
availability of entities or schemata.

We wish to provide such a user with an extended Fed-
eral Data Dictionary, which shows the contents of a
federation from various levels of abstraction. If this
extended data dictionary has a graphic interface the
user will use a mouse to easil y request the change of
levels. Which are these levels?We extended the FDD and it now contains technical

information about the federation components. The
meta layer includes information about the technical
system that hosts the application or the database
system. The schema layer includes information about
the technical availability of entities [9].

Taxonomy Level

The highest level presented, should be a taxonomy
upon the universe of discourse. It could be the union
of all schemata (and may be data type declarations of
applications) of local database components, which we
previously transformed into the abstraction level of a
concept language. This level would represent the data
of a particular federation without any technical detail s.
Here the user could look-up the real-world context of
an entity and might ask questions about the relation-
ships between entities. It is the level that KL-ONE li ke
languages usually offer to users with their T-Box.

The lack of a docking mechanism and a protocol to
negotiate autonomy was another problem of the
original FSM prototype. It was a static system with
two applications, a database system and the FSM with
hard wired mechanisms to read data type declarations
-- database schemata could not be read, nor was it
possible to link another database system with the FSM.

Now we have implemented a link mechanism that
generali zes the old one [10]. We now use a FSM-Bind
module that binds a component -- either a database
system or an application -- if it includes our FSM-
Bind-Agent.

Concept Languages separate between the terminologi-
cal (T-Box) and assertion knowledge (A-Box). The
task, which we have to perform is to abstract the tech-
nical information from schemata and data type

declarations to concepts of concept languages. In [11]
we find a theoretical basis that allows us to express
database schemata with concept languages.

We reali ze this view by an FDD retrieval, because our
directory includes the structure information of entities
in a neutral representation and the information about
the availability of these entities.Moreover, the authors show that classification is then

available for entities of schemata -- and we found out
that the implementation of a classificator is
surprisingly supported through an algorithm, which we
use within the FSM to detect data type intersections
for types from different data models. This algorithm
follows perfectly the above mentioned steps for a
classification of concepts.

Syntax Level

Finally, the user may get what he always got from
databases: the pure schema information. If he asks for
this, he will get an excerpt of a schema of one or more
particular local components of the federation -- and he
should decide himself whether he would li ke to
receive this information in the format of a common
data model or in the individual format of the involved
local federation components.

Anyway, if we make the is-a and part-of relations of
entities from schemata explicit and suppress the
technical information, then we can ask questions
against a schema similar to the questions against a
taxonomy.

4. First Steps toward the Taxonomy Level
The implementation of this level may use intermediate
language representations that follow the idea of at-
tributed trees. This model allows us to determine the
degree of entity detail i nformation, which we want to
present, by cutting the tree at a certain level. The in-
formation above the cut is presented as concept. The
rest is hidden until requests from other levels of our re-
trieval interface force it to become visible.

Concerning the integration of abstract schema rep-
resentations into one taxonomy we did some work in
advance and evaluated an idea, published in [12]. It
proposed the assignment of fuzzy values to
relationships to determine the is-a of an entity.

We took this idea and tried to use probabilit y values
for the integration of different schemata into one -- to
simulate the situation that comes up if we have to
integrate abstracted schemata from components into
one taxonomy. It was a first guess to cope with
modeling heterogeneity.

Apparently, we address some open questions if we
want to extend a data dictionary with knowledge
representation features:

How do we find a way to reconstruct the entity view
from relational schemata with normalized relations?
Any automatic evaluation of foreign keys -- which is
the only data model construct that can be used to ex-
press sub-part relationships, set-inclusions, and entity-
inclusions within the relational data model -- finall y
depends on the support of a human. A machine may
solely hypothesize is-a relations between entities.
Thus, our entity re-constructor can not be a completely
automatic component. It has to include a dialogue
component to keep in touch with a human expert, but
it may be a component that is able to learn.

The basic assumption behind our tests was, that the in-
sert of knowledge into a taxonomy is an evolutionary
process and that we ask ” is B a A or a C” and not
”how probably is B a A and a C” .

We defined a value CT (Ei, Ej) for the correctness of a
is-a relationship between two entities Ei and Ej in a ta-
xonomy for the federation. Such a value is assumed to
be assigned to each is-a relationship within that taxo-
nomy. Similar to CT we defined a CS (Ei, Ej) as a value
for the correctness of a is-a relationship in a local
schema.

Schema Level
Next we said that ST (En) and SS (En) are the sets of all
super-concepts of a concept in the taxonomy and an
entity in a local schema.

On a second level, the schema level, in a detailed
view, the user should have access to the more techni-
cal detail s of entities and should see what attributes an
entity make up, where the information resides within
the federation, whether and when it is accessible for
him.

Finall y, we defined two functions, which were neces-
sary to calculate the probabilit y values during the inte-
gration process.

This level is comparable with an extended Entity-
Relationship level where we added attributes about
data distribution and data availabilit y to the usual
representation of entities, attributes, and relationships.

The first function was called INIT and initiali zed an
initial taxonomy with the value 1 for all i s-a relation-
ships: CT (Ei, Ej) := 1.

The second function included a case statement and
was called CALC. It calculated the initiali zed values
according to the new schema. The first case, C1, was
used if a relationship was found in a schema -- it
corresponds with the INIT function for the taxonomy -
- and set CS (Ei, Ej) := 1. We assume that the designer
of the schema did a good and correct work.

however, gave a new balance to both values, which
was 0.69 for the ”B is-a A” and 0.42 for the ”B is-a C”
relationship.

A second test gave surprising results: We inserted the
two C-type schemata and then four times the A-type
schemata. This gave a high value to the ”B is-a C”
relationship first -- the balance was 0.5 for ”B is-a A”
and 0.84 for ”B is-a C” -- and a final value of 0.96 for
”B is-a A” and 0.37 for ”B is-a C” .The second case, C2, was used, if we find a

relationship within the schema but not within the
taxonomy. We insert the relationship into the
taxonomy and give it the value CT (Ei,Ej) := CS (EiEj)
÷ card (ST (Ei) ≈ SS (Ei)).

While the first test showed that the late insert of an ap-
parently insignificant relationship makes the value sys-
tem unstable, the second test showed that an early
insert of the two C-type schemata prevents the al-
ternative relationship to fall down to an ” insignificant”
valuation.

This approach seems to be correct because we can not
guarantee that the taxonomy was correctly initiali zed
with relationships. Moreover, an insertion of a new re-
lationship affects the probabilit y value of another one
because there must be a reason why a particular appli -
cation domain needs this new relationship. It may be,
that the already existing relationships do not have the
importance, which we have expected.

Anyway, both value calculations were highly sequence
dependent, and we suspected the second assumption as
the reason for it. Thus we tried again without this as-
sumption. We inserted into C3 a variable: V (Ei)
counts the number of schemata without a particular
relationship and the calculation C3 changed to

Finall y there is the case C3. In this case we see a rela-
tionship within the taxonomy but miss it in a schema.
We interpret that relationship as ”possible but
unnecessary” within this application domain and
” insert” it into the schema with CS (Ei,Ej) := CT (Ei,Ej)
÷ card (ST (Ei)).

CS (Ei,Ej) := 1 ÷ (V (Ei) + 1).

This does not change much and we were stuck to the
question: Is the insert of knowledge reall y an evolu-
tionary process or is it correct to calculate probabilit y
values from the arithmetic mean of all values from
schemata?

Then we made three assumptions:

5. Conclusion
a) The increase of probabilit y of one particular rela-
tionship is given by its existence in schemata and
causes a decrease of probabilit y for those
relationships, which are often missed. The proposed extended data dictionary gives a twofold

benefit. At first, a user who wants to build a new
schema for an application in a system federation can
check which entities already exist, which of them he
can re-use within his application, and which one he
has to add or modify.

b) The results of calculations about the overall proba-
bilit y for a particular relationship is included into the
taxonomy.
c) Results are calculated through the geometrical
mean of the two probabilit y values from the taxonomy
and from a schema. Second, an administrator can test the correctness of an

existing schema against the universe of discourse. He
can check the completeness of relations between enti-
ties by looking-up the taxonomy, where he would find
the collection of all relationships between entities --
and eventually a probabilit y value of the necessity or
reliability of an individual relationship.

With these assumptions and formulas we tested the in-
tegration of six schemata into a taxonomy, which was
initiali zed with one relationship ”B is-a A” . Four of
these schemata included the relationship ”B is-a A”
(we call them the A-type schemata). Two included ”B
is-a C” and not ”B is-a A” (we call these the C-type
schemata).

6. Literature
In a first test, we inserted a C-type schema first and af-
terwards both relationships had the same value (0.71)
in the taxonomy. A four-times insert of the A-type
schemata brought the value of the ”B is-a A” relation-
ship up to 0.98 and the value of ”B is-a C” fell down
to 0.18 -- similar to the predicate ” insignificant” or
” incorrect” . A final insert of a C-type schema,

[1] The Common Object Request Broker: Architecture
and Specifi cation, OMG Document Number 91.12.1,
Revision 1.1, Draft

[2] W. Benn, G. Junkermann, H. Kalweit, Ch. Kor-
tenbreer, G. Schlageter, X. Wu: The Conceptual Ob-

ject Manager Document, University of Hagen, Com-
puter Science Report Nº 99, 1990

[3] W. Benn, Ch. Kortenbreer, X. Wu: Towards Inter-
operabilit y: Vertical Integration of Languages with a
KBMS, GI-Fachtagung “Datenbanksysteme in Büro,
Technik und Wissenschaft” (BTW 91), Springer-Ver-
lag, 1991

[4] W. Benn: KBMS Support for Multiple Paradigm
Applications, in [16]

[5] W. Benn: KBMS Support for Conceptual
Modeling in AI, 3rd International Conference on Tools
for Artifi cial Intelligence, 1991

[6] W. Benn, Ch. Kortenbreer, G. Schlageter, X. Wu:
On Interoperabilit y for KBMS Applications - The Ho-
rizontal Integration Task -, 8 th Intl. Conference on
Data Engineering, Phoenix, AZ, 1992

[7] A.P. Sheth, J.A. Larson: Federated Database Sys-
tems for Managing Distributed, Heterogeneous, and
Autonomous Databases, ACM Computing Surveys
(1990) 3

[8] DIN 66 313, Rahmenangaben für Systeme zur Ver-
waltung von Informationsrecourcenverzeichnissen,
DIN Deutsches Institut für Normung e.V., Berlin,
1992 (same as ISO/IEC 10 027)

[9] J. Hunstock: Erweiterung einer Wissensbasis zur
Realisierung von universellem Polymorphismus in fö-
derativen Systemen um technische Informationen auto-
nomer Systemkomponenten (Extending the Meta-
Knowledge Base of the FSM by technical information),
thesis for diploma, Chemnitz University of
Technology, 1993

[10] M. Schöne, S. Herold: Konzeption und Imple-
mentierung eines Protokolls und zugehöriger System-
komponenten zur Integration von Datenbanksystemen
in einer Föderation (Design and implementation of a
protocol for the integration of database components
into a federation), thesis for diploma, Chemnitz Uni-
versity of Technology, 1994

[11] S. Bergamaschi, C. Sartori: On taxonomic re-
asoning in conceptual design, ACM TODS (1992) 3

[12] P. Fankhauser, M. Kracker, E. Neuhold: Semantic
vs. Structural Resemblance of Classes, ACM SIG-
MOD Record 20 (1991) 4

