Uniformly Querying Knowledge Bases and Data Bases

Paolo Bresciani
IRST, 1-38050 Trento Povo, TN, Italy

bresciani@irst.it

Abstract

Present KL-ONE-like knowledge base man-
agement systems (KBMS), whilst offer-
ing highly structured description languages
aside efficient concepts classification, have
limited capability to manage large amounts
of individuals. Data base management sys-
tems (DBMS) can, instead, manage large
amounts of data efficiently, but give scarce
formalism to organize them in a structured
way, and to reason with them.

This paper shows how assertional knowl-
edge of KBMS and data of DBMS can be
uniformly accessed. The query answering
capability of an arbitrary KBMS 1s aug-
mented with the possibility of accessing ex-
ternal databases (DB) as a supplemental
source of extensional knowledge.

The techniques presented in this paper can
be easily adapted to several sources of in-
formation. From a knowledge acquisition
perspective, we believe that they can be
usefully applied in all those applications
where several sources of informations are
available independently from the knowl-
edge bases.

1 Introduction

The two basic components of a KBMS of the KL-
ONE family are the terminological box (TBox) and
the assertional box (ABox). One of the tradeoff of
these KBMS is between the expressiveness of the
description languages characterizing their TBox and
the inefficiency in managing large amounts of data
in the ABox, even when they have a quite schematic
form and their classification is completely a priori
given. DBMS, instead, are suited to manage data
efficiently, with little concern about their dimension,
but their formalism for organizing them in a struc-
tured way is quite absent, as it is the capability to
infer new information from the existing ones.

Here we propose to cope with both KBMS and
DBMS together, using them in an integrated way to
manage with several kinds of information. Of course
a uniform way to retrieve information from a mixed
KBMS/DBMS is needed.

In the present paper it is shown how assertional
knowledge of KBMS and data of DBMS can be

uniformly accessed. A technique to tightly couple
KBMS with DBMS [Borgida and Brachman,1993]
is described. As in [Devanbu,1993; Borgida and
Brachman,1993] we let primitive concepts and rela-
tions in a KB correspond respectively to unary and
binary tables/views in a DB. Unlike [Devanbu,1993;
Borgida and Brachman,1993] we provide a tight cou-
pling between KBMS and DBMS, 1.e., a on demand
access to the DB, instead of a loose coupling, that re-
quires a pre-loading of the data from the DB into the
KB. In this way we obtain the following advantages:

e more complex queries than simply asking for the
instances of concepts can be done; just as an ex-
ample, in our system queries like C'(2)AR(z, y)A
D(y) can be made.

e no memory space is wasted in the KBMS to keep
descriptions of DBMS instances.

e answers are given on the basis of the current
state of the KB and the DB.

e no periodical updating of the KB with new or
modified data from the DB is needed.

Basically, in our system the query answering ca-
pability of an arbitrary KBMS' is augmented with
the possibility of accessing external information as
a supplemental source of extensional knowledge. In
particular a database is seen as an extension of the

KBMS ABox.

2 DBox as Extension of the ABox

The ABox is the component of a DBMS where as-
sertions about single individuals are stated. In the
present paper we describe how the ABox can be ex-
tended with an external source of extensional data.
We call this extension a ‘DBox’. In the following,
we adopt the notation of [Nebel, 1990] and call a set
of term descriptions (concepts and roles) a termi-
nology T2, and a set of individual assertions a world

'Even if we implemented the ideas presented here as
an extension of LOOM [MacGregor,1991], they can be
easily applied to any KL-ONE-like KBMS system with a
first-order-logic query-language.

2An important task of a KBMS is to organize the
terms in a taxonomy accordingly with a specialization
relation, 1.e., to classify them; in the following, we often
use 7 to denote just the set of atomic terms appearing
in 7, and consider them correctly classified in the tax-
onomy on the basis of their definitions.



description W3; we say also that the set of data ex-
pressed in a DBox constitutes a data base D. As-
suming that two complete query answering functions
separately exist, for both the ABox and the DBox,
a knowledge base KB = (T, W, D) can be defined in
such a way that a uniform query function, based on
the two answering functions, can be implemented.
We do not require any special capability from the
DBox, except the one of (quickly) retrieving lists
of tuples of items satisfying requested conditions.
These conditions are of the kind of being in a class
—i.e., belonging to a unary table/view — or being in
relation with other items — 1.e., belonging to a bi-
nary table/view — and logical combinations of these,
as it can be, for example, expressed in SQL. Since
our implementation relies; in fact, on a DBMS with
SQL, we assume that D is somehow represented by
means of a relational database, and queries to the
DBox can be done in SQL. Therefore in the follow-
ing we will refer to tables/views — or simply tables —
as they usually are intended in relational databases,
and to the query answering function of the DBox as
to those of SQL.*

i, From the point of view of users of KBMS, our
experience [Bresciani,1992] suggests that, in realis-
tic applications, knowledge bases not only can be
complex, but can also involve a large number of in-
dividuals: often most of them are already completely
and suitably described in some database. We faced
several times, in the past, the task of transferring
data from these databases to our knowledge bases.
Using the techniques described in the present arti-
cle it 1s, of course, much more recommended to link
the databases to the knowledge bases. Using a DBox
paradigm we obtain the advantage of reducing to the
minimum the effort of transferring data and, more-
over, they are automatically kept updated as far as
the linked databases are. But also when data must
be collected ex-novo it can be convenient® to manage
most of them by means of a DBMS.

3 Coupling

As mentioned, in our KB, D is assumed to contain
no structural knowledge, but just raw data, and is
not supposed to have any inferential power. The
single instances are, therefore, already placed in the
right tables. That is, speaking in KR terms, they are
completely a-priori realized under the right concept.
This corresponds to having each table of D associ-
ated with a primitive term® of 7. We will show how

By W we denote also the set of individuals described
in W.

4Of course, the external source of information where
the DBox searches data can be of any kind, provided
only that it can be accessed via a first-order-logic query
language.

5if not necessary, considering that most KBMS cannot
cope with more than some hundreds or few thousands of
individuals.

6A primitive term is a term whose definition gives
only necessary but not sufficient conditions; individuals
cannot be realized under one of these terms unless it is
not explicitly asserted that they belong to it or to a more
specific term in the taxonomy.

mixed (KBMS/DBMS) queries can be answered in a
coherent way, but, to this extent, we need to couple
the terminology 7 in KB with the data base D. This
coupling consists in the association of some particu-
lar terms of 7 with tables, in the DB representing D,
where the extension of these terms are to be found.

For sake of simplicity we adopt, next, some re-
strictions on the form of KB, even if, as it will be
noted later, they can be, at least in part, released.
Given KB = (T, W, D), we assume that the follow-

ing conditions are satisfied:

- non intermediate db extension: every D in-
dividual must be realized under a leaf term in 7,
l.e., a term in 7 specialized by no other terms
in 7.

- homogeneous extension: for each leaf term
of T its associated instances are either all in W
or all in D.

- db isolation: all the leaf terms of 7 whose
instances are in D are primitive and are not used
in any other term definition in 7.

Consider that it is not difficult to design KB in
such a way that a primitive term is introduced in T
for each class of individuals present in D: by this the
homogeneous extension hypothesis can always be
satisfied. The db isolation and the non interme-
diate db extension conditions reflect the hypoth-
esis that D is just a flat collection of unstructured
tables of records of data, without any reasoning ca-
pability.

Under these assumptions, all the information
needed to correctly drive the query mechanism is
the association of those terms in 7 whose extensions
are in D with the corresponding tables in the DB.
To this extent it is enough to know this association
for those terms that are leaf, for the non interme-
diate db extension condition above. Therefore,
we assume that a partial mapping PM : PT —
DBtable is given, where P7T is the set of primi-
tive terms in 7, and DBtable the set of tables in
the DB. So, we can define the marking function
M . T — 2DBtable gt M(t) = {PM(z) | = €
subs(t) and PM(x) is defined }, where subs(t) is the
set of all the terms classified under ¢ in 7 (includ-
ing t). The marking function gives the (possibly
empty) set of tables necessary to retrieve all the in-
stances (pairs) of a given concept (relation). There-
fore, it 1s an 1important part of our KB, whose defi-
nition, to be more precise, has now to be rephrased:

KB={(T,W,D,PM).

4 Query Answering

We are now ready to describe the task of answer-
ing a query. Here we will assume that a query to
KB ={(T,W,D,PM) is an expression of the kind
Az.PL A ... A P,, where Py,..., P, are predicates
of the form C(z) or R(z,y), where C' and R are re-
spectively a concept and a relation in 7 and each
of # and y appears in T = (x1,...,&y,) or is an in-
stance in WUD. As a first, informal example, let us
consider the case in which all the Py,..., P, can be
managed by the DBox only, that is: M (¢) # @ for
each t € subs(Py) U...Usubs(P,).



4.1 Translating Queries into SQL

When each predicate in a query ¢ = AZ.PLA ... AP,
can be made correspond to a set of tables in the
DB, where the answers have to be found, 1t can be
translated into an equivalent SQL query. Of course,
the sets of tables can be easily found via the mark-
ing function M. At this point we have just to cope
with the union set of tables {74,... Ty} and their
bindings via the variables in Z. For simplicity, let
us suppose that the tables returned by M are com-
posed by one column in the case of a concept (let
it be called left), and two in the case of a rela-
tion (let them be called left and right). The SQL
translation is of the kind:

SELECT DISTINCT

FROM from-body

WHERE where-body
where the select-body is a list of column names of the
kind M(P;,).left or M(FP,,).right, one for each
variable z; in &, according to the fact that the vari-
able x; appears for the first time in the predicate
Py, in the first place” or in the second place, respec-
tively. The from-body is the list of all the tables in-
volved — i.e., all the M (P;). The where-body is a list
of SQL where-conditions of the kind field2=fieldl
or field2=constant, where the first form has to be
used for each variable that is used more than once,
each time it is reused, and the second form occurs for
each use of constants. In both the forms field2is a
selector similar to those in select-body, correspond-
ing to positions in the query where the variable is
further used or where the constant appears, respec-
tively; fieldl corresponds to the first occurence of
the variable.

select-body

4.2 The General Case

In general answering, a query is more complex and
requires the merging of results from the DBMS and
the KBMS. Answering a query in KB means finding
aset {Z1, ..., ™} of tuples of instances s.t., for each
tuple !, AZT.(PL A ... A P,)[Z'] holds in KB. We call
such tuples answers of the query and the set of all
of them its answer set.

Due to the definition of answer of a query, it is ob-
vious that, in order to avoid the generation of huge
answer sets, free variables should not be used, 1.e.,
each variable appearing in T must appear also in
the query body (i.e., the part at the right of the
dot). Indeed, we adopt a stronger restriction, be-
cause the former one still allows for some undesired
situations. Let us consider, for example, the query:
Mz, y, 2).A(x) A R(z,y) A C(z). All the variables
appear in the body, but, nevertheless, the answer
set of the query can be unreasonably large, due
to the fact that all the answers of the sub-query
Az, y).A(x) A R(z,y) have to be combined with all
the answers of the sub-query A(z).C'(z). We say that
such a query is unconnected. More in general, we say
that a query is unconnected when it can be split into
two or more sub-queries s.t. all the variables appear-
ing in each of them does not appear in any other. We
call these sub-queries clusters. It is obvious that the

“or the only one in the case of concept.

relevant result of answering an unconnected query is
equivalent to the union of the single results of sep-
arately answering the clusters, in the sense that all
the information is included in it. But, if we consider
the formal definition of answer, we must consider
the fact that the overall result must contain tuples
longer than those resulting by submitting the sin-
gle clusters; to obtain all the tuples satisfying the
definition of answer the single answers have to be
combined by a sort of Cartesian product. More ex-
actly, if, after having reordered the variables, un un-
conected query is written as AT.¢1 (F1)A ... A (Tn)
— where T 1s the concatenation of the other vec-
tors (T = Tye-- -+ Tn), and ©1(F1), ..., ¢n(Tn) cor-
responds to the single clusters — and given that
the asnwers sets of a generic cluster AZ;.¢;(%F;) is
S; = {T;, Cel Ti»’}, the answer set of the whole query
is S={I' T | T} esy,..., I €S}

The case of a connected (i.e., non unconnected)
query AZ.p(y) with unbound variables can be re-
duced to the case of an unconnected query AZ.¢(g) A
T(Z), where Z = (z1,...,2;) contains all the vari-
ables appearing in T but not in gy, and T(z) =
top(z1) A ... Atop(zr), where top correspond to the
most generic concept in 7.

It is now clear that unconnected queries and
queries with unbound variables may have unreason-
ably large answer sets, without giving any further ca-
pability to the system. Therefore, we consider only
connected queries with only bound variables.

To afford the answering of a query we need to split
it into sub-queries that can be answered by the two
specialized query answering functions of the KBMS
and the DBMS. To this extent we need, as a first
step, to mark all the possible atomic predicates, cor-
responding to the terms in 7, and say that a term
Pis:

- DB-marked iff for each ¢t € subs(P)NPT PM(¥)

is defined .

- KB-marked iff for each t € subs(P) NPT,
PM(t) is undefined.

- Mixed-marked otherwise.

These three markings reflect the fact that the in-
stances (pairs) of P are all in W, all in D, or part
in W and part in D, respectively. The strategy for
answering to a query is based on this information.
Let us, first, observe that it is easy to answer to an
atomic query where the predicate is a KB-marked or
a DB-marked term. In the first case it is enough to
submit it to the KBMS. In the second it is enough
to translate the query in a SQL equivalent, as shown
above, and submit 1t to the associated DB. More-
over, if the query is not atomic, but made up by
atomic subexpression all with the same marking, the
same strategy is applied. More difficult is the case
of queries with Mixed-marked predicates. Even the
atomic case is quite difficult; 1t is necessary to trans-
form the atomic query into the (possibly non atomic)
one whose predicates correspond to all the leaf terms
that specialize the only term in the original atomic
query, proceed as before, and collect all the results.
Let us now consider a generic non atomic query:

A2 PEPA L APEBAPPEN . APPEAPY A APM

ilpB



where the PXB corresponds to the KB-marked

terms, the PPP to the DB-marked terms, and the
PM to the Mixed-marked terms. The query can be
split in the sub-queries: ¢%% = \z.PEBA.. ~/\Pl§§a
qPB =Xz PPEA. APPE and ¢ = Xz PM AL A
P,

4.3 The Algorithms

As we said, the sub-queries ¢5Z, ¢P% ¢M can be
easily processed. The only difficulty is that some of
the variables in T could be unbound in a sub-query.
In this case, as shown before, the answer sets have to
be completed, that is, the unbound variables should
be made correspond to each instance in KB, for all
the found answers, by all the possible combinations.
But, in this way, huge answer sets are generated, as
in the following sketch of the query-answering algo-

rithm:

1 split the query as sketched above into ¢% %, ¢PP

and ¢™.

2 submit ¢% 8 to KBMS, ¢”Z to SQL (after trans-
lation) and transform each of the atomic sub-
queries ¢M of ¢M into a set of atomic queries
corresponding to the leaf terms in 7 that spe-
cialize ¢M; submit them to the specific retriev-
ers.

3 collect all the answers respectively in the answer
sets AS%(? , AS%)B , and AS% , and complete
TKB DB T M
them with the whole domain in the place of un-
bound variables, as mentioned above, generat-
ing ASEE ASDB and ASM.
4 the overall answer set is just AS?B N AS%)B N
ASM.

Of course this first algorithm is widely space wast-
ing. Moreover, in step 3 it is not clearly stated how
to collect the answers of the sub-queries ¢ . We try
here to shortly describe this operation and to show
how the completions of AS%(IF , AS%)EJ)B , and AS%J
in step 3, and their following intersection in step 4,
can be obtained more efficiently. To solve these prob-
lems, from step 3 ahead a compact representation for
ASgB, ASgB, and AS% is needed. Let a generic
partial answer set be written as ASy, where the vari-
ables of the original complete variable tuple T miss-
ing in y are, Zp,, ..., %p,. Its completion can be rep-
resented in a compact way with ASz = UTE[‘S;{T*},

where T* are equivalent to I except that are length-
ened by filling the k missing positions p1, ..., pr with
any marker, e.g., a star ‘x’. The star stands for all
the individuals in XB. Using this representation for
the completion in step 3, it is now easy to rephrase
step 4 of the algorithm as a merging operation. In

fact answer sets ASgB, AS%)B, and AS% can be
merged into a single answer set as follow:

4.1 let result-list={ASEB ASLB AsM3
4.2 choose two answer sets, AS; and ASs;, in
result-list, where answers have at least one
common position filled by individuals, 1.e., not
*.8
8Such two sets do always exist, otherwise the query
would be unconnected, while we assumed to deal only

4.3 merge AS; and ASs by collecting only those an-
swers in AS7 where each non-x filled position is
filled by the same individual or by % in some
answers in AS,, and replace in the collected an-
swers each x with the individuals in the corre-
sponding position in all the matching answers

Of ASQ

4.4 replace AS7 and AS5 in result-1list with their
merging computed in step 4.3

4.5 REPEAT from step 4.2 UNTIL only one item
is left in result-list.

4.6 RETURN the only item left in result-list.

Now it s easy to explain how to collect the answers
of the sub-queries ¢M of step 2. It is enough, for each
M e {¢M ... ¢M} to collect all the answers of all its
descendant queries, and complete these answer sets
generating AS%{D .. .,AS%{h, as described above; it
is now clear that, in the above algorithm for step 4,
step 4.1 has to be so rephrased:

4.1-bis
let
result-list={ASEB ASDB AcM

EXTRR .,Angh}.

The resulting algorithm, composed by steps 1,2, 3
(modified as shown), 4.1-bis, and 4.2 to 4.6 has been
implemented. In our system the KBMS currently in
use is LOOM [MacGregor,1991], and the database
query language is SQL, but, as mentioned, also other
systems could be easily used.

5 Conclusion and Future
Developments

We have shown how a third component, a DBox —
allowing for the extensional data to be distributed
among the ABox and the DBox — can be added to
the traditional TBox/ABox architecture of KBMS.
By means of the DBox is possible to couple the
KBMS with, for example, a DBMS, and use both
the systems to uniformly answering queries to knowl-
edge bases realized by this extended paradigm. The
presented query language has some restrictions, and
some constraints have been 1imposed to the form of
the knowledge bases. To overcome these limitations,
some extensions of the present work can be proposed.

5.1 Constraints on the Form of KB

In section 3 we assumed that some constraints
should be imposed on the form of £B. Indeed they
can be in part released, even if this more general ap-
proach would require a deeper discussion and a re-
formulation of the algorithms. Here we try to give a
very short account on possible developments in this
direction. First, consider the homogeneous ex-
tension condition. It is important because it allows
to make the search of the answers simpler, giving
the basis for a neat separation between KB-marked,
DB-marked, and Mixed-marked predicates®. But it

with connected queries.

%and giving also the way to decompose the Mixed-
marked predicates in sets of KB-marked and DB-marked
ones.



1s even more important when considered in conjunc-
tion with the db isolation condition. In fact we
can easily cope with leaf terms having instances from
both W and D by submitting the corresponding sub-
queries to both the specialized retrieving functions,
and then proceeding with the merging as usual. But,
allowing this ambiguity would make more complex
the formulation of the db isolation condition, that
could become:

- db isolation: all the leaf terms of 7 whose in-
stances are even only in part in D are primitive
and are not used in any other term definition in

T.

Indeed we can, at least in part, give up also with
this condition. In fact, while keeping the fact that
such term must be primitive — this is pragmatically
coherent with the fact that the raw information com-
ing from the DB cannot be inferred — we can allow
such term to be used inside new, eventually even non
primitive, definition. To this extent we need a much
more complex schema for translating queries on DB-
marked term into SQL. For example, if the query is
of the kind A{x).C'(z) where C' = some(R, D), its
SQL translation could be:

SELECT M (R).left
FROM M(R)
WHERE M (R).right IN M (D)

Similarly, a translation for the all operator could
be given, as in [Borgida and Brachman,1993), but in
this case some extra considerations about the ade-
quacy of the standard extensional semantics of this
operator, when used in a database context, would
arise. In fact, the empty satisfiability of an all clause
would be hardly suited for a DB.1Y

In the example above D is supposed to be a
primitive atomic DB-marked concept. Another ex-
tension to be explored is about releasing this con-
straint. Again, some concerns about semantics ade-
quacy should probably be adressed.

Also the non intermediate db extension con-
dition has, after the considerations above, to be re-
vised. In fact, even if we must still consider the
informaton of D, as they are given, as being a priori
fully realized in the leaves of the taxonomy, because
the tables in the DB, where the instances of D are
described, are not structured in a hierarchy, it could
happen that non primitive concepts specialize the
DB-marked ones, as in the previous example on the
some operator.

5.2 The Query Language

Another iussue to be explored regards the query lan-
guage. Currently our system support existentially
quantified conjuntions of atomic formulae.

We plan to expand its capability with the possi-
bility of answering any first-order-logic query. We
foresee that, to this extent, much attention has to
be paid on the optimization of the queries.!!

%As we argued even for standard knowledge bases
[Bresciani,1991] the every operator [Franconi,1992]
would be more adequate in this case.

1 Because in our system queries to KB and to DB are

5.3 Aknowledgments

Our thanks must be addressed to Enrico Franconi,
for his careful reading of several preliminary copies
of the present paper and the useful suggestions he
made about it. We also thank Fabio Rinaldi, for his
implementation of the SQL interface.

References

[Borgida and Brachman, 1993] Alex Borgida and
Ronald J. Brachman. Loading data into descrip-
tion reasoners. In Proceeding of ACM SIGMOD
’93, 1993.

[Bresciani, 1991] Paolo Bresciani. Logical account
of a terminological tool. In Proc. of the IX Con-
ference on Applications of Artificial Intelligence,
Orlando, FL, 1991.

[Bresciani, 1992] Paolo Bresciani. Representation of
the domain for a natural language dialogue sys-
tem. Technical Report 9203-01, IRST, Povo TN,
1992.

[Buchheit et al., 1994] Martin
Buchheit, Manfred A. Jeusfeld, Werner Nutt, and
Martin Staudt. Subsumption between queries to
object-oriented databases. Information Systems,

19(1):33-54, 1994.

[Devanbu, 1993] Premkumar T. Devanbu. Trans-
lating description logics to information server
queries. In Proceedings of Second Conference on

Information and Knowledge Management (CIKM
’93), 1993.

[Franconi, 1992] E. Franconi. Extending hybridity
within the YAK knowledge representation system.
AT*IA notizie, the Italian Association for Artifi-
cial Intelligence Journal, 5(2):55-58, June 1992.

[MacGregor, 1991] R. MacGregor. Inside the
LOOM description classifier. SIGART Bulletin,
2(3):88-92, 1991.

[Nebel, 1990] B. Nebel. Reasoning and Revision in
Hybrid Representation Systems, volume 422 of

Lecture Notes in Artificial Intelligence. Springer-
Verlag, Berlin, Heidelberg, New York, 1990.

managed in a uniform way, the approach of [Buchheit et
al.,1994] can be usefully applied.



