
Terminological Systems Revisited:Terminology = Schema + Views�M. Buchheit1 and F. M. Donini2 and W. Nutt1 and A. Schaerf21. German Research Center for Arti�cial Intelligence (DFKI), Saarbr�ucken, Germanyfbuchheit,nuttg@dfki.uni-sb.de2. Dipartimento di Informatica e Sistemistica, Universit�a di Roma \La Sapienza", Italyfdonini,aschaerfg@assi.dis.uniroma1.itAbstractTraditionally, the core of a Termino-logical Knowledge Representation System(TKRS) consists of a so-called TBox, whereconcepts are introduced, and an ABox,where facts about individuals are statedin terms of these concepts. This designhas a drawback because in most applica-tions the TBox has to meet two functionsat a time: on the one hand, similar to adatabase schema, framelike structures withtyping information are introduced throughprimitive concepts and primitive roles; onthe other hand, views on the objects in theknowledge base are provided through de-�ned concepts.We propose to account for this conceptualseparation by partitioning the TBox intotwo components for primitive and de�nedconcepts, which we call the schema and theview part. We envision the two parts todi�er with respect to the language for con-cepts, the statements allowed, and the se-mantics.We argue that by this separation weachieve more conceptual clarity about therole of primitive and de�ned conceptsand the semantics of terminological cycles.Moreover, three case studies show the com-putational bene�ts to be gained from there�ned architecture.1 IntroductionResearch on terminological reasoning usually pre-supposes the following abstract architecture, whichre
ects quite well the structure of existing systems.There is a logical representation language that allowsfor two kinds of statements: in the TBox or termi-nology , concept descriptions are introduced, and inthe ABox or world description, individuals are char-acterized in terms of concept membership and role�This work was partly supported by the Commis-sion of the European Union under ESPRIT BRA 6810(Compulog 2), by the German Ministry of Research andTechnology under grant ITW 92-01 (TACOS), and bythe CNR (Italian Research Council) under Progetto Fi-nalizzato Sistemi Informatici e Calcolo Parallelo, LdR\Ibridi."

relationship. This abstract architecture has been thebasis for the design of systems, the development ofalgorithms, and the investigation of the computa-tional properties of inferences.Given this setting, there are three parameters thatcharacterize a terminological system: (i) the lan-guage for concept descriptions, (ii) the form of thestatements allowed, and (iii) the semantics given toconcepts and statements. Research tried to improvesystems by modifying these three parameters. But inall existing systems and almost all theoretical studieslanguage and semantics have been kept uniform.1The results of these studies were unsatisfactory inat least two respects. First, it seems that tractableinferences are only possible for languages with lit-tle expressivity. Second, no consensus has beenreached about the semantics of terminological cycles,although in applications the need to model cyclicdependencies between classes of objects arises con-stantly.Based on an ongoing study of applications of ter-minological systems, we suggest to re�ne the two-layered architecture consisting of TBox and ABox.Our goal is twofold: on the one hand we want toachieve more conceptual clarity about the role ofprimitive and de�ned concepts and the semantics ofterminological cycles; on the other hand, we want toimprove the tradeo� between expressivity and worstcase complexity. Since our changes are not primar-ily motivated by mathematical considerations but bythe way systems are used, we expect to come up witha more practical system design.In the applications studied we found that theTBox has to meet two functions at a time. One is todeclare frame-like structures by introducing primi-tive concepts and roles together with typing infor-mation like isa-relationships between concepts, orrange restrictions and number restrictions of roles.E.g., suppose we want to model a company environ-ment. Then we may introduce the concept Employeeas a specialization of Person, having exactly onename of type Name and at least one a�liation oftype Department. This is similar to class declara-tions in object-oriented systems. For this purpose, asimple language is su�cient. Cycles occur naturallyin modeling tasks, e.g., the boss of an Employee is1In [Lenzerini and Schaerf, 1991] a combination ofa weak language for ABoxes and a strong language forqueries has been investigated.

also an Employee. Such declarations have no de�ni-tional import, they just restrict the set of possibleinterpretations.The second function of a TBox is to de�ne newconcepts in terms of primitive ones by specifyingnecessary and su�cient conditions for concept mem-bership. This can be seen as de�ning abstractions orviews on the objects in the knowledge base. De�nedconcepts are important for querying the knowledgebase and as left-hand sides of trigger rules. For thispurpose we need more expressive languages. If cy-cles occur in this part they must have de�nitionalimport.As a consequence of our analysis we propose tosplit the TBox into two components: one for declar-ing frame structures and one for de�ning views. Byanalogy to the structure of databases we call the�rst component the schema and the second the viewpart. We envision the two parts to di�er with re-spect to the language, the form of statements, andthe semantics of cycles.The schema consists of a set of primitive conceptintroductions, formulated in the schema language,and the view part by a set of concept de�nitions, for-mulated in the view language. In general, the schemalanguage will be less expressive than the view lan-guage. Since the role of statements in the schemais to restrict the interpretations we want to admit,�rst order semantics, which is also called descriptivesemantics in this context (see Nebel 1991), is ade-quate for cycles occurring in the schema. For cyclesin the view part, we propose to choose a semanticsthat de�nes concepts uniquely, e.g., least or greatest�xpoint semantics.The purpose of this work is not to present thefull-
edged design of a new system but to explorethe options that arise from the separation of TBoxesinto schema and views. Among the bene�ts to begained from this re�nement are the following three.First, the new architecture has more parameters forimproving systems, since language, form of state-ments, and semantics can be speci�ed di�erently forschema and views. So we found a combination ofschema and view language with polynomial inferenceprocedures whereas merging the two languages intoone would have led to intractability. Second, we be-lieve that one of the obstacles to a consensus aboutthe semantics of terminological cycles has been pre-cisely the fact that no distinction has been madebetween primitive and de�ned concepts. Moreover,intractability results for cycles mostly refer to infer-ences with de�ned concepts. We proved that rea-soning with cycles is easier when only primitive con-cepts are considered. Third, the re�ned architectureallows for more di�erentiated complexity measures,as shown later in the paper.In the following section we outline our re�ned ar-chitecture for a TKRS, which comprises three parts:the schema, the view taxonomy, and the world de-scription, which comprise primitive concepts, de-�ned concepts and assertions in traditional systems.In the third section we show by three case studiesthat adding a simple schema with cycles to existingsystems does not increase the complexity of reason-

ing.2 The Re�ned ArchitectureWe start this section by a short reminder on conceptlanguages. Then we discuss the form of statementsand their semantics in the di�erent components ofa TKRS. Finally, we specify the reasoning servicesprovided by each component and introduce di�erentcomplexity measures for analyzing them.2.1 Concept LanguagesIn concept languages, complex concepts (ranged overby C, D) and complex roles (ranged over by Q, R)can be built up from simpler ones using concept androle forming constructs (see Tables 1 and 2 a setof common constructs). The basic syntactic sym-bols are (i) concept names, which are divided intoschema names (ranged over by A) and view names(ranged over by V), (ii) role names (ranged over byP), and (iii) individual names (ranged over by a, b).An interpretation I = (�I; �I) consists of the do-main �I and the interpretation function �I, whichmaps every concept to a subset of �I, every roleto a subset of �I ��I , and every individual to anelement of �I such that aI 6= bI for di�erent indi-viduals a, b (Unique Name Assumption). Complexconcepts and roles are interpreted according to thesemantics given in Tables 1 and 2, respectively.In our architecture, there are two di�erent con-cept languages in a TKRS, a schema language forexpressing schema statements and a view languagefor formulating views and queries to the system.2.2 The Three ComponentsWe �rst focus our attention to the schema. Theschema introduces concept and role names and stateselementary type constraints. This can be achievedby inclusion axioms having one of the forms:A v D; P v A1 �A2;where A, A1, A2 are schema names, P is a role name,and D is a concept of the schema language. Intu-itively, the �rst axiom states that all instances of Aare also instances of D. The second axiom statesthat the role P has domain A1 and range A2. Aschema S consists of a �nite set of schema axioms.Inclusion axioms impose only necessary conditionsfor being an instance of the schema name on theleft-hand side. For example, the axiom \Employee vPerson" declares that every employee is a person,but does not give a su�cient condition for being anemployee.A schema may contain cycles through inclusionaxioms (see Nebel 1991 for a formal de�nition).So one may state that the bosses of an employeeare themselves employees, writing \Employee v8boss.Employee." In general, existing systems donot allow for terminological cycles, which is a seri-ous restriction, since cycles are ubiquitous in domainmodels.There are two questions related to cycles: the �rstis to �x the semantics and the second, based onthis, to come up with a proper inference procedure.As to the semantics, we argue that axioms in the

Construct Name Syntax Semanticstop > �Isingleton set fag faIgintersection C uD CI \DIunion C tD CI [DInegation :C �I nCIuniversal quanti�cation 8R.C fd1 j 8d2 : (d1; d2) 2 RI ! d2 2 CIgexistential quanti�cation 9R.C fd1 j 9d2 : (d1; d2) 2 RI ^ d2 2 CIgexistential agreement 9Q := R fd1 j 9d2.(d1; d2) 2 QI ^ (d1; d2) 2 RIgnumber restrictions (� nR) fd1 j]fd2 j (d1; d2) 2 RIg � ng(� nR) fd1 j]fd2 j (d1; d2) 2 RIg � ngTable 1: Syntax and semantics of concept forming constructs.Construct Name Syntax Semanticsinverse role P�1 f(d1; d2) j (d2; d1) 2 P Igrole restriction (R:C) f(d1; d2) j (d1; d2) 2 RI ^ d2 2 CIgrole chain Q �R f(d1; d3) j 9d2.(d1; d2) 2 QI ^ (d2; d3) 2 RIgself � f(d1; d1) j d1 2 �IgTable 2: Syntax and semantics of role forming constructs.schema have the role of narrowing down the mod-els we consider possible. Therefore, they should beinterpreted under descriptive semantics, i.e., like in�rst order logic: an interpretation I satis�es an ax-iom A v D if AI � DI , and it satis�es P v A1�A2if P I � AI1 � AI2 . The interpretation I is a modelof the schema S if it satis�es all axioms in S. Theproblem of inferences will be dealt with in the nextsection.The view part contains view de�nitions of the formV := C;where V is a view name and C is a concept in theview language. Views provide abstractions by de�n-ing new classes of objects in terms of the conceptand role names introduced in the schema. We referto \V := C" as the de�nition of V . The distinc-tion between schema and view names is crucial forour architecture. It ensures the separation betweenschema and views.A view taxonomy V is a �nite set of view de�ni-tions such that (i) for each view name there is atmost one de�nition, and (ii) each view name oc-curring on the right hand side of a de�nition has ade�nition in V.Di�erently from schema axioms, view de�nitionsgive necessary and su�cient conditions. As an ex-ample of a view, one can describe the bosses ofthe employee Bill as the instances of \BillsBosses :=9boss-of.fBILLg."Whether or not to allow cycles in view de�ni-tions is a delicate design decision. Di�erently fromthe schema, the role of cycles in the view partis to state recursive de�nitions. For example, ifwe want to describe the group of individuals thatare above Bill in the hierarchy of bosses we canuse the de�nition \BillsSuperBosses := BillsBosses t

9boss-of.BillsSuperBosses." But note that this doesnot yield a de�nition if we assume descriptive se-mantics because for a �xed interpretation of BILLand of the role boss-of there may be several waysto interpret BillsSuperBosses in such a way that theabove equality holds. In this example, we only ob-tain the intended meaning if we assume least �xpointsemantics. This observation holds more generally: ifcycles are intended to uniquely de�ne concepts thendescriptive semantics is not suitable. However, leastor greatest �xpoint semantics or, more generally, asemantics based on the �-calculus yield unique de�-nitions (see Schild 1994). Unfortunately, algorithmsfor subsumption of views under such semantics areknown only for fragments of the concept languagede�ned in Tables 1 and 2.In this paper, we only deal with acyclic view tax-onomies. In this case, the semantics of view de�ni-tions is straightforward. An interpretation I satis�esthe de�nition V := C if V I = CI , and it is a modelfor a view taxonomy V if I satis�es all de�nitions inV.A state of a�airs in the world is described by as-sertions of the formC(a); R(a; b);where C and R are concept and role descriptions inthe view language. Assertions of the form A(a) orP (a; b), where A and P are names in the schema,resemble basic facts in a database. Assertions in-volving complex concepts are comparable to viewupdates.A world description W is a �nite set of asser-tions. The semantics is as usual: an interpretationI satis�es C(a) if aI 2 AI and it satis�es R(a; b) if(aI ; bI) 2 RI ; it is a model of W if it satis�es everyassertion in W.

Summarizing, a knowledge base is a triple � =hS;V;Wi, where S is a schema, V a view taxonomy,and W a world description. An interpretation I isa model of a knowledge base if it is a model of allthree components.2.3 Reasoning ServicesFor each component, there is a prototypical reason-ing service to which the other services can be re-duced.Schema Validation: Given a schema S, checkwhether there exists a model of S that inter-prets every schema name as a nonempty set.View Subsumption: Given a schema S, a view tax-onomy V, and view names V1 and V2, checkwhether V I1 � V I2 for every model I of S andV;Instance Checking : Given a knowledge base �, anindividual a, and a view name V , check whetheraI 2 V I holds in every model I of �.Schema validation supports the knowledge engineerby checking whether the skeleton of his domainmodel is consistent. Instance checking is the basicoperation in querying a knowledge base. View sub-sumption helps in organizing and optimizing queries(see e.g. Buchheit et al. 1994). Note that the schemaS has to be taken into account in all three servicesand that the view taxonomy V is relevant not onlyfor view subsumption, but also for instance checking.In systems that forbid cycles, one can get rid of Sand V by expanding de�nitions. This is not possiblewhen S and V are cyclic.2.4 Complexity MeasuresThe separation of the core of a TKRS into threecomponents allows us to introduce re�ned complex-ity measures for analyzing the di�culty of inferences.The complexity of a problem is generally measuredwith respect to the size of the whole input. However,with regard to our setting, three di�erent pieces ofinput are given, namely the schema, the view tax-onomy, and the world description. For this reason,di�erent kinds of complexity measures may be de-�ned, similarly to what has been suggested in [Vardi,1982] for queries over relational databases. We con-sider the following measures (where jXj denotes thesize of X):Schema Complexity : the complexity as a functionof jSj;View Complexity : the complexity as a function ofjVj;World Description Complexity : the complexity as afunction of jWj;Combined Complexity : the complexity as a functionof jSj+ jVj+ jWj.Combined complexity takes into account thewhole input. The other three instead consider only apart of the input, so they are meaningful only whenit is reasonable to suppose that the size of the otherparts is negligible. For instance, it is sensible to an-alyze the schema complexity of view subsumption

because usually the schema is much bigger than thetwo views which are compared. Similarly, one mightbe interested in the world description complexity ofinstance checking whenever one can expect W to bemuch larger than the schema and the view part.It is worth noticing that for every problem com-bined complexity, taking into account the whole in-put, is at least as high as the other three. For exam-ple, if the complexity of a problem is O(jSj�jVj�jWj),its combined complexity is cubic, whereas the otherones are linear. Similarly, if the complexity of a givenproblem is O(jSjjVj), both its combined complexityand its view complexity are exponential, its schemacomplexity is polynomial, and its world descriptioncomplexity is constant.In this paper, we use combined complexity to com-pare the complexity of reasoning in our architec-ture with the traditional one. Moreover, we useschema complexity to show how the presence of alarge schema a�ects the complexity of the reason-ing services previously de�ned. View and world de-scription complexity have been investigated (underdi�erent names) in [Nebel, 1990, Baader, 1990] and[Schaerf, 1993, Donini et al., 1994], respectively.3 The Case StudiesWe studied some illustrative examples that show theadvantages of the architecture we propose. We ex-tended three systems by a simple cyclic schema lan-guage and analyzed their computational properties.As argued before, a schema language should atleast be expressive enough for declaring subconceptrelationships, restricting the range of roles, and spec-ifying roles to be necessary (at least one value) or sin-gle valued (at most one value). These requirementsare met by the language SL, which was introducedin [Buchheit et al., 1994] and that is de�ned by thefollowing syntax rule:C;D �! A j 8P .A j (� 1 P) j (� 1 P):Obviously, it is impossible to express in SL that aconcept is empty. Therefore, schema validation inSL is trivial. Also, subsumption of concept namesis polynomially decidable.We proved that inferences become harder for ex-tensions of SL. If we add inverse roles, schema val-idation remains trivial, but subsumption of schemanames becomes NP-hard. If we add any construct bywhich one can express the empty concept|like dis-jointness axioms|schema validation becomes NP-hard. However, in our opinion this does not meanthat extensions of SL are not feasible. For some ex-tensions, there are natural restrictions on the formof schemas that decrease the complexity. Also, itis not clear whether realistic schemas will containstructures that require complex computations.In all the three cases studied, the schema lan-guage is SL. For the view language, we proposethree di�erent languages derived from three actualsystems described in the literature, namely the de-ductive object-oriented database system Concept-Base [Jarke, 1992], and the terminological systemskris [Baader and Hollunder, 1991] and classic

[Borgida et al., 1989]. We investigated the com-putational properties of the reasoning services withrespect to SL-schemas. We aimed at showing tworesults: (i) reasoning w.r.t. schema complexity is al-ways tractable, (ii) combined complexity is not in-creased by the presence of terminological cycles inthe schema.In all three cases, we assume that view namesare allowed in membership assertions and that theview taxonomy is acyclic. In this setting, every viewname can be substituted with its de�nition. For thisreason, from this point on, we suppose that viewconcepts are completely expanded. Therefore, whenevaluating the complexity, we replace the size of theview part by the size of the concept representing theview.We have found the following results for the threesystems in which SL is the schema language and theconcept language the abstraction of the query lan-guage of ConceptBase introduced in [Buchheit etal., 1994], or the language o�ered by kris or clas-sic, respectively.ConceptBase: instance checking is in PTIMEw.r.t. combined complexity (view subsumptionhas been proved in PTIME in [Buchheit et al.,1994]).kris: view subsumption and instance checking arePSPACE-complete problems w.r.t. combinedcomplexity and PTIME problems w.r.t. schemacomplexity.classic: view subsumption and instance checkingare problems in PTIME w.r.t. combined com-plexity.We conclude that adding (possibly cyclic) schemainformation does not change the complexity of rea-soning within the systems taken into account.4 ConclusionWe have proposed to replace the traditional TBoxin a terminological system by two components: aschema, where primitive concepts describing frame-like structures are introduced, and a view part thatcontains de�ned concepts. We feel that this architec-ture re
ects adequately the way terminological sys-tems are used in most applications.We also think that this distinction can clarify thediscussion about the semantics of cycles. Given thedi�erent functionalities of the schema and view part,we propose that cycles in the schema are interpretedwith descriptive semantics while for cycles in theview part a de�nitional semantics should be adopted.In three case studies we have shown that the re-vised architecture yields a better tradeo� betweenexpressivity and the complexity of reasoning.The schema language we have introduced mightbe su�cient in many cases. Sometimes, however,one might want to impose more integrity constraintson primitive concepts than those which can be ex-pressed in it. We see two solutions to this problem:either enrich the language and have to pay by a morecostly reasoning process, or treat such constraints ina passive way by only verifying them for the objects

in the knowledge base. The second alternative canbe given a logical semantics in terms of epistemicoperators (see Donini et al. 1992).References[Baader and Hollunder, 1991] Franz Baader andBernhard Hollunder. A terminological knowledgerepresentation system with complete inference al-gorithm. In Proc. PDK-91, LNAI, pages 67{86,1991.[Baader, 1990] Franz Baader. Terminological cyclesin KL-ONE-based knowledge representation lan-guages. In Proc. AAAI-90, pages 621{626, 1990.[Borgida et al., 1989] Alexander Borgida, Ronald J.Brachman, Deborah L. McGuinness, and LoriAlperin Resnick. CLASSIC: A structural datamodel for objects. In Proc. ACM SIGMOD, pages59{67, 1989.[Buchheit et al., 1994] MartinBuchheit, Manfred A. Jeusfeld, Werner Nutt, andMartin Staudt. Subsumption between queries toobject-oriented databases. Information Systems,19(1):33{54, 1994.[Donini et al., 1992] Francesco M. Donini, MaurizioLenzerini, Daniele Nardi, Werner Nutt, and An-drea Schaerf. Adding epistemic operators to con-cept languages. In Proc. KR-92, pages 342{353,1992.[Donini et al., 1994] Francesco M. Donini, MaurizioLenzerini, Daniele Nardi, and Andrea Schaerf. De-duction in concept languages: From subsumptionto instance checking. Journal of Logic and Com-putation, 4(92{93):1{30, 1994.[Jarke, 1992] M. Jarke. ConceptBase V3.1 UserManual. Aachener Informatik-Berichte 92-17,RWTH Aachen, 1992.[Lenzerini and Schaerf, 1991]Maurizio Lenzerini and Andrea Schaerf. Conceptlanguages as query languages. In Proc. AAAI-91,pages 471{476, 1991.[Nebel, 1990] Bernhard Nebel. Terminological rea-soning is inherently intractable. Arti�cial Intelli-gence, 43:235{249, 1990.[Nebel, 1991] Bernhard Nebel. Terminological cy-cles: Semantics and computational properties. InJohn F. Sowa, editor, Principles of Semantic Net-works, pages 331{361.Morgan Kaufmann, Los Al-tos, 1991.[Schaerf, 1993] Andrea Schaerf. On the complexityof the instance checking problem in concept lan-guages with existential quanti�cation. Journal ofIntelligent Information Systems, 2:265{278, 1993.[Schild, 1994] Klaus Schild. Terminological cyclesand the propositional �-calculus. In Proc. KR-94,1994.[Vardi, 1982] M. Vardi. The complexity of relationalquery languages. In Proc. STOC-82, pages 137{146, 1982.

