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Abstract

Traditionally, the core of a Termino-
logical Knowledge Representation System
(TKRS) consists of a so-called TBox, where
concepts are introduced, and an ABox,
where facts about individuals are stated
in terms of these concepts. This design
has a drawback because in most applica-
tions the TBox has to meet two functions
at a time: on the one hand, similar to a
database schema, framelike structures with
typing information are introduced through
primitive concepts and primitive roles; on
the other hand, views on the objects in the
knowledge base are provided through de-
fined concepts.

We propose to account for this conceptual
separation by partitioning the TBox into
two components for primitive and defined
concepts, which we call the schema and the
view part. We envision the two parts to
differ with respect to the language for con-
cepts, the statements allowed, and the se-
mantics.

We argue that by this separation we
achieve more conceptual clarity about the
role of primitive and defined concepts
and the semantics of terminological cycles.
Moreover, three case studies show the com-
putational benefits to be gained from the
refined architecture.

1 Introduction

Research on terminological reasoning usually pre-
supposes the following abstract architecture, which
reflects quite well the structure of existing systems.
There is a logical representation language that allows
for two kinds of statements: in the TBox or termi-
nology, concept descriptions are introduced, and in
the ABox or world description, individuals are char-
acterized in terms of concept membership and role
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relationship. This abstract architecture has been the
basis for the design of systems, the development of
algorithms, and the investigation of the computa-
tional properties of inferences.

Given this setting, there are three parameters that
characterize a terminological system: (¢) the lan-
guage for concept descriptions, (#¢) the form of the
statements allowed, and (¢i¢) the semantics given to
concepts and statements. Research tried to improve
systems by modifying these three parameters. But in
all existing systems and almost all theoretical studies
language and semantics have been kept uniform.!

The results of these studies were unsatisfactory in
at least two respects. First, it seems that tractable
inferences are only possible for languages with lit-
tle expressivity. Second, no consensus has been
reached about the semantics of terminological cycles,
although in applications the need to model cyclic
dependencies between classes of objects arises con-
stantly.

Based on an ongoing study of applications of ter-
minological systems, we suggest to refine the two-
layered architecture consisting of TBox and ABox.
Our goal is twofold: on the one hand we want to
achieve more conceptual clarity about the role of
primitive and defined concepts and the semantics of
terminological cycles; on the other hand, we want to
improve the tradeoff between expressivity and worst
case complexity. Since our changes are not primar-
ily motivated by mathematical considerations but by
the way systems are used, we expect to come up with
a more practical system design.

In the applications studied we found that the
TBox has to meet two functions at a time. One is to
declare frame-like structures by introducing primi-
tive concepts and roles together with typing infor-
mation like isa-relationships between concepts, or
range restrictions and number restrictions of roles.
FE.g., suppose we want to model a company environ-
ment. Then we may introduce the concept Employee
as a specialization of Person, having exactly one
name of type Name and at least one affiliation of
type Department. This is similar to class declara-
tions in object-oriented systems. For this purpose, a
simple language 1s sufficient. Cycles occur naturally
in modeling tasks, e.g., the boss of an Employee is

'In [Lenzerini and Schaerf, 1991] a combination of
a weak language for ABoxes and a strong language for
queries has been investigated.



also an Employee. Such declarations have no defini-
tional 1import, they just restrict the set of possible
interpretations.

The second function of a TBox is to define new
concepts in terms of primitive ones by specifying
necessary and sufficient conditions for concept mem-
bership. This can be seen as defining abstractions or
views on the objects in the knowledge base. Defined
concepts are important for querying the knowledge
base and as left-hand sides of trigger rules. For this
purpose we need more expressive languages. If cy-
cles occur in this part they must have definitional
import.

As a consequence of our analysis we propose to
split the TBox into two components: one for declar-
ing frame structures and one for defining views. By
analogy to the structure of databases we call the
first component the schema and the second the view
part. We envision the two parts to differ with re-
spect to the language, the form of statements, and
the semantics of cycles.

The schema consists of a set of primitive concept
introductions, formulated in the schema language,
and the view part by a set of concept definitions, for-
mulated in the view language. In general, the schema
language will be less expressive than the view lan-
guage. Since the role of statements in the schema
1s to restrict the interpretations we want to admit,
first order semantics, which is also called descriptive
semantics in this context (see Nebel 1991), is ade-
quate for cycles occurring in the schema. For cycles
in the view part, we propose to choose a semantics
that defines concepts uniquely, e.g., least or greatest
fixpoint semantics.

The purpose of this work is not to present the
full-fledged design of a new system but to explore
the options that arise from the separation of TBoxes
into schema and views. Among the benefits to be
gained from this refinement are the following three.
First, the new architecture has more parameters for
improving systems, since language, form of state-
ments, and semantics can be specified differently for
schema and views. So we found a combination of
schema and view language with polynomial inference
procedures whereas merging the two languages into
one would have led to intractability. Second, we be-
lieve that one of the obstacles to a consensus about
the semantics of terminological cycles has been pre-
cisely the fact that no distinction has been made
between primitive and defined concepts. Moreover,
intractability results for cycles mostly refer to infer-
ences with defined concepts. We proved that rea-
soning with cycles is easier when only primitive con-
cepts are considered. Third, the refined architecture
allows for more differentiated complexity measures,
as shown later in the paper.

In the following section we outline our refined ar-
chitecture for a TKRS, which comprises three parts:
the schema, the view taronomy, and the world de-
seription, which comprise primitive concepts, de-
fined concepts and assertions in traditional systems.
In the third section we show by three case studies
that adding a simple schema with cycles to existing
systems does not increase the complexity of reason-

ing.

2 The Refined Architecture

We start this section by a short reminder on concept
languages. Then we discuss the form of statements
and their semantics in the different components of
a TKRS. Finally, we specify the reasoning services
provided by each component and introduce different
complexity measures for analyzing them.

2.1 Concept Languages

In concept languages, complex concepts (ranged over
by C, D) and complex roles (ranged over by Q, R)
can be built up from simpler ones using concept and
role forming constructs (see Tables 1 and 2 a set
of common constructs). The basic syntactic sym-
bols are (i) concept names, which are divided into
schema names (ranged over by A) and view names
(ranged over by V), (i) role names (ranged over by
P), and (i) individual names (ranged over by a, b).
An interpretation T = (AT .T) consists of the do-
main A? and the interpretation function X, which
maps every concept to a subset of AZ, every role
to a subset of A7 x AZ, and every individual to an
element of A% such that a # b7 for different indi-
viduals a, b (Unique Name Assumption). Complex
concepts and roles are interpreted according to the
semantics given in Tables 1 and 2, respectively.

In our architecture, there are two different con-
cept languages in a TKRS, a schema language for
expressing schema statements and a view language
for formulating views and queries to the system.

2.2 The Three Components

We first focus our attention to the schema. The
schema introduces concept and role names and states
elementary type constraints. This can be achieved
by wnclusion azioms having one of the forms:

AED, PEA1><A2,

where A, Ay, A, are schema names, P 1s a role name,
and D is a concept of the schema language. Intu-
itively, the first axiom states that all instances of A
are also instances of D). The second axiom states
that the role P has domain A; and range As;. A
schema 8 consists of a finite set of schema axioms.

Inclusion axioms impose only necessary conditions
for being an instance of the schema name on the
left-hand side. For example, the axiom “Employee C
Person” declares that every employee is a person,
but does not give a sufficient condition for being an
employee.

A schema may contain cycles through inclusion
axioms (see Nebel 1991 for a formal definition).
So one may state that the bosses of an employee
are themselves employees, writing “Employee C
Vboss.Employee.” 1In general, existing systems do
not allow for terminological cycles, which is a seri-
ous restriction, since cycles are ubiquitous in domain
models.

There are two questions related to cycles: the first
is to fix the semantics and the second, based on
this, to come up with a proper inference procedure.
As to the semantics, we argue that axioms in the



|| Construct Name | Syntax | Semantics ||

top T AT

singleton set {a} {a?}

intersection cnbp ctnD?

union cupb ctuD?

negation -C AT\ C?

universal quantification VR.C {dy | Vds : (dy,d2) € RT — dy € CT}

existential quantification JR.C {dy | 3ds : (dy,d2) € RT Ndy € CT}

existential agreement 3Q = R | {dy | Ida-(dy,d2) € QF A (dy,d2) € R}

number restrictions (2 nR) {d [2{d> [ (dr, do) € BT} > )
(<nR) {di [#{d2 [ (d1,d2) € R*} <n}

Table 1: Syntax and semantics of concept forming constructs.

|| Construct Name | Syntax | Semantics ||
inverse role P! {(dy,d2) | (da,dy) € PT}
role restriction (R:C) {(dy,ds) | (d1,d2) € RT Ady € CT}
role chain Qo R | {(di,ds) | 3d2.(d1, ds) € QF A (ds, d3) € RT}
self € {(dq,d1) | dy € AT}

Table 2: Syntax and semantics of role forming constructs.

schema have the role of narrowing down the mod-
els we consider possible. Therefore, they should be
interpreted under descriptive semantics, i.e., like in
first order logic: an interpretation Z satisfies an ax-
iom A C D if AT C D?, and it satisfies P C A; x A»
if PZ C AT x AL. The interpretation Z is a model
of the schema & if it satisfies all axioms in §. The
problem of inferences will be dealt with in the next
section.

The view part contains view definitions of the form

V=,

where V is a view name and C' is a concept in the
view language. Views provide abstractions by defin-
ing new classes of objects in terms of the concept
and role names introduced in the schema. We refer
to “V = (C” as the definition of V. The distinc-
tion between schema and view names is crucial for
our architecture. It ensures the separation between
schema and views.

A wiew tazonomy V is a finite set of view defini-
tions such that (¢) for each view name there is at
most one definition, and (¢7) each view name oc-
curring on the right hand side of a definition has a
definition in V.

Differently from schema axioms, view definitions
give necessary and sufficient conditions. As an ex-
ample of a view, one can describe the bosses of
the employee Bill as the instances of “BillsBosses =
Jboss-of . {BILL}.”

Whether or not to allow cycles in view defini-
tions is a delicate design decision. Differently from
the schema, the role of cycles in the view part
is to state recursive definitions. For example, if
we want to describe the group of individuals that
are above Bill in the hierarchy of bosses we can
use the definition “BillsSuperBosses = BillsBosses LI

Jboss-of.BillsSuperBosses.” But note that this does
not yield a definition if we assume descriptive se-
mantics because for a fixed interpretation of BILL
and of the role boss-of there may be several ways
to interpret BillsSuperBosses in such a way that the
above equality holds. In this example, we only ob-
tain the intended meaning if we assume least fixpoint
semantics. This observation holds more generally: if
cycles are intended to uniquely define concepts then
descriptive semantics is not suitable. However, least
or greatest fixpoint semantics or, more generally, a
semantics based on the p-calculus yield unique defi-
nitions (see Schild 1994). Unfortunately, algorithms
for subsumption of views under such semantics are
known only for fragments of the concept language
defined in Tables 1 and 2.

In this paper, we only deal with acyclic view tax-
onomies. In this case, the semantics of view defini-
tions is straightforward. An interpretation Z satisfies
the definition V = C if VZ = C7?, and it is a model
for a view taxonomy V if 7 satisfies all definitions in
V.

A state of affairs in the world is described by as-
sertions of the form

C(a),  R(a,b),
where C' and R are concept and role descriptions in
the view language. Assertions of the form A(a) or
P(a,b), where A and P are names in the schema,
resemble basic facts in a database. Assertions in-
volving complex concepts are comparable to view
updates.

A world description W is a finite set of asser-
tions. The semantics is as usual: an interpretation
7 satisfies C(a) if aZ € AT and it satisfies R(a,b) if
(af,b7) € RT; it is a model of W if it satisfies every
assertion in W.



Summarizing, a knowledge base is a triple ¥ =
(8, V, W), where § is a schema, V a view taxonomy,
and W a world description. An interpretation 7 is
a model of a knowledge base if it is a model of all
three components.

2.3 Reasoning Services

For each component, there is a prototypical reason-
ing service to which the other services can be re-

duced.

Schema Validation: Given a schema &, check
whether there exists a model of & that inter-
prets every schema name as a nonempty set.

View Subsumption: Given a schema §, a view tax-
onomy V, and view names V; and Vi, check
whether VI C V& for every model Z of S and
Vi

Instance Checking: Given a knowledge base X, an

individual a, and a view name V', check whether
a’ € V7 holds in every model Z of X.

Schema validation supports the knowledge engineer
by checking whether the skeleton of his domain
model is consistent. Instance checking is the basic
operation in querying a knowledge base. View sub-
sumption helps in organizing and optimizing queries
(see e.g. Buchheit et al. 1994). Note that the schema
S has to be taken into account in all three services
and that the view taxonomy V is relevant not only
for view subsumption, but also for instance checking.
In systems that forbid cycles, one can get rid of §
and V by expanding definitions. This is not possible
when § and V are cyclic.

2.4 Complexity Measures

The separation of the core of a TKRS into three
components allows us to introduce refined complex-
ity measures for analyzing the difficulty of inferences.

The complexity of a problem is generally measured
with respect to the size of the whole input. However,
with regard to our setting, three different pieces of
input are given, namely the schema, the view tax-
onomy, and the world description. For this reason,
different kinds of complexity measures may be de-
fined, similarly to what has been suggested in [Vardi,
1982] for queries over relational databases. We con-
sider the following measures (where |X| denotes the
size of X):

Schema Complexity: the complexity as a function

of |Sl;

View Complexity: the complexity as a function of

VI;

World Description Complexity: the complexity as a
function of |W|;

Combined Complexity: the complexity as a function

of |S]+ |V| + |W]|.

Combined complexity takes into account the
whole input. The other three instead consider only a
part of the input, so they are meaningful only when
it 1s reasonable to suppose that the size of the other
parts is negligible. For instance, it is sensible to an-
alyze the schema complexity of view subsumption

because usually the schema is much bigger than the
two views which are compared. Similarly, one might
be interested in the world description complexity of
instance checking whenever one can expect W to be
much larger than the schema and the view part.

It is worth noticing that for every problem com-
bined complexity, taking into account the whole in-
put, is at least as high as the other three. For exam-
ple, if the complexity of a problem is O(|S]- V|- W),
its combined complexity is cubic, whereas the other
ones are linear. Similarly, if the complexity of a given
problem is O(|S|IV1), both its combined complexity
and its view complexity are exponential, its schema
complexity is polynomial, and its world description
complexity is constant.

In this paper, we use combined complexity to com-
pare the complexity of reasoning in our architec-
ture with the traditional one. Moreover, we use
schema complexity to show how the presence of a
large schema affects the complexity of the reason-
ing services previously defined. View and world de-
scription complexity have been investigated (under
different names) in [Nebel, 1990, Baader, 1990] and
[Schaerf, 1993, Donini et al., 1994], respectively.

3 The Case Studies

We studied some illustrative examples that show the
advantages of the architecture we propose. We ex-
tended three systems by a simple cyclic schema lan-
guage and analyzed their computational properties.

As argued before, a schema language should at
least be expressive enough for declaring subconcept
relationships, restricting the range of roles, and spec-
ifying roles to be necessary (at least one value) or sin-
gle valued (at most one value). These requirements
are met by the language S£, which was introduced
in [Buchheit et al., 1994] and that is defined by the
following syntax rule:

C,D— A|VP.A|(>1P)|(<1P).

Obviously, it is impossible to express in SL that a
concept is empty. Therefore, schema validation in
SL is trivial. Also, subsumption of concept names
is polynomially decidable.

We proved that inferences become harder for ex-
tensions of SL£. If we add inverse roles, schema val-
idation remains trivial, but subsumption of schema
names becomes NP-hard. If we add any construct by
which one can express the empty concept—Iike dis-
jointness axioms—schema validation becomes NP-
hard. However, in our opinion this does not mean
that extensions of SL are not feasible. For some ex-
tensions, there are natural restrictions on the form
of schemas that decrease the complexity. Also, it
is not clear whether realistic schemas will contain
structures that require complex computations.

In all the three cases studied, the schema lan-
guage 18 SL. For the view language, we propose
three different languages derived from three actual
systems described in the literature, namely the de-
ductive object-oriented database system CONCEPT-
Bask [Jarke, 1992], and the terminological systems
KRIS [Baader and Hollunder, 1991] and cLassIc



[Borgida et al., 1989]. We investigated the com-
putational properties of the reasoning services with
respect to SL-schemas. We aimed at showing two
results: (¢) reasoning w.r.t. schema complexity is al-
ways tractable, (#¢) combined complexity is not in-
creased by the presence of terminological cycles in
the schema.

In all three cases, we assume that view names
are allowed in membership assertions and that the
view taxonomy is acyclic. In this setting, every view
name can be substituted with its definition. For this
reason, from this point on, we suppose that view
concepts are completely expanded. Therefore, when
evaluating the complexity, we replace the size of the
view part by the size of the concept representing the
view.

We have found the following results for the three
systems in which S is the schema language and the
concept language the abstraction of the query lan-
guage of CONCEPTBASE introduced in [Buchheit et
al., 1994], or the language offered by KRIS or CLAS-
SIC, respectively.

CONCEPTBASE: instance checking is in PTIME
w.r.t. combined complexity (view subsumption
has been proved in PTIME in [Buchheit et al.,
1994]).

KRIS: view subsumption and instance checking are
PSPACE-complete problems w.r.t. combined
complexity and PTIME problems w.r.t. schema
complexity.

CLASSIC: view subsumption and instance checking
are problems in PTIME w.r.t. combined com-
plexity.

We conclude that adding (possibly cyclic) schema
information does not change the complexity of rea-
soning within the systems taken into account.

4 Conclusion

We have proposed to replace the traditional TBox
in a terminological system by two components: a
schema, where primitive concepts describing frame-
like structures are introduced, and a view part that
contains defined concepts. We feel that this architec-
ture reflects adequately the way terminological sys-
tems are used in most applications.

We also think that this distinction can clarify the
discussion about the semantics of cycles. Given the
different functionalities of the schema and view part,
we propose that cycles in the schema are interpreted
with descriptive semantics while for cycles in the
view part a definitional semantics should be adopted.

In three case studies we have shown that the re-
vised architecture yields a better tradeoff between
expressivity and the complexity of reasoning.

The schema language we have introduced might
be sufficient in many cases. Sometimes, however,
one might want to impose more integrity constraints
on primitive concepts than those which can be ex-
pressed in it. We see two solutions to this problem:
either enrich the language and have to pay by a more
costly reasoning process, or treat such constraints in
a passive way by only verifying them for the objects

in the knowledge base. The second alternative can
be given a logical semantics in terms of epistemic
operators (see Donini et al. 1992).
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