
Generating queries from complex type de�nitions�Manfred A. JeusfeldInformatik V, RWTH Aachen, D-52056 Aachenjeusfeld@informatik.rwth-aachen.deAbstractMany information systems are imple-mented as application programs connectedto a database system. A characteristicproblem of such systems is the famousimpedance mismatch, i.e., the conceptualdistance between the programming and thedatabase languages. The traditional solu-tion is to implement an interface that trans-forms one representation into the other.Commercial database systems o�er prepro-cessors that allow to embed the databaselanguage (e.g., SQL) into the programminglanguage (e.g., C). Such an approach freesthe application programmer from the taskto specify details of the communication.However, the impedance mismatch is notsolved but aggravated. The set-orienteddatabase language is intermixed with theelement-oriented programming language, anotorious cause for programming errors.Moreover, there is no support in map-ping the restricted data representation ofdatabases into the more complex type sys-tem of programming language. This pa-per proposes an intermediate language, theAPI modules, for specifying the relation-ship between the representations in thedatabase and in the application program.The query for retrieving the informationand the data types for storing it can begenerated from the API module. The mod-ules are simple enough to allow reasoningon queries generated from them.1 IntroductionThe purpose of a database system is to maintain alarge amount of information for a variety of appli-cation programs. The application-speci�c clusteringis either described as a database view de�nition orperformed by �lters inside the application program.Both approaches have their disadvantages:� View de�nition languages are restricted to thetype system of the database system. In the�This work was partly supported by the Commissionof the European Union under ESPRIT BRA 6810 (Com-pulog 2).

case of relational databases, only at relationscan be expressed. In the case of object-orienteddatabases, the type system depends on the spe-ci�c data model of the database system.� Handcoded clustering by �lter procedureswithin the application program is error-proneand gives away the chance of reasoning onthe relationship between the information in thedatabase and in the application program.Section 2 introduces API modules as the interfacebetween the database and the application program.Base types are imported from the database. Appli-cation speci�c types are de�ned by using tuple, set,and pointer constructors. The latter allows to rep-resent recursive concepts of the database schema.Section 3 presents the mapping of the API mod-ules to a logic program delivering complex terms.These terms are read by a parser that itself is gen-erated from the API modules.Section 4 relates the types in an API module tostatements of a concept language. Thereby, types oftwo di�erent API modules can be checked for sub-sumption and consistency.2 Interface ModulesInterfaces between imperative-style programminglanguages should both reect the major type con-structors and the facilities of the database querylanguage. The most common type constructors aretuple and set. Some languages also support lists.Pseudo-recursive type de�nitions are possible whenallowing pointer types, e.g. in C and Modula-2.Common base types are Integer and String. Thedenotational semantics of a type expression is a po-tentially in�nite set of values, for example [Inte-ger,String] denotes the cartesian product of the se-mantics of the component types.2.1 ExampleAssume a database provides information about acompany. An application programmer has the taskto process the information about the projects of em-ployees who work for a given department. The APImodule could look as in Figure 1.The FROM clause imports concepts from thedatabase schema. They are used like (�nite) basetypes. Their extension is represented in the currentdatabase state. The TYPE clauses declare complex

API-MODULE Emps;FROM CompanyDb IMPORT Employee, Project,Department, String;TYPE EmpType/Employee = [name: String;project: {Project};dept: DeptType];DeptType/Department = [deptName: String;head: *EmpType];PORT e: {EmpType| dept.deptName=$N};END.Figure 1: API module for the company exampledata structures on top of the imported concepts.EmpType is a record type which represents the nameof an employee, his projects, and the department.The latter is given by the name and the reference(pointer) to that employee who is the head of the de-partment. The purpose of the pointer is to encoderecursive type de�nitions. The PORT declarationde�nes which information of the database should beteransfered to the application program. Here, allemployees who have a department named by $N areof interest. The token $N denotes a placeholder fora string whose value is inserted by the applicationprogram at run time.3 Query GenerationFrom the database point of view, an API module isa collection of simple view de�nitions whose exten-sions are represented by terms conforming the typede�nitions. These views are encoded as a logic pro-gram de�ning a predicate hasType(T,V). It formallyde�nes the set of values V having type T, i.e., the se-mantics of the type T. The database system is mod-elled by two predicates for accessing information:� In(X,C) denotes that the database object X isan instance of the con-cept C, e.g., In(e2341,Employee), In("PeterWolfe",String).� A(C,a,X,Y) states that the object X is related tothe object Y by an attribute a which is de�ned inclass C, e.g., A(Employee,name,e2341,"PeterWolfe").The logic program can automatically be gener-ated from the type de�nitions by a simple top downtraversing algorithm on the syntax tree of a typede�nition1:For each concept C imported in the API modulewe include a clause which delivers all values of typeC. hasType(C,C(_X)) :-In(_X,C).A tuple type has the general form T/C =[a1:T1,...,ak:Tk]. The decoration C is called the"class" of T. It is mapped to the clause pattern1We adopt the syntax of Prolog to denote the clauses.Variables start with an underscore. The meta predicateSET OF(x,c,s) evaluates s as the set of all elements xsatisfying the condition c

hasType(T,T(_X,_Y1,...,_YK) :-In(_X,C),<map(a1:T1)>,...<map(ak:Tk)>.The parts <map(ai:Ti)> have to be mapped asfollows:� If Ti is a set type fSg where S is a typename for a tuple-valued type with arity m then<map(ai:Ti)> is replaced bySET_OF(S(_Z,_Z1,...,_Zm),(A(C,ai,_X,_Z),hasType(S,S(_Z,_Z1,...,_Zm))),_Yi)� If Ti is a set type f*Sg where S is a type nameof a tuple type with class D then <map(ai:Ti)>is replaced bySET_OF(REF(S,_Z),(A(C,ai,_X,_Z),In(_Z,D)),_Yi)� If Ti is a tuple type with arity m then the macrois replaced by_Yi = Ti(_Y,_Z1,...,_Zm),A(C,ai,_X,_Y),hasType(Ti,_Yi)� Finally, pointer types *Ti where Ti is a recordtype with class D are mapped to the condition(_Yi = REF(Ti,_Y),A(C,ai,_X,_Y),In(_Y,D);_Y = null_value)The operator ';' stands for a logical disjunction.There will be no backtracking on this disjunction.Thus, Y will either be bound to a term REF(.,.)or to the special value null value.The PORT clauses specify those subsets of typeswhich are of interest to the application program. Aport de�nitionPORT v: {T| a1.a2...an=$P}is compile to the clauseaskPort(_S,v,_P) :-SET_OF(_X,(hasType(T,_X),path(_X,[a1,a2,...,an],_P),_S).The prede�ned predicate path evaluates the path ex-pression a1.a2...an starting from X. Note that theparameter $P becomes an argument of the askPortpredicate. It is instantiated by the application pro-gram when calling the goal askPort. The result isreturned in the �rst argument.The restriction in the port de�nition can easily beextended to contain several conditions. Moreover,one can allow a constant or a second path expressioninstead of the parameter on the right-hand side ofthe equality.

hasType(String,String(_S)) :-In(_S,String).hasType(Project,Project(_P)) :-In(_P,Project).hasType(DeptType,DeptType(_D,_DN,_M)) :-In(_D,Department),_DN = String(_Z1),A(Department,_D,deptName,_Z1),hasType(String,_DN),_M = REF(EmpType,_Z2),A(Department,_D,head,_Z2),In(_Z2,Employee).hasType(EmpType,EmpType(_E,_N,_PS,_DT)) :-In(_E,Employee),_N=String(_Z1),A(Employee,_E,name,_Z1),hasType(String,_N),SET_OF(Project(_Z2),(A(Employee,_E,project,_Z2),hasType(Project,Project(_Z2))),_PS),_DT = DeptType(_D,_DN,_M),A(Employee,_E,dept,_D),hasType(DeptType,_DT).askPort(_S,e,_N) :-SET_OF(_X,(hasType(EmpType,_X),path(_X,[dept,deptName],_N),_S).Figure 2: Logic program for the example3.1 Mapping of the ExampleThe de�nition of hasType for the running exampleis presented in Figure 2.The values of the imported concepts are rep-resented as unary terms, e.g. String("PeterWolfe"). Values of complex terms have more com-ponents according to the type de�nition. For exam-ple,EmpType(e2341,String("Peter Wolfe"),[Project(p1),Project(p2)],DeptType(d41,String("Marketing"),REF(EmpType,e3331)))is the term representing a value of EmpType. Val-ues of set types like fProjectg are sequences of val-ues of the member type enclosed by brackets. Thecomponent for the dept attribute is avalue of typeDeptType. This shows the representation of point-ers as terms REF(T,X) where X is the identi�er ofthe value (of type T pointed to. The identi�er is al-ways the �rst component of a term T(X,...). Allidenti�ers are constants from the database.4 Properties of InterfacesTermination of the logic program is guaranteed, andthe types de�ned in API modules can be comparedwith the database schema and with each other.4.1 TerminationOn �rst sight, the generated logic program is recur-sive in the hasType clause and it contains complex

terms as arguments. Thus, one has to ensure termi-nation when evaluation it by the SLD strategy forlogic programs.Fortunately, if one makes sure that the types in theAPI module are de�ned non-recursively, then thereis a partial order on the type names. If a type de�ni-tion for T1 uses a type T2 on the right-hand side, thenT1 > T2 holds. The de�nition of the logic programgenerator propagates this property to all clauses ofthe hasType predicate: if hasType(T,.) occurs inthe condition of a clause hasType(R,.) then T mustbe smaller than R. Consequently, the logic programterminates on each goal hasType(T,X)2.A corrolar of this proposition is the �niteness ofthe sets interpreting the types in the API module.4.2 Reasoning ServicesThe constructs in the API module were deliberatelychoses to be conformant with the concept languagedialect of Buchheit et al. 1994. A couple of reasoningservices are possible, each determing a di�erent setof axioms to be reasoned about. We illustrate onlyone service, type checking against the database.The type de�nitions in an API module makeassumptions about the structure of the importeddatabase concepts. In the example of Figure 1,the concepts Employee must at least have three at-tribute categories name, project, and dept. Forthe Department concept, two attributes categoriesdeptName and head are required. Moreover, at-tribute cardinalities for the answer objects arestated:� a set-valued attribute like project does not in-duce any cardinality constraint;� a pointer-valued attribute like head restricts thethe number of attribute �llers to be less or equal1;� the remaining attributes like dept must haveexactly one �ller.Please note that these properties apply to the de-�ned concepts like EmpType (ET) and not to theimported concepts like Employee (E). The conceptlanguage expression is:ET = E u (= 1 name:S) u (= 1 dept:DT)DT = D u (= 1 deptName:S) u (� 1 head:E)As prescribed by the logic program, the pointer-valued attribute head of DeptType is not refer-ing to EmpType directly but to its associated classEmployee. Thereby, circular concept de�nitions areprevented.These equalities for the type de�nitions are trueprovided the database schema has a schema consis-tent to it. At least it has to ful�ll the following"well-typedness" axioms3:2One has to assume that the underlying databaseis �nite. This is however a standard assumption withdatabases.3The symbol > stands for the most general concept.

E v 8name:>u 8project:>u 8dept:>D v 8deptName:>u 8head:>One can check this by adding it to the databaseschema and checking its consistency. The servicewould just make sure that all referenced attributesare de�ned in the database schema.With a stricter regime, one can demand that thedatabase schema must have the same or sharper car-dinality constraints and that the well-typedness isre�ned to the concepts appearing as attribute typesin the API module:E v ET u 8name:S u 8project:P u 8dept:DTD v DT u 8deptName:S u 8head:ETHere, the database schema has to ful�ll the struc-ture of the types in the API module. Consequently,all instances of the database concepts will apply tothe type de�nitions. The type de�nitions would onlyproject on the attributes of interest. Even if oneregards this as a too narrow coupling, the test onconsistency of the above axioms with the databaseschema returns useful information to the designer ofan API module.5 Programming LanguageEmbeddingFrom the API modules, programming language datatypes can be derived. Currently, a prototype forthe C++ language is implemented. The tuple typesare mapped to C++ structures, the sets to linkedlists, and the pointers to C++ pointers. While theconcept language view makes no di�erence betweenpointer-valued attributes (like *EmpType and theirassociated class Employee, the representation withinthe application program is very di�erent:� A value Employee(X) is stored in a variable withC++ type char* because X is just an string rep-resenting a database constant.� A value REF(EmpType,X) is represented as amain memory address pointing to the locationwhere the value EmpType(X,...) is stored.This allows the application program to followattribute chains by fast main memory adress-ing.Communication between an applications programand the database is routed through the ports. Theterm representations of port p returns in argu-ment s of the query askPort(s,p,x1,...,xn) areread by the application program. The argumentsx1,...,xn contain the constants for the selectionconditions4. The "read" procedure, basically a sim-ple term parser, stores the values in the C++ datastructures. Both the parser and the data structures4Like for types the properties of port de�nitions canbe investigated within the framework of concept lan-guages. If the parameters x1,...xn are known, thenthe selection conditions are path agreements. Moreoverone may allow path expressions of the form a1:a2:::ar =b1:b2:::bs without compromising on the theoretical com-plexity of the reasoning.

are generated from the API module by a compiler.Since the askPort predicate can only return syn-tactically correct terms, an exception handling formalformed answers is superuous.6 Related WorkLee and Wiederhold 1994 present a mapping fromrelational database schemas to complex objects. Itis more general in the sense that arbitrary arities ofthe relations are allowed. In this paper, we assume atotally normalized schema of the database consistingof unary relations for class membership and binaryrelations for attributes. The advantage of our ap-proach is that the algorithm for the generation ofthe logic programm can be kept free of reasoning onforeign key dependencies.Plateau et al. 1992 present the view system ofO2 as complex type de�nitions coupled with thedatabase types and with prescriptions for graphicaldisplay. The type system contained in the O2 datamodel. Reasoning on type correctness is done by thecompiler.The Interface De�nition Language IDL by Nestoret al. 1992 has four type constructors for records,lists, sets, and classes (unions of di�erent recordtypes). The base types represents boolean, integers,rationals, and strings. The values are transfered be-tween two programs by using a term representationsimilar to ours. The di�erence is the missing formalrelationship between type de�nitions and (database)concepts.A recent proposal by Papakonstantinou et al. 1994encodes all type information with the term repre-sentation of a value. An application program hasto provide generic data structures capable of storingarbitrary values (though restricted to a �xed set ofbase types). The advantage is the exibility of theapproach. A disadvantage is missing compile timetype checking.Persistent object systems, esp. Tycoon byMatthes1993, "lift" the type systems of information sourcesand application programs into a single type system.Because of the heterogenous information sources, theapproach is more general than in O2. Reasoning isagain restricted to type checking.7 ConclusionWe de�ned API modules as mediators between ap-plication programs and databases. Both program-ming language data types and database queries aregenerated from the module description. The lan-guage is simple enough to guarantee termination ofthe query and e�cient reasoning on the type def-initions. Pointer types are introduced to simulaterecursive datatypes and �nd a natural counterpartin the database query.In future, we plan to eliminate the distinctionbetween application program and database in theAPI modules. Application programs can serve as a"database" provided they o�er the ability the inter-pret queries on their information. Then, informationow design between a collection of programs can besupported by reasoning on the relationship betweenthe type de�nitions.

Acknowledgement. Many thanks to ClaudiaWelter and Martin Staudt for attacking weak pointsin earlier versions of this paper.References[Buchheit et al., 1994] M. Buchheit, M.A. Jeusfeld,W. Nutt, and M. Staudt. Subsumption betweenqueries to object-oriented databases. InformationSystems, 19(1):33{54, 1994.[Lee and Wiederhold, 1994] B.S.Lee and G. Wiederhold. Outer joins and �ltersfor instantiating objects from relational databasestrough views. IEEE Trans. Knowledge and DataEngineering, 6(1):108{119, 1994.[Matthes, 1993] F. Matthes. Persistente Objektsys-teme. Springer-Verlag, 1993.[Papakonstantinou et al., 1994] Y. Papakonstanti-nou, H. Garcia-Molina, and J. Widom. Object ex-change across heterogeneous information sources.Submitted paper, 1994.[Plateau et al., 1992] D. Plateau, P. Borras, D. Lev-eque, J. Mamou, and D. Tallot. Building user in-terfaces with Looks. In F. Bancilhon, C. Delobel,P. Kannelakis (eds.):Building an Object-OrientedDatabase System - The Story of O2, Morgan-Kaufmann, 256{277, 1992.[Nestor et al., 1992] J. R. Nestor, J. M. Newcomer,P. Giannini, and D. L. Stone. IDL - The languageand its implementation. Prentice Hall, 1990.

