Generating queries from complex type definitions*

Manfred A. Jeusfeld
Informatik V, RWTH Aachen, D-52056 Aachen

jeusfeld@informatik.rwth-aachen.de

Abstract

Many information systems are imple-
mented as application programs connected
to a database system. A characteristic
problem of such systems is the famous
impedance mismatch, i.e., the conceptual
distance between the programming and the
database languages. The traditional solu-
tion 1s to implement an interface that trans-
forms one representation into the other.
Commercial database systems offer prepro-
cessors that allow to embed the database
language (e.g., SQL) into the programming
language (e.g., C). Such an approach frees
the application programmer from the task
to specify details of the communication.
However, the impedance mismatch is not
solved but aggravated. The set-oriented
database language is intermixed with the
element-oriented programming language, a
notorious cause for programming errors.
Moreover, there is no support in map-
ping the restricted data representation of
databases into the more complex type sys-
tem of programming language. This pa-
per proposes an intermediate language, the
API modules, for specifying the relation-
ship between the representations in the
database and in the application program.
The query for retrieving the information
and the data types for storing it can be
generated from the API module. The mod-
ules are simple enough to allow reasoning
on queries generated from them.

1 Introduction

The purpose of a database system is to maintain a
large amount of information for a variety of appli-
cation programs. The application-specific clustering
is either described as a database view definition or
performed by filters inside the application program.
Both approaches have their disadvantages:

e View definition languages are restricted to the
type system of the database system. In the

*This work was partly supported by the Commission
of the European Union under ESPRIT BRA 6810 (Com-

pulog 2).

case of relational databases, only flat relations
can be expressed. In the case of object-oriented
databases, the type system depends on the spe-
cific data model of the database system.

e Handcoded clustering by filter procedures
within the application program is error-prone
and gives away the chance of reasoning on
the relationship between the information in the
database and in the application program.

Section 2 introduces A PI modules as the interface
between the database and the application program.
Base types are imported from the database. Appli-
cation specific types are defined by using tuple, set,
and pointer constructors. The latter allows to rep-
resent recursive concepts of the database schema.

Section 3 presents the mapping of the API mod-
ules to a logic program delivering complex terms.
These terms are read by a parser that itself is gen-
erated from the API modules.

Section 4 relates the types in an API module to
statements of a concept language. Thereby, types of
two different API modules can be checked for sub-
sumption and consistency.

2 Interface Modules

Interfaces between imperative-style programming
languages should both reflect the major type con-
structors and the facilities of the database query
language. The most common type constructors are
tuple and set. Some languages also support lists.
Pseudo-recursive type definitions are possible when
allowing pointer types, e.g. in C and Modula-2.
Common base types are Integer and String. The
denotational semantics of a type expression is a po-
tentially infinite set of values, for example [Inte-
ger,String] denotes the cartesian product of the se-
mantics of the component types.

2.1 Example

Assume a database provides information about a
company. An application programmer has the task
to process the information about the projects of em-
ployees who work for a given department. The API
module could look as in Figure 1.

The FROM clause imports concepts from the
database schema. They are used like (finite) base
types. Their extension is represented in the current
database state. The TYPE clauses declare complex

API-MODULE Emps;
FROM CompanyDb IMPORT Employee, Project,
Department, String;
TYPE
EnpType/Employee = [name: String;
project: {Project};
dept: DeptTypel;

DeptType/Department = [deptName: String;
head: *EmpType];
PORT
e: {EmpType| dept.deptName=$N};
END.

Figure 1: API module for the company example

data structures on top of the imported concepts.
EmpType is a record type which represents the name
of an employee, his projects, and the department.
The latter is given by the name and the reference
(pointer) to that employee who is the head of the de-
partment. The purpose of the pointer i1s to encode
recursive type definitions. The PORT declaration
defines which information of the database should be
teransfered to the application program. Here, all
employees who have a department named by $N are
of interest. The token $N denotes a placeholder for
a string whose value is inserted by the application
program at run time.

3 Query Generation

From the database point of view, an API module 1s
a collection of simple view definitions whose exten-
sions are represented by terms conforming the type
definitions. These views are encoded as a logic pro-
gram defining a predicate hasType(T,V). It formally
defines the set of values V having type T, i.e., the se-
mantics of the type T. The database system is mod-
elled by two predicates for accessing information:

e In(X,C) denotes that the database object X 1s
an instance of the con-
cept C, e.g., In(e2341,Employee), In("Peter
Wolfe",String).

e A(C,a,X,Y) states that the object X i1s related to
the object Y by an attribute a which is defined in
class C, e.g., A(Employee,name,e2341,"Peter
Wolfe").

The logic program can automatically be gener-
ated from the type definitions by a simple top down
traversing algorithm on the syntax tree of a type
definition?:

For each concept € imported in the API module
we include a clause which delivers all values of type
C.

hasType(C,C(_X)) :-
In(_X,C).

A tuple type has the general form T/C =
[a1:T1,...,ak:Tk]. The decoration C is called the
?class” of T. It 1s mapped to the clause pattern

!We adopt the syntax of Prolog to denote the clauses.
Variables start with an underscore. The meta predicate
SET_OF(x,c,s) evaluates s as the set of all elements x
satisfying the condition ¢

hasType(T,T(_X,_Y1,...,_YK) :-
In(_X,0),
<map(al:T1)>,

<map(ak:Tk)>.

The parts <map(ai:Ti)> have to be mapped as
follows:

o If Ti is a set type {S} where S is a type
name for a tuple-valued type with arity m then
<map(ai:Ti)> is replaced by

SET_OF(S(_Z,_Z1,...,_Zm),
(A(C,ai,_X,_Z),
hasType(S,S(_Z,_Z1,...,_Zm))),
_Yi)

e If Ti is a set type {*S} where S is a type name
of a tuple type with class D then <map(ai:Ti)>
is replaced by

SET_OF(REF(S,_2),
(A(C,ai,_X,_2),
In(_Z,D)),
_Yi)

e If Ti is a tuple type with arity m then the macro
is replaced by

Yi = Ti(_Y,_Z1,...,_Zn),
A(C’ai’—x’—Y)’
hasType(Ti,_Yi)

e Finally, pointer types *Ti where Ti is a record
type with class D are mapped to the condition

(_Yi = REF(Ti,_Y),
A(C,ai,_X,_Y),
In(_Y,D);

_Y = null_value)

2.9

The operator ’;” stands for a logical disjunction.
There will be no backtracking on this disjunction.
Thus, _Y will either be bound to a term REF(.,.)
or to the special value null value.

The PORT clauses specify those subsets of types
which are of interest to the application program. A
port definition

PORT v: {T| al.a2...an=$P}
is compile to the clause

askPort(_S,v,_P) :-
SET_OF(_X,
(hasType(T, _X),
path(_X,[al,a2,...,an],_P),
5.

The predefined predicate path evaluates the path ex-
pression al.a2...anstarting from _X. Note that the
parameter $P becomes an argument of the askPort
predicate. It is instantiated by the application pro-
gram when calling the goal askPort. The result is
returned in the first argument.

The restriction in the port definition can easily be
extended to contain several conditions. Moreover,
one can allow a constant or a second path expression
instead of the parameter on the right-hand side of
the equality.

hasType(String,String(_8)) :-
In(_S,String) .

hasType(Project,Project (_P)) :-
In(_P,Project).

hasType (DeptType,DeptType(_D,_DN,_M)) :-
In(_D,Department),
_DN = String(_Z1),
A(Department, _D,deptName,_Z1),
hasType(String, _DN),
_M = REF(EmpType,_Z2),
A(Department, _D,head,_Z2),
In(_Z2,Employee).

hasType (EmpType ,EmpType (_E,_N,_PS,_DT)) :-
In(_E,Employee),
_N=String(_Z1),
A(Employee,_E,name,_Z1),
hasType(String, _N),
SET_OF(Project(_Z2),
(A(Employee, _E,project,_Z2),
hasType(Project,Project(_Z2))),

_PS >
_DT = DeptType(_D,_DN,_M),
A(Enployee,_E,dept,_D),
hasType (DeptType,_DT).

askPort(_S,e,_N) :-
SET_OF(_X,
(hasType (EmpType,_X),
path(_X, [dept ,deptName] , _N),
_9).

Figure 2: Logic program for the example

3.1 Mapping of the Example

The definition of hasType for the running example
is presented in Figure 2.

The values of the imported concepts are rep-
resented as unary terms, e.g. String("Peter
Wolfe"). Values of complex terms have more com-
ponents according to the type definition. For exam-
ple,

EmpType(e2341,String("Peter Wolfe"),
[Project(pl),Project(p2)],
DeptType(d41,String("Marketing"),

REF(EmpType, e3331)))

is the term representing a value of EmpType. Val-
ues of set types like {Project} are sequences of val-
ues of the member type enclosed by brackets. The
component for the dept attribute i1s avalue of type
DeptType. This shows the representation of point-
ers as terms REF(T,X) where X 1s the identifier of
the value (of type T pointed to. The identifier is al-
ways the first component of a term T(X,...). All
identifiers are constants from the database.

4 Properties of Interfaces

Termination of the logic program is guaranteed, and
the types defined in API modules can be compared
with the database schema and with each other.

4.1 Termination

On first sight, the generated logic program is recur-
sive in the hasType clause and it contains complex

terms as arguments. Thus, one has to ensure termi-
nation when evaluation it by the SLD strategy for
logic programs.

Fortunately, if one makes sure that the types in the
API module are defined non-recursively, then there
is a partial order on the type names. If a type defini-
tion for T1 uses a type T2 on the right-hand side, then
T1 > T2 holds. The definition of the logic program
generator propagates this property to all clauses of
the hasType predicate: if hasType(T,.) occurs in
the condition of a clause hasType(R, .) then T must
be smaller than R. Consequently, the logic program
terminates on each goal hasType(T,X)2

A corrolar of this proposition is the finiteness of
the sets interpreting the types in the API module.

4.2 Reasoning Services

The constructs in the API module were deliberately
choses to be conformant with the concept language
dialect of Buchheit ef al. 1994. A couple of reasoning
services are possible, each determing a different set
of axioms to be reasoned about. We illustrate only
one service, type checking against the database.

The type definitions in an API module make
assumptions about the structure of the imported
database concepts. In the example of Figure 1,
the concepts Employee must at least have three at-
tribute categories name, project, and dept. For
the Department concept, two attributes categories
deptName and head are required. Moreover, at-
tribute cardinalities for the answer objects are
stated:

e a set-valued attribute like project does not in-
duce any cardinality constraint;

e a pointer-valued attribute like head restricts the
the number of attribute fillers to be less or equal

1.

bl

e the remaining attributes like dept must have
exactly one filler.

Please note that these properties apply to the de-
fined concepts like EmpType (ET) and not to the
imported concepts like Employee (F). The concept
language expression is:

ET =FEn0(=1name.S)N (=1 dept.DT)
DT =DnN(=1deptName.S)N (L 1 head.E)

As prescribed by the logic program, the pointer-
valued attribute head of DeptType is not refer-
ing to EmpType directly but to its associated class
Employee. Thereby, circular concept definitions are
prevented.

These equalities for the type definitions are true
provided the database schema has a schema consis-
tent to it. At least it has to fulfill the following
”well-typedness” axioms?®:

20Omne has to assume that the underlying database
is finite. This 1s however a standard assumption with
databases.

*The symbol T stands for the most general concept.

E C VYname. T NVproject. T NVdept. T
D CVdeptName. T NYhead. T

One can check this by adding it to the database
schema and checking its consistency. The service
would just make sure that all referenced attributes
are defined in the database schema.

With a stricter regime, one can demand that the
database schema must have the same or sharper car-
dinality constraints and that the well-typedness 1s
refined to the concepts appearing as attribute types
in the API module:

EC ET N Vname.S N Vproject. P N Y¥dept. DT
D C DT VYdeptName.S MYhead ET

Here, the database schema has to fulfill the struc-
ture of the types in the API module. Consequently,
all instances of the database concepts will apply to
the type definitions. The type definitions would only
project on the attributes of interest. Even if one
regards this as a too narrow coupling, the test on
consistency of the above axioms with the database
schema returns useful information to the designer of
an API module.

5 Programming Language
Embedding

From the API modules, programming language data
types can be derived. Currently, a prototype for
the C++4 language 1s implemented. The tuple types
are mapped to C++ structures, the sets to linked
lists, and the pointers to C++ pointers. While the
concept language view makes no difference between
pointer-valued attributes (like *EmpType and their
associated class Employee, the representation within
the application program is very different:

e A value Employee(X) is stored in a variable with
C++ type char* because X 1s just an string rep-
resenting a database constant.

e A value REF(EmpType,X) is represented as a
main memory address pointing to the location
where the value EmpType(X,...) is stored.
This allows the application program to follow
attribute chains by fast main memory adress-
ing.

Communication between an applications program
and the database is routed through the ports. The
term representations of port p returns in argu-
ment s of the query askPort(s,p,x1,...,xn) are
read by the application program. The arguments
x1,...,%xn contaln the constants for the selection
conditions®. The ”read” procedure, basically a sim-
ple term parser, stores the values in the C++ data
structures. Both the parser and the data structures

*Like for types the properties of port definitions can
be investigated within the framework of concept lan-
guages. If the parameters x1,...xn are known, then
the selection conditions are path agreements. Moreover
one may allow path expressions of the form ai.az2...ar =
b1.b2...bs without compromising on the theoretical com-
plexity of the reasoning.

are generated from the API module by a compiler.
Since the askPort predicate can only return syn-
tactically correct terms, an exception handling for
malformed answers is superfluous.

6 Related Work

Lee and Wiederhold 1994 present a mapping from
relational database schemas to complex objects. It
is more general in the sense that arbitrary arities of
the relations are allowed. In this paper, we assume a
totally normalized schema of the database consisting
of unary relations for class membership and binary
relations for attributes. The advantage of our ap-
proach is that the algorithm for the generation of
the logic programm can be kept free of reasoning on
foreign key dependencies.

Plateau et al. 1992 present the view system of
O- as complex type definitions coupled with the
database types and with prescriptions for graphical
display. The type system contained in the O, data
model. Reasoning on type correctness is done by the
compiler.

The Interface Definition Language IDL by Nestor
et al. 1992 has four type constructors for records,
lists, sets, and classes (unions of different record
types). The base types represents boolean, integers,
rationals, and strings. The values are transfered be-
tween two programs by using a term representation
similar to ours. The difference is the missing formal
relationship between type definitions and (database)
concepts.

A recent proposal by Papakonstantinou et al. 1994
encodes all type information with the term repre-
sentation of a value. An application program has
to provide generic data structures capable of storing
arbitrary values (though restricted to a fixed set of
base types). The advantage is the flexibility of the
approach. A disadvantage is missing compile time
type checking.

Persistent object systems, esp. Tycoon by Matthes
1993, 71ift” the type systems of information sources
and application programs into a single type system.
Because of the heterogenous information sources; the
approach is more general than in O». Reasoning is
again restricted to type checking.

7 Conclusion

We defined API modules as mediators between ap-
plication programs and databases. Both program-
ming language data types and database queries are
generated from the module description. The lan-
guage 1s simple enough to guarantee termination of
the query and efficient reasoning on the type def-
initions. Pointer types are introduced to simulate
recursive datatypes and find a natural counterpart
in the database query.

In future, we plan to eliminate the distinction
between application program and database in the
API modules. Application programs can serve as a
”database” provided they offer the ability the inter-
pret queries on their information. Then, information
flow design between a collection of programs can be
supported by reasoning on the relationship between
the type definitions.

Acknowledgement. Many thanks to Claudia
Welter and Martin Staudt for attacking weak points
in earlier versions of this paper.

References

[Buchheit et al., 1994] M. Buchheit, M.A. Jeusfeld,
W. Nutt, and M. Staudt. Subsumption between
queries to object-oriented databases. Information

Systems, 19(1):33-54, 1994.

[Lee and Wiederhold, 1994] B.S.
Lee and G. Wiederhold. Outer joins and filters
for instantiating objects from relational databases
trough views. IFEE Trans. Knowledge and Data
FEngineering, 6(1):108-119, 1994.

[Matthes, 1993] F. Matthes. Persistente Objektsys-
teme. Springer-Verlag, 1993.

[Papakonstantinou et al., 1994] Y. Papakonstanti-
nou, H. Garcia-Molina, and J. Widom. Object ex-
change across heterogeneous information sources.
Submitted paper, 1994.

[Plateau et al., 1992] D. Plateau, P. Borras, D. Lev-
eque, J. Mamou, and D. Tallot. Building user in-
terfaces with Looks. In F. Bancilhon, C. Delobel,
P. Kannelakis (eds.): Building an Object-Oriented
Database System - The Story of 02, Morgan-
Kaufmann, 256-277, 1992.

[Nestor et al., 1992] J. R. Nestor, J. M. Newcomer,
P. Giannini, and D. L. Stone. IDL - The language
and its implementation. Prentice Hall, 1990.

