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1 Introduction

Description logics (also called terminological logics
or concept languages) have been designed for the
logical reconstruction and specification of knowledge
representation systems descending from KL-ONE
such as Back, CLassic, KRZS, and Loom.! These
systems are used to make the terminology of an ap-
plication domain explicit and then to classify these
definitions automatically into a taxonomy according
to semantic relations like subsumption and equiva-
lence. More precisely, automatic classification refers
to the ability to insert a new concept into the tax-
onomy in such a way that it 1s directly linked to the
most specific concept it 1s subsumed by and to the
most general concept it in turn subsumes. Termi-
nological knowledge representation systems thereby
support the task to formalize an application in at
least two respects. On the one hand, they urge the
user to isolate the intrinsic concepts of the appli-
cation; on the other hand they may detect hidden
subsumption and equivalence relations between def-
initions or may even detect that a definition is inco-
herent.

A model of the application is then given by associ-
ating special objects of the domain with the concepts
of the terminology. The systems mentioned above
in turn automatically classify these objects with re-
spect to the given terminology and to those member-
ship relations which have been asserted explicitly. In
this case, however, automatic classification refers to
the ability to find the most specific concept the ob-
ject is a member of.

Terminologies comprise two different kinds of
terms, viz. so-called concepts and roles. The for-
mer are intended to represent classes of objects of a
given domain, while the latter represent binary rela-
tions over this domain. Concepts can either be sim-
ple concept names, representing not further specified
classes of objects, or structured by means of a fixed
set of concept structuring primitives. Common con-
cept structuring primitives are concept conjunction
M and universal quantification YR:C over a role R.
Concept conjunction is to be interpreted as set in-
tersection, while the concept VR:C' denotes all those
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'For a good overview of the so-called KL-ONE family
the reader is referred to [Woods and Schmolze, 1992]; for
KL-ONE itself cf. [Brachman and Schmolze, 1985].

objects d of the domain for which each object re-
lated to d by the role R is a member of the con-
cept C'. Although there exist many other concept
structuring primitives, it is commonly accepted that
these two should be part of each concept language.
In contrast to concepts, roles are often taken to be
atomic, i.e., there are no roles other than role names.
The standard concept language ALC, for instance,
does not comprise any role structuring primitives.
However, in addition to those mentioned above, this
language comprises concept disjunction U, concept
negation — as well as existential quantification AR:C
over a role R as concept structuring primitives. For
details the reader is referred to [Schmidt-Schau$ and
Smolka, 1991].

Definitions are given by associating a concept or
role T with a concept name (resp., role name) TN.
Such a definition is represented by the expression
TN = T and is called concept and role introduction
respectively. Terminologies are just finite sets of con-
cept and role introductions such that each concept
and role name is defined at most once, i.e., for ev-
ery concept and role name TN there exists at most
one concept or role introduction the left-hand side
of which is TN.

As already mentioned, a model of application do-
main is described in terms of the given terminology.
More precisely, specific objects of the domain and
pairs of objects can be associated with concepts and
roles of the terminology, where these objects are syn-
tactically represented by so-called indiwvidual names.
It can either be asserted that an individual name a
is an instance of a concept C' or that it is related to
another individual name, say, b, by a role R. Such
assertions are called assertional arioms and are rep-
resented by the expressions a:C' and (a, b):R respec-
tively. A finite set of assertional axioms forms a
knowledge base.

From a theoretical point of view, the computa-
tional service provided by terminological knowledge
representation systems can be reduced to answer
queries of the following form with respect to a knowl-
edge base KB and to a terminology 7: a query can
be an assertional axiom or an nclusion ariom of the
form 77 C 15, where T} and 75 are either two con-
cepts or two roles. The meaning of such a query @
posed with respect to KB and 7T is usually given in
terms of so-called interpretations and models. An
interpretation I consists of a domain AT and a val-



uation V over AT along with an interpretation func-
tion 2. The valuation V over AT maps each concept
name to a subset of A and each role name to a bi-
nary relation over A?. Individual names, however,
are mapped to singleton sets containing exactly one
element of AZ. The interpretation function .Z, on
the other hand, just extends V to deal with arbitrary
concepts and roles in such a way that all concept and
role structuring primitives are interpreted properly.
The concept structuring primitives M, U, =, for in-
stance, are to be interpreted as the corresponding
set operations on AZ, while the interpretation of the
concept YR:C'is defined inductively as follows: if C*
and R? have already been defined, then (VR:C)? is
{de AT :Ve({d,e) € RT), e € CT}.

An interpretation 7 is then said to be a model
of the inclusion axiom 77 C 75 just in case that
T C T# and, if a and b are individual names such
that a is {a} and &% is {b}, then Z is a model of
the assertional axiom a:C' (resp., of (a,b):R) just in
case that @ € CT (resp., {a,b) € R%). Not very
surprising, an interpretation is a model of KB and T
if 1t 1s a model of each of the elements of LB and 7.
Now, @ 1s said to be entailed by KB and T, written
KB E7 @, if and only if every interpretation which
is a model of KB and 7T is a model of ) as well.
Moreover, we say that T subsumes T with respect
to 7 if and only if it holds that § =7 77 T Ts.

2 Terminological Reasoning is
Inherently Intractable

Unfortunately, answering such queries is in most
cases provably intractable, at least in terms of com-
putational worst case complexity. This applies, for
instance, to the basic inference of KL-ONE, although
originally claimed to be computationally tractable.
In fact, Schmidt-SchauB [1989] proved that there ex-
ists no algorithm at all which decides whether one
concept of KL-ONE subsumes another one or not,
even with respect to empty terminologies.

Moreover, in [Schild, 1993, 94a], , it is proved that
in case of the standard concept language ALC, every
algorithm capable of deciding whether one concept
subsumes another one or not uses more than poly-
nomial time in the worst case if at least one (pos-
sibly recursive) concept introduction is taken into
account. Notably, this result holds no matter which
of the usual kinds of semantics for recursive concept
introductions is presupposed, viz. either descriptive
semantics or least or greatest fired point semantics,

as Nebel [1991] called them.

It is also known that even in case of the minimal
concept language (comprising no concept and role
structuring primitives other than concept conjunc-
tion and universal quantification over role names),
there exists no polynomial time algorithm which de-
cides with respect to acyclic terminologies whether
one concepts subsumes another one or not, unless

P = NP [Nebel, 1990].

a
b Is b a top block?
table

Figure 1: A sample blocks world.
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|£ block (b) A =3w.block(x) A on(z,b)

Figure 2: Representing the sample blocks world by
first-order formulae.

3 Model Checking Versus Theorem
Proving

In the previous section, we have seen that, as
Woods and Schmolze [1992] put it, “the surfeit of in-
tractability results seems to have reached its logical
end with the conclusion that practically everything
of any use Is intractable &in the worst case).” Re-
cently, Halpern and Vardi [1991] proposed a possible
solution to this very problem of knowledge represen-
tation. As a starting point, they re-examined the
traditional approach to knowledge representation,
going back to McCarthy [1968]. According to this
approach the world to be modeled should be repre-
sented by a finite set of formulae of some given logic,
preferably first-order logic. If a question to be an-
swered 1s then formulated within the same logic, the
answer depends on whether this formula is a logical
consequence of the collection of formulae represent-
ing the world or not. In other words, it is checked
whether every semantic structure which is a model
of each of the formulae representing the world is also
a model of formula corresponding to the question.
We shall illustrate this traditional approach to
knowledge representation by means of an example,
drawn from the famous blocks world. Suppose, for
instance, we would like to represent a blocks world
involving two blocks, say, a and b, where a lies on b
and the latter in turn lies on a table. Suppose, fur-
thermore, we would like to know whether b is a top
block or not. Figure 1 depicts exactly this situation,
while Figure 2 gives its representation in terms of
first-order logic in the traditional way just described.

McCarthy’s approach, however, gives rise to the
problem that the need to represent all facts about
the world in terms of some logic necessitates the
use of very expressive logics such as full first-order
logic. This, in fact, gives rise to difficulties because
it 1s known that there exists no algorithm at all
which generally decides logical consequence in full
first-order logic [Church, 1936], and this remains
true even when only finite interpretation domains
are taken into consideration [Trahtenbrot, 1963].

At this very point Halpern and Vardi stressed that



Dom =
[block] = {a,b}

) [on] = {{a,b),{b, table)}

|£ block (b) A =3w.block(x) A on(z,b)

{a, b, table}

Figure 3: Representing the sample blocks world by
a semantic structure.

in many cases the natural representation of a world
to be modeled is a semantic structure rather than
a collection of formulae. If, as in the traditional
approach, queries are represented by formulae of a
given logic, a query can be answered in this case
depending on whether the formula representing the
query 1is true in the given semantic structure or not.
That is to say, it is checked whether the semantic
structure is a model of the formula corresponding
to the query. The fact that a (closed) formula « is
true in a semantic structure M is usually indicated
by M [ «a. Resorting to this convention, Figure 3
gives such an alternative representation of the blocks
world considered above.

In many cases this model checking approach has
tremendous benefits, at least in terms of computa-
tional complexity. For instance, checking the truth
of an arbitrary closed first-order formula? o in a
finite semantic structure fixing the interpretation
of all predicates and constants occurring in « is
known to be decidable using at most polynomial
space [Chandra and Merlin, 1977]. Recall that in
contrast to this, there exists no algorithm at all
which is able to decide whether an arbitrary formula
of this kind is a logical consequence of a finite set of
first-order formulae, even with only finite interpreta-
tion domains taken into account. However, it is also
known that first-order model checking is still at least
as hard as any other problem solvable using at most
polynomial space, hence this problem is still very
hard [Chandra and Merlin, 1977]. Anyway, Halpern
and Vardi’s intention was to forge a new approach
to knowledge representation rather than to give con-
crete instances which allow for tractable inferences.

4 The Model Checking Approach to
Terminological Reasoning

It should be clear that terminological knowledge rep-
resentation, as described in the introduction, is com-
mitted to the traditional approach to knowledge rep-
resentation rather than to the model checking ap-
proach. In [Schild, 1994b] we investigated the con-
sequences of adapting Halpern and Vardi’s model
checking approach to terminological reasoning. It
turned out that even in case of the most powerful de-
scription logic considered in the literature, answering
queries become tractable just by replacing the usual
kind of knowledge bases with single finite seman-
tic structures fixing the interpretation of all primi-
tive concepts and roles (i.e., those concept and role

2This formula should involve no function symbols
other than constants.

a:Block, b:Block, table:—Block,

(a,b):on, (b, table):on,

a:(=Jon~1:Block), table:(=Jon:Block)
T = {TopBlock = Block M —=3on~"*:Block}

|£T b:TopBlock

Figure 4: Representing the sample blocks world by
an ALC™1-KB.

Dom =
[Block] = {a,b}

[on] {(a,b), (b, table)}
T = {TopBlock = Block M —3on~':Block}

{a,b,table}

|£T b:TopBlock

Figure 5: Representing the sample blocks world by
a physical ALC~'-KB.

names which are mentioned somewhere in the termi-
nology or in the query, but which are not defined).

But before engaging into details, have a look at
Figure 4, which shows how to represent the already
familiar blocks world in terms of ALC together with
the inverse of roles ~!, as it would be done tradi-
tionally. Observe, however, that this representation
1s incomplete in that 1t solely states that block a lies
on block b, while the latter in turn lies on the table,
but it is left open whether there 1s any other block
lying on b or on the table. As a matter of fact, there
is no way at all to give an accurate representation of
our blocks world in terms of ALC, even when aug-
mented by the inverse of roles. This means, in this
case the so-called open world assumption,® tradition-
ally made for terminological reasoning, is a nuisance
rather than an advantage.

Figure 5 modifies the just considered representa-
tion in the spirit of the model checking approach. A
finite semantic structure i1s shown there which fixes
the interpretation of each primitive concept and role
of 7, that is, it fixes the interpretation of Block and
on. Such a semantic structure is obviously nothing
but a valuation along with a domain. When taken
together with a domain, the syntactic representation
of such a valuation is called physical knowledge base,
emphasizing the fact that they are intended to re-
place customary knowledge bases. Now, suppose V
is such a physical knowledge base with domain Dom,
T is an arbitrary terminology, and ) is a query.
Then V =7 @ is intended to mean that every in-
terpretation extending V which is a model of 7 is a
model of ) as well, where an interpretation 7 is said
to extend a physical knowledge base V with domain
PDom just in case that A? = Dom and, moreover, .2
interprets all those concept and role names handled

®In contrast to the closed world assumption, usually
made for databases, the open world assumption does not
assume that all those facts that are not explicitly men-
tioned (or that cannot be inferred) are taken to be false.



by V in exactly the same way as V' does.

In [Schild, 1994b] we investigated the computa-
tional complexity of answering such queries with re-
spect to physical knowledge bases in the description
logic U, introduced by Patel-Schneider [1987] as a
universal description logic. This concept language is
unwwersal in the sense that it encompasses all others
considered in the literature, except for those which
comprise nonstandard facilities like defaults, for in-
stance. In addition to those of ALC, this language
comprises number restrictions of the form 32" R:C
and 37 R:C as well as role value maps of the form
R < S as concept structuring primitives. Number
restrictions restrict the number of role fillers (i.e.,
those objects which are related to an object by a
role), while role value maps impose restrictions on
the fillers of two roles. The concept R < S states
that all fillers of the role R are also fillers of the role
S. In addition, ¢/ admits of individual names to oc-
curring in concepts. The role structuring primitives
of U are the identity role e, Boolean operations M, L,
— on roles, the inverse R~ of a role, the composition
RoS of two roles, as well as the transitive closure Rt
and the reflexive-transitive closure R* of a role. For
details cf. [Schild, 1994b] or [Patel-Schneider, 1987].
Notably, it is known that there cannot exist any al-
gorithm which 1s capable of deciding subsumption
between two concepts (or two roles) of U, even with
respect to empty terminologies [Schild, 1988].

The main result of [Schild, 1994b] is that even in
this language V =7 @ can be decided in polynomial
time provided that each of the following conditions
1s satisfied:

(a) V has a finite domain and specifies all concept
and role names occurring in 7 and @ except for

those which are defined in T
(b) Roles are not defined recursively;

(c) Concepts can be defined recursively, but then
they must occur in their definition® positively,
1.e., they must occur in the scope of an even
number of negations, where 3™ R: counts also
as a negation. Moreover, each recursive defini-
tion must be given either least or greatest fixed
point semantics, not necessarily in a uniform
way.

Of course, each of these conditions calls for some
comment. Condition (b) is commonly presupposed
for terminological reasoning, while condition (¢) con-
stitutes the most liberal restriction on recursive con-
cept definitions considered in the literature. The
most important condition, however, is the first one
in that it ensures all primitive concepts and roles
to be specified extensionally. This restriction does
make sense as these concepts and roles are exactly
those which are not further specified according to the
semantics. It can easily be verified that the sample
query of Figure 5 obeys each of the three conditions
above.

The employed algorithm capable of deciding V |7
() in polynomial time just mimics the semantics of

“In this context, a definition is meant to be the sub-
terminology of 7 which contains exactly those concept
introductions which are involved in the recursion.

the concept and role structuring primitives of U,
storing already evaluated ones. To deal with re-
cursive concept definitions, however, we exploited
a technique for computing least and greatest fixed
points due to Emerson and Lei [1986].

It turned out that even when relaxing condition
(a) in such a way that V is solely required to have a
finite domain, V |=7 @ is still decidable in the uni-
versal description logic ¢f. In fact, we proved that in
this case the computational complexity 1s essentially
the same as the one of deciding ordinary subsump-
tion between two concepts with respect to acyclic
terminologies in the minimal concept language.®

We also investigated the consequences of incorpo-
rating some limited kind of incomplete knowledge
by means of Reiter’s null values [Reiter, 1984]. It
turned out that, when presupposing P # NP, ad-
mitting of null values causes intractability, even in
case of ALC. Thus our results suggest that the main
source of computational complexity of terminologi-
cal reasoning seems to be the ability to express in-
complete knowledge.

5 Description Logics as Tractable
Query Languages for Databases

Another interpretation of our results is that, when
taken together with the least and greatest fixed point
semantics, the universal concept language U can
serve as a powerful but tractable query language for
relational databases comprising solely unary and bi-
nary relations.® From this point of view terminolo-
gies are to be thought of as defining so-called views,
possibly defined recursively.

At this very point, it i1s important to note that the
universal description logic U is so strong in expres-
sive power that it is even capable of accurately defin-
ing concepts such as directed acyclic graphs (DAG's),
trees, or binary trees. The powerful role forming
primitives of U actually admit of plausible and non-
recursive definitions of these concepts. As every fi-
nite graph can uniquely be represented by a physi-
cal knowledge base in a completely straightforward
manner, these concepts provide views which can be
used to extract from a huge collection of (connected)
directed graphs exactly those which are acyclic or
those which are trees or binary trees. If we addi-
tionally have recursive concept introductions along
with least fixed point semantics at our disposal, we
may even extract from a finite and-or-graph G (or a
collection of such) exactly the solvable vertices, i.e.,
those vertices which are a root of an acyclic sub-
graph G5 of G such that every and-vertex of G5 has
exactly those edges it has in G and, moreover, ev-
ery or-vertex has at least one of those edges it has
in G. Figure 6 gives the terminology of U defin-
ing all the concepts mentioned in this section, where
the recursive concept introduction of Solvable should
be given least fixed point semantics. This is just
to demonstrate that even though the model check-

STechnically speaking, in this case deciding V =7 Q
in U is co-NP-complete.

%Note that unary and binary relations do suffice as
far as only object-oriented databases are concerned.



DirectedGraph = Vconnected: Vertex
connected = (edge U edge_l)*
Acyclic = Yconnected:(edget < —e)
DAG = DurectedGraph M Acyclic
Tree = DAG
M Vedge™:3%tedge™: Verter
BinaryTree = Tree
M Vedge*:3%%edge: Verter
AndOrGraph = DurectedGraph
M Veonnected: AndOrVertex
AndOrVertex = AndVertex M= OrVertex
U  OrVertex M —AndVertex
Solvable = —3Jedge: Vertex
U AndVertex M Vedge:Solvable
U OrVertex M 3edge:Solvable

Figure 6: A terminology of .

ing approach to terminological knowledge represen-
tation does make it possible to answer queries in
polynomial time, there are actually nontrivial infer-
ences to perform.
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