Semantic Indexing Based on Description Logics

Albrecht Schmiedel
Technische Universitat Berlin
atms@cs.tu-berlin.de

Abstract

A method for constructing and maintaining a
‘semantic index’ using a system based on de-
scription logics is described. A persistent index
into a large number of objects is built by classi-
fying the objects with respect to a set of index-
ing concepts and storing the resulting relation
between object-ids and most specific indexing
concepts on a file. These files can be incre-
mentally updated. The index can be used for
efficiently accessing the set of objects matching
a query concept. The query 1s classified, and,
based on subsumption and disjointness reason-
ing with respect to indexing concepts, instances
are immediately categorized as hits, misses or
candidates with respect to the query. Based on
the index only, delayless feedback concerning
the cardinality of the query (upper and lower
bounds) can be provided during query editing.

1 Introduction

Indexing generally involves an association between some
kind of key and the actual target. The key is used to
jump directly to a desired piece of information, thereby
avoiding an exhaustive search through large sets of can-
didates. In the context of databases, keys are usually
based on the set of values of a particular attribute of
the objects to be indexed: if we know the value, we can
move directly to the corresponding object(s).

In the following, a description logic (DL) based ap-
proach to indexing is sketched which broadens the no-
tion of a key: instead of using attribute values, indexing
elements can be arbitrary structured concepts as pro-
vided by a terminological language such as BACK (cf.
[Hoppe et al.,1993]). Firstly, I will show how the con-
struction of such an index falls out quite naturally from
the normal workings of a terminological reasoner, and
secondly I will discuss how such an index can be used.
This approach, and an experimental implementation, 1s
described in more detail in [Schmiedel,1993].

Basic entities:

patient :< anything.

examination 1< anything and
not(patient).

observation 1< anything and

not(patient) and
not(examination).

Basic relations:

hasExam :< domain(patient) and
range(examination).

hasltem :< domain(examination) and
range(observation).

hasValue :< domain(observation) and

range(number).

Other Primitives:

hce 1< examination.

bloodPressure 1< observation.

bloodPressureSystolic :< bloodPressure.

bloodPressureDiastolic :< bloodPressure and
not(bloodPressureSystolic).

normal 1< observation.

abnormal 1< observation and

not(normal).

Table 1: Primitive concepts and roles

2 Index Construction

In a description logic such as BACK a data base is viewed
as a set of distinct objects (also instances or individuals)
typically representing domain entities, each of which is
associated with a description.

Descriptions are terms built with

e term-forming operators such as and, all, some,
etc., the logical constants provided by the language,

e primitive concepts and roles introduced by the user,
and

e named defined concepts and roles.

Table 1 shows some top level primitive concepts
roles for building a data base containing descriptions
of patients, examinations, and observations made in

examinations®'. Patients are related to examinations via
hasExam, and examinations to observations via hasltem.

examSomeBpSysAbnorm =
examination and some(hasltem,
bloodPressureSystolic and
abnormal).

patSomeBpAbnorm =
patient and some(hasExam, examSomeBpAbormal).

Table 2: Defined concepts

Table 2 gives two examples for named descriptions (de-
fined concepts) using the primitives. examSomeBpSys-
Abnorm is an examination which has an item which is
an abnormal systolic blood pressure, and patSomeBpAb-
norm is a patient which has an examination which has an
abnormal blood pressure. Defined concepts are syntactic
sugar for abbreviating possibly complex descriptions.

bloodPressureSystolic and all(hasValue, gt(140))
=> abnormal.

bloodPressureSystolic and all(hasValue, 110..140)
=> normal.

bloodPressureSystolic and all(hasValue, 1t(110))
=> abnormal.

Table 3: Rules

Descriptions are also used to define rules, which are ex-
pressed as implications between two descriptions. The
left hand sides of the rules shown in Table 3 are descrip-
tions of certain sets of observations which are asserted
to be in the set of normal or abnormal ones by the de-
scription on the right hand side.

Table 4 shows how data i1s actually entered into the
system. The “::” operator is used for asserting that the
description on the right hand side is true for the object
referenced on the left hand side. Here, there is an object
patient]l, an instance of patient, with two examinations,
heel and hee2, both instantiating the concept hce. The
keyword closed indicates that all fillers of the hasExam
role are known, i.e. there are only two examinations.
The examinations each have exactly two observations,
each of which has exactly one numeric value.

Based on this type of input, the system computes

e for concepts the subsumption and disjointness re-
lation, i.e., for each pair of concepts whether one
subsumes the other or whether they are disjoint,

o for each individual the set of concepts it is (and is
not) an instance of.

For our example containing three kinds of entities, pa-
tients, examinations, and observations, the result of this 1s
illustrated in Fig. 1. Concepts (primitives marked with

'For a more detailed description of the BACK language
see [Hoppe et al.,1993].

patient! :: patient and hasExam:closed(hce! and hce2).
hcel it hce and hasltem:closed(bpsys! and bpdial).
hce2 it hce and hasltem:closed(bpsys2 and bpdia2).
bpsyst bloodPressureSystolic and hasValue:130.
bpdial bloodPressureDiastolic and hasValue:90.
bpsys2 bloodPressureSystolic and hasValue:150.
bpdia2 bloodPressureDiastolic and hasValue:95.

Table 4: Object descriptions

an asterisk) are related by subsumption links; disjoint-
ness has been left out for the sake of simplicity. The
individuals at the bottom of the graph, a patient with
two examinations, each of which with two observations,
are linked to the most specific concepts they instantiate.
For example, bpsys?2 is classified under the conjunction of
bPSystolic, which was explicitly told, and abnormal, due
to an abnormality rule as in the example above. This
leads to the classification of hce? under examSomeBp-
SysAbnorm (‘an examination with an abnormal systolic
blood pressure’) which in turn triggers the classification
of patient]l as an instance of patSomeBpSysAbnorm (‘a
patient with an examination containing an abnormal sys-
tolic blood pressure’). Note that hce2 (patientl) was ex-
plicitly told to be only an examination (patient); the more
specific concepts were derived by the system as a conse-
quence of the role filler relations, the definitions and the
rules.

In the following, two properties of description logic
based systems not present in mainstream database sys-
tems play a crucial role:

e the ability to handle any degree of partial informa-
tion in conjunction with an open world assumption,
and

e the ability to describe individuals with complex con-
cepts and to use these descriptions for query answer-
ing.

These two properties make it possible, for example, to
remove all the information concerning observations (the
shaded part in Fig. 1), but to keep all the information
that was derived from observations concerning other en-
tities. Thus, hce2 will still be known to be an instance of
examSomeBpSysAbnorm, but the observations and their
values from which this was derived will become unknown.

We can now define a set of individuals to be indexed
(for example the set of patients), choose a set of index-
ing concepts (e.g., the concepts specializing patient), and
store the relation which associates each indexing concept
with the individuals it instantiates. This relation can ef-
ficiently be stored in two hashtables: one maps individ-
ual names to the set of most specific concepts describing
them, and the other maps concept names to the set of
individuals they directly instantiate, i.e. those which are
not instances of any subconcept. It is also useful to store
the associated cardinalities.

examAlIBpSysNorm
patAllBpDiaNor
7
/ patSomeBpAbnorm
/
/

/
/
\

/
/
/
/ //
/
! patAllIBpNorm examAllBpNorm) ,’
\ ‘ examSomeBpDiaAbnorm
\
\ v

\

\

\ \
\
\

\
\ patSomeBpSysAbnorm
\

’
\ 4

*
examination

examAllBpDiaNorm

*
examSomeBpAbnorm
bloodPr

*
essure
*
bPSystalic @

\
]
1
1 7
1 \ ,/ L0 Pie
\ 4 1 \ 2 e m— bm e LT
\ 7 1 \ g -7 2 ;e T T T T T T ~
\ ,] V- - // ¢ Il \\
\\ // ,l }’ - -=" ’ | ! \
/
\ // ! s y . ' /hasvalue L
\ % [| { hasltem I \
- o [hestem CERD I W S I— B |
\] | @ e
\ hasgram e GEL) oot e el ;
% . S T B—— |
- - I |
patientl }------------- > - | —_--T 1
- | I 7 D - I
- ; .- (bPSys2 }-e- e > (@ 150)
___________ _1]
hcep) ------oco-veev (S —- _]
_______________________________ k
= P - >..
h bPDia2 L £3) 4
—_— subsumedby 0 0------ = ingtantiates

Figure 1: Example KB

3 Using the Index

Based on this stored relation and the original concept
definitions, a new knowledge base can be built which
contains only the classification of the individuals with
respect to the indexing concepts, but lacks the full indi-
vidual descriptions (see Table 5). Tt may thus be much
smaller than the original KB. Due to the semantic prop-
erties mentioned above, it will be ignorant w.r.t to some
information contained in the original KB, but it will

never produce contradictory answers. This makes 1t use-
ful as an index.

patientl patSomeBpSysAbnorm and
patAlIBpDiaNorm.

hcel hce and examAlIBpNorm.

hce2 hce and examSomeBpSysAbnorm and
examAlIBpDiaNorm.

Table 5: Abstracted object descriptions

Queries using the index are processed in three distinct
phases, each one providing progessively more informa-
tion at additional costs. The first phase is designed to
provide cheap and immediate feedback on the expected
cardinality of the result of a query. For this only the
cardinalities associated with indexing concepts need to
be loaded. The query is classified, and cardinality con-
straints for it are computed based on the known cardinal-
ities of indexing concepts, and their logical interrelations.
Thus, the example query shown in Fig. 2 must have at
least 40 instances, since there are two indexing subcon-
cepts the cardinalities of which are added because they
can be proved disjoint by the system. Similarly, there is
an upper bound of 80 instances for the query, because the
indexing superconcept with the least cardinality (100)
has an indexing subconcept (20) digjoint from the query.
Depending on this cardinality information, the user can
either refine his query, specializing or generalizing it as
desired, or proceed to the second phase.

The quality of the cardinality feedback depends very
much on how close the query is related to already exist-

n=100 n=300

someBpAbnormal »

n=40..80 (Phasel)

someBpDiaAbnormal
and

allBpSysNormal

someBpSysAbnormal

someBpSysAbnormal
and male
and age > 65

Query Concept Indexing Concept W Disjoint Concepts

Figure 2: Approximating the cardinality of a query

and age < 40

ing indexing concepts. If we ask for a concept which is
equivalent to an indexing one, we get the exact cardinal-
ity. If we ask for a concept which is totally unrelated to
existing indexing concepts, i.e. there are no subsuming,
no subsumed, and no disjoint ones, we will get a lower
bound of 0 and an upper bound equal to the number
of indexed instances. This means no information at all
from the index. Typically, one should get something in
between, some partial information.

The second phase additionally utilizes the actual ex-
tensions of indexing concepts also stored in the index.
This generally results in much better cardinality esti-
mates at the cost of having to load the instances, com-
puting intersections and unions, etc. In case the query is
a combination of indexing concepts, its exact extension
(and cardinality) can be computed.

Otherwise there is a remaining set of candidates, the
individuals for which the query is not known to be ei-
ther true or false. In this case the index alone does not
contain enough information to determine the extension
of the query, and the third phase must be entered. For
each candidate instance the original description must be
accessed and explicitly tested against the query. After
this has been done, the user can choose to declare the
query as a new indexing concept, making the index more
dense at that particular point in the semantic space.

4 Concluding Remarks

This semantic indexing mechanism is crucially depen-
dent on reasoning with descriptions as provided by ter-
minological systems. The indexing elements are poten-
tially complex descriptions logically related by subsump-
tion and disjointness. Note that incomplete algorithms
for computing subsumption are not disastrous for index-
ing: they will simply result in a less informed, subopti-
mal index.

Compared with standard value-based indexes, this re-
sults in the following characteristics:
(1) A semantic index is inherently multidimensional
since any combination of properties cast into a DL con-
cept (i.e. an arbitrary query) can serve as an indexing
element.
(2) As a structured concept the indexing elements are
not just attribute values, but can be based on complex
descriptions of related individuals.
(3) A semantic index as a whole is highly adaptable to
patterns of usage. Indexing concepts can be added or
removed at will, making it very dense and precise w.r.t
to interesting sets of individuals, or very sparse in other,
less interesting areas.
(4) Since the index is actually a set of partial descrip-
tions for the indexed instances, lots of information (such
as cardinality estimates) can be drawn from the index
alone without accessing (possibly remote) individual de-
scriptions at all.

These properties may turn out useful for building local
information servers which cache information at various
levels of completeness, depending on usage patterns.

References

[Hoppe et al., 1993] Hoppe, Th., Kindermann, C.,
Quantz, J.J., Schmiedel, A.; and Fischer, M., BACK
V5 Tutorial and Manual. KIT Report 100, Depart-
ment of Computer Science, Technische Universitat
Berlin, Berlin, Germany, March 1993.

[Schmiedel, 1993] Schmiedel, A., Persistent Mainte-
nance of Object Descriptions using BACK. KIT Re-
port 112, Department of Computer Science, Technis-
che Universitat Berlin, Berlin, Germany, November

1993.

