
Semantic Indexing Based on Description LogicsAlbrecht SchmiedelTechnische Universit�at Berlinatms@cs.tu-berlin.deAbstractA method for constructing and maintaining a`semantic index' using a system based on de-scription logics is described. A persistent indexinto a large number of objects is built by classi-fying the objects with respect to a set of index-ing concepts and storing the resulting relationbetween object-ids and most speci�c indexingconcepts on a �le. These �les can be incre-mentally updated. The index can be used fore�ciently accessing the set of objects matchinga query concept. The query is classi�ed, and,based on subsumption and disjointness reason-ing with respect to indexing concepts, instancesare immediately categorized as hits, misses orcandidates with respect to the query. Based onthe index only, delayless feedback concerningthe cardinality of the query (upper and lowerbounds) can be provided during query editing.1 IntroductionIndexing generally involves an association between somekind of key and the actual target. The key is used tojump directly to a desired piece of information, therebyavoiding an exhaustive search through large sets of can-didates. In the context of databases, keys are usuallybased on the set of values of a particular attribute ofthe objects to be indexed: if we know the value, we canmove directly to the corresponding object(s).In the following, a description logic (DL) based ap-proach to indexing is sketched which broadens the no-tion of a key: instead of using attribute values, indexingelements can be arbitrary structured concepts as pro-vided by a terminological language such as BACK (cf.[Hoppe et al.,1993]). Firstly, I will show how the con-struction of such an index falls out quite naturally fromthe normal workings of a terminological reasoner, andsecondly I will discuss how such an index can be used.This approach, and an experimental implementation, isdescribed in more detail in [Schmiedel,1993].

Basic entities:patient :< anything.examination :< anything andnot(patient).observation :< anything andnot(patient) andnot(examination).Basic relations:hasExam :< domain(patient) andrange(examination).hasItem :< domain(examination) andrange(observation).hasValue :< domain(observation) andrange(number).Other Primitives:hce :< examination.bloodPressure :< observation.bloodPressureSystolic :< bloodPressure.bloodPressureDiastolic :< bloodPressure andnot(bloodPressureSystolic).normal :< observation.abnormal :< observation andnot(normal).Table 1: Primitive concepts and roles2 Index ConstructionIn a description logic such as BACK a data base is viewedas a set of distinct objects (also instances or individuals)typically representing domain entities, each of which isassociated with a description.Descriptions are terms built with� term-forming operators such as and, all, some,etc., the logical constants provided by the language,� primitive concepts and roles introduced by the user,and� named de�ned concepts and roles.Table 1 shows some top level primitive conceptsroles for building a data base containing descriptionsof patients, examinations, and observations made in

examinations1. Patients are related to examinations viahasExam, and examinations to observations via hasItem.examSomeBpSysAbnorm :=examination and some(hasItem,bloodPressureSystolic andabnormal).patSomeBpAbnorm :=patient and some(hasExam, examSomeBpAbormal).Table 2: De�ned conceptsTable 2 gives two examples for named descriptions (de-�ned concepts) using the primitives. examSomeBpSys-Abnorm is an examination which has an item which isan abnormal systolic blood pressure, and patSomeBpAb-norm is a patient which has an examination which has anabnormal blood pressure. De�ned concepts are syntacticsugar for abbreviating possibly complex descriptions.bloodPressureSystolic and all(hasValue, gt(140))=> abnormal.bloodPressureSystolic and all(hasValue, 110..140)=> normal.bloodPressureSystolic and all(hasValue, lt(110))=> abnormal.Table 3: RulesDescriptions are also used to de�ne rules, which are ex-pressed as implications between two descriptions. Theleft hand sides of the rules shown in Table 3 are descrip-tions of certain sets of observations which are assertedto be in the set of normal or abnormal ones by the de-scription on the right hand side.Table 4 shows how data is actually entered into thesystem. The `::' operator is used for asserting that thedescription on the right hand side is true for the objectreferenced on the left hand side. Here, there is an objectpatient1, an instance of patient, with two examinations,hce1 and hce2, both instantiating the concept hce. Thekeyword closed indicates that all �llers of the hasExamrole are known, i.e. there are only two examinations.The examinations each have exactly two observations,each of which has exactly one numeric value.Based on this type of input, the system computes� for concepts the subsumption and disjointness re-lation, i.e., for each pair of concepts whether onesubsumes the other or whether they are disjoint,� for each individual the set of concepts it is (and isnot) an instance of.For our example containing three kinds of entities, pa-tients, examinations, and observations, the result of this isillustrated in Fig. 1. Concepts (primitives marked with1For a more detailed description of the BACK languagesee [Hoppe et al.,1993].

patient1 :: patient and hasExam:closed(hce1 and hce2).hce1 :: hce and hasItem:closed(bpsys1 and bpdia1).hce2 :: hce and hasItem:closed(bpsys2 and bpdia2).bpsys1 :: bloodPressureSystolic and hasValue:130.bpdia1 :: bloodPressureDiastolic and hasValue:90.bpsys2 :: bloodPressureSystolic and hasValue:150.bpdia2 :: bloodPressureDiastolic and hasValue:95.Table 4: Object descriptionsan asterisk) are related by subsumption links; disjoint-ness has been left out for the sake of simplicity. Theindividuals at the bottom of the graph, a patient withtwo examinations, each of which with two observations,are linked to the most speci�c concepts they instantiate.For example, bpsys2 is classi�ed under the conjunction ofbPSystolic, which was explicitly told, and abnormal, dueto an abnormality rule as in the example above. Thisleads to the classi�cation of hce2 under examSomeBp-SysAbnorm (`an examination with an abnormal systolicblood pressure') which in turn triggers the classi�cationof patient1 as an instance of patSomeBpSysAbnorm (`apatient with an examination containing an abnormal sys-tolic blood pressure'). Note that hce2 (patient1) was ex-plicitly told to be only an examination (patient); the morespeci�c concepts were derived by the system as a conse-quence of the role �ller relations, the de�nitions and therules.In the following, two properties of description logicbased systems not present in mainstream database sys-tems play a crucial role:� the ability to handle any degree of partial informa-tion in conjunction with an open world assumption,and� the ability to describe individuals with complex con-cepts and to use these descriptions for query answer-ing.These two properties make it possible, for example, toremove all the information concerning observations (theshaded part in Fig. 1), but to keep all the informationthat was derived from observations concerning other en-tities. Thus, hce2 will still be known to be an instance ofexamSomeBpSysAbnorm, but the observations and theirvalues fromwhich this was derived will become unknown.We can now de�ne a set of individuals to be indexed(for example the set of patients), choose a set of index-ing concepts (e.g., the concepts specializing patient), andstore the relation which associates each indexing conceptwith the individuals it instantiates. This relation can ef-�ciently be stored in two hashtables: one maps individ-ual names to the set of most speci�c concepts describingthem, and the other maps concept names to the set ofindividuals they directly instantiate, i.e. those which arenot instances of any subconcept. It is also useful to storethe associated cardinalities.

patAllBpDiaNorm

*
patient

examAllBpSysNorm

observation **examination
*

anything

patSomeBpSysAbnorm

examAllBpNormpatAllBpNorm

patSomeBpAbnorm

bloodPressure
*

examAllBpDiaNorm

examSomeBpDiaAbnorm

examSomeBpSysAbnorm

bPDiastolic
*

SN DN SAb DAb

bPSystolic
*

Abnorm
*

examSomeBpAbnorm

Norm
*

patient1

bPSys2

bPDia1

bPSys1

bPDia2

130

90

150

95

hasExam

hasItem
hasValue

subsumed by instantiates filled by

hce2

hce1 Figure 1: Example KB3 Using the IndexBased on this stored relation and the original conceptde�nitions, a new knowledge base can be built whichcontains only the classi�cation of the individuals withrespect to the indexing concepts, but lacks the full indi-vidual descriptions (see Table 5). It may thus be muchsmaller than the original KB. Due to the semantic prop-erties mentioned above, it will be ignorant w.r.t to someinformation contained in the original KB, but it willnever produce contradictory answers. This makes it use-ful as an index.patient1 :: patSomeBpSysAbnorm andpatAllBpDiaNorm.hce1 :: hce and examAllBpNorm.hce2 :: hce and examSomeBpSysAbnorm andexamAllBpDiaNorm.Table 5: Abstracted object descriptions
Queries using the index are processed in three distinctphases, each one providing progessively more informa-tion at additional costs. The �rst phase is designed toprovide cheap and immediate feedback on the expectedcardinality of the result of a query. For this only thecardinalities associated with indexing concepts need tobe loaded. The query is classi�ed, and cardinality con-straints for it are computed based on the known cardinal-ities of indexing concepts, and their logical interrelations.Thus, the example query shown in Fig. 2 must have atleast 40 instances, since there are two indexing subcon-cepts the cardinalities of which are added because theycan be proved disjoint by the system. Similarly, there isan upper bound of 80 instances for the query, because theindexing superconcept with the least cardinality (100)has an indexing subconcept (20) disjoint from the query.Depending on this cardinality information, the user caneither re�ne his query, specializing or generalizing it asdesired, or proceed to the second phase.The quality of the cardinality feedback depends verymuch on how close the query is related to already exist-

Query Concept Disjoint Concepts

n=300

n=20

n=100

n=10

n=40..80 (Phase I)

n=30

and

male

someBpDiaAbnormal

allBpSysNormal

someBpAbnormal

and age < 40
and male

someBpSysAbnormal

and age > 65

someBpSysAbnormal
and male

Indexing Concept

someBpSysAbnormal
and male

Figure 2: Approximating the cardinality of a querying indexing concepts. If we ask for a concept which isequivalent to an indexing one, we get the exact cardinal-ity. If we ask for a concept which is totally unrelated toexisting indexing concepts, i.e. there are no subsuming,no subsumed, and no disjoint ones, we will get a lowerbound of 0 and an upper bound equal to the numberof indexed instances. This means no information at allfrom the index. Typically, one should get something inbetween, some partial information.The second phase additionally utilizes the actual ex-tensions of indexing concepts also stored in the index.This generally results in much better cardinality esti-mates at the cost of having to load the instances, com-puting intersections and unions, etc. In case the query isa combination of indexing concepts, its exact extension(and cardinality) can be computed.Otherwise there is a remaining set of candidates, theindividuals for which the query is not known to be ei-ther true or false. In this case the index alone does notcontain enough information to determine the extensionof the query, and the third phase must be entered. Foreach candidate instance the original description must beaccessed and explicitly tested against the query. Afterthis has been done, the user can choose to declare thequery as a new indexing concept, making the index moredense at that particular point in the semantic space.4 Concluding RemarksThis semantic indexing mechanism is crucially depen-dent on reasoning with descriptions as provided by ter-minological systems. The indexing elements are poten-tially complex descriptions logically related by subsump-tion and disjointness. Note that incomplete algorithmsfor computing subsumption are not disastrous for index-ing: they will simply result in a less informed, subopti-mal index.

Compared with standard value-based indexes, this re-sults in the following characteristics:(1) A semantic index is inherently multidimensionalsince any combination of properties cast into a DL con-cept (i.e. an arbitrary query) can serve as an indexingelement.(2) As a structured concept the indexing elements arenot just attribute values, but can be based on complexdescriptions of related individuals.(3) A semantic index as a whole is highly adaptable topatterns of usage. Indexing concepts can be added orremoved at will, making it very dense and precise w.r.tto interesting sets of individuals, or very sparse in other,less interesting areas.(4) Since the index is actually a set of partial descrip-tions for the indexed instances, lots of information (suchas cardinality estimates) can be drawn from the indexalone without accessing (possibly remote) individual de-scriptions at all.These properties may turn out useful for building localinformation servers which cache information at variouslevels of completeness, depending on usage patterns.References[Hoppe et al., 1993] Hoppe, Th., Kindermann, C.,Quantz, J.J., Schmiedel, A., and Fischer, M., BACKV5 Tutorial and Manual. KIT Report 100, Depart-ment of Computer Science, Technische Universit�atBerlin, Berlin, Germany, March 1993.[Schmiedel, 1993] Schmiedel, A., Persistent Mainte-nance of Object Descriptions using BACK. KIT Re-port 112, Department of Computer Science, Technis-che Universit�at Berlin, Berlin, Germany, November1993.

