
Formalization of OODB ModelsGottfried VossenInstitut f�ur Wirtschaftsinformatik, Universit�at M�unsterGrevenerstra�e 91, 48159 M�unster1 IntroductionObject-oriented data models represent a current end-point in the evolution of data models [23]. Their for-malization has been attempted in a variety of papers,including [5; 6; 19]. This short paper indicates whatwe consider the common intersection of these (andother) approaches; we list the relevant features andcomponents, and give an idea of how to formalizethe notion of an object-oriented database schema.An object-oriented data model has to capture avariety of requirements [8; 27], which di�er consid-erably from those that traditional data models haveto meet. However, many system developers seemnot to care about formal models as a solid foun-dation of their system, but simply design a \datade�nition language" in which the relevant featurescan be coded. In our opinion, a formal model forobject-oriented databases basically has to capturethe same intuitions as models for other types of da-tabases, which are the following:1. It has to provide an adequate linguistic abstrac-tion for certain database applications.2. It should provide a precise semantics for a datade�nition language.3. It has to be composed of both a speci�cationand an operational part.4. It represents a computational paradigm as a ba-sis for formal investigations.In this short note, we do not present a comprehensivesurvey of formal models for object-oriented databa-ses which have been proposed in the literature, butinstead try to point out the fundamentals of howsuch models are obtained. The result can be con-sidered as a framework in which the essentials ofthe object-oriented paradigm can be expressed con-cisely and further studied. Indeed, we give hints tovarious such investigations that have recently beenundertaken.2 Core Aspects of Formal OOModelsIn this section, we describe what we perceive as thecore aspects of various proposals for object mod-els, and we do so by distinguishing structural frombehavioral aspects. Thus, we generally considerschemas, the central notion of any conceptual data-base description, to be pairs of the form S = (Sstruc,

ClassType Methods Messages���	 PPPPPPPPPPq�type messgimplValues?dom ObjectState oid Behavior'& $%���	 ?@@@R6val ?inst ?6Figure 1: Core Aspects of an Object Model.Sbehav); in what follows, we �rst consider each com-ponent in isolation and then indicate how the two in-teract. We mention, however, that while it is gener-ally agreed that an object-oriented data model has tocapture both structure and behavior, the former canbe obtained by using the experience from the rela-tional, nested relational and complex-object models,but the latter represents a completely new challengeto database researchers. Consequently, a consensusseems achieved for structure, but not for behavior.The core aspects of formal models for object-oriented databases are summarized in Figure 1, inwhich labels of arrows represent function names. Inbrief, the only structuring mechanism is the classwhich describes both structure and behavior for itsinstances, the objects. Structure is captured as atype for a class (in our notation, a function \type"associates a type with each class; the other functionnames shown above are to be interpreted similarly,see below). A type is nothing but a description ofa domain, i.e., a set of values, and may or may notbe named (in the former case, type names distinctfrom class names and attribute names must be pro-vided). Values comprise the state of an object andcan be as complex as the type system allows (i.e.,depending on the availability of base types and con-structors like tuple, set, bag, list, etc.). Behavior ismanifested in a set of messages associated with each

class (its external interface), which are internally im-plemented using methods that are executable on ob-jects. Hence, objects have a state and a behavior; inaddition, they are uniquely identi�ed. Messages arespeci�ed by providing a signature, and by associatingseveral signatures with the same message name, thelatter gets overloaded. Not shown in Figure 1 is thepossibility to organize classes in an inheritance hier-archy; also not shown is the fact that class attributesare allowed to reference other classes, thereby form-ing an aggregation lattice.We next look at structural as well as behavioralaspects in more detail. Regarding the modeling ofstructure, more precisely highly-structured informa-tion, complex data types are all that is basicallyneeded, since they serve as descriptions for domainsof complex values. One way to introduce such types,i.e., to de�ne a type system T, is the following:(i) integer, string, float, boolean � T ;(ii) if Ai are distinct attributes and ti 2 T , 1 � i �n; then[A1 : t1; : : : ; An : tn] 2 T (\tuple type");(iii) if t 2 T; then ftg 2 T (\set type");(iv) if t 2 T; then < t >2 T (\list type").In other words, a type system is made up of basetypes, from which complex types may be derived us-ing (eventually attributes and) constructors. Notethat this requires nothing additional but the avail-ability of attribute names. Clearly, other basetypes as well as additional or alternative construc-tors could straightforwardly be included. Notice alsothat here types are not named; for practical reasons,the use of type names may be desirable (e.g., in orderto be able to reuse type de�nitions in various placesthroughout a schema), and if it is, it can easily beadded to the above in the way indicated earlier.The notion of a domain as a \reservoir" of possiblevalues can be de�ned as follows; it just has to obeyconstructor applications:(a) dom(integer) is the set of all integers; domis analogously de�ned for string, float,boolean;(b) dom([A1 : t1; : : : ; An : tn]) :=f[A1 : v1; : : : ; An : vn] j (8 i; 1 � i � n) vi 2dom(ti)g;(c) dom(ftg) :=ffv1; : : : ; vng j (8 i; 1 � i � n) vi 2 dom(t)g;(d) dom(< t >) :=f< v1; : : : ; vn > j (8 i; 1 � i � n) vi 2dom(t)g.In a structurally object-oriented context, the �rstthing that needs to be introduced beyond complextypes and domains as de�ned above is the possibil-ity to share pieces of information between distincttypes, or to aggregate objects from simpler ones. Atthe level of type declarations, an easy way to modelthis is the introduction of another reservoir of names,this time called class names, which are additionallyallowed as types. In other words, object types arecomplex types as above with the following new con-dition:

(v) C � T , where C is a �nite set of class names.This states nothing but the fact that class namesare allowed as types (below we will complement thiswith the requirement that classes themselves havetypes).The intuition behind this new condition is that ob-jects from the underlying application all are distin-guished by their identity, get collected into classes,and can reference other objects (share subobjects).To provide for this at the level of domains, let us�rst assume the availability of a �nite set OID ofobject identi�ers which includes the special identi-�er nil (to capture \empty" references); next, ob-ject domains, i.e., sets of possible values for objectsare complex values as above with the following ad-ditional condition:(e) dom(c) = OID for each c 2 C.Thus, classes are assumed to be instantiated by ob-jects (class-name types take object identi�ers as val-ues, in the same way as, say, the integer type takesinteger numbers as values). Clearly, this alone is notenough, since class instances commonlyhave distinctsets of object identi�ers associated with them. Wewill show below how that (and, for example, the factthat sometimes inclusion dependencies need to holdbetween sets of class instances) is captured at theinstance level.The object-oriented paradigm has another dimen-sion for organizing information besides aggregation,which is inheritance, or the possibility to de�ne aclass as a specialization of one or more other classes.To this end, a subtyping relation is needed throughwhich it can be expressed that a subclass inheritsthe structure of a superclass. Such a relation can bede�ned in various ways; for example, it can be de-�ned semantically by requiring that the sets of valuesor instances of types, where one is a subtype of theother, are in a subset relationship. We prefer a sim-pler, syntactical approach, which has, for example,the advantage that checking subtype relationshipscan be automated:Let T be a set of object types. A subtyping rela-tion � � T � T is de�ned as follows:(i) t � t for each t 2 T ,(ii) [A1 : t1; : : : ; An : tn] � [A01 : t01; : : : ; A0m : t0m]if(a) (8 A0j ; 1 � j � m)(9 Ai; 1 � i � n) Ai =A0j ^ ti � t0j,(b) n � m,(iii) ftg � ft0g if t � t0,(iv) < t > � < t0 > if t � t0.With these preparations, we arrive at the follow-ing de�nition for objectbase schemas that can de-scribe structure of arbitrary complexity: A struc-tural schema is a named quadruple of the formSstruc = (C; T; type; isa) where(i) C is a (�nite) set of class names,(ii) T is a (�nite) set of types which uses as classnames only elements from C,

(iii) type : C ! T is a total function associating atype with each class name,(iv) isa � C � C is a partial order on C which isconsistent w.r.t. subtyping, i.e.,c isa c0) type(c) � type(c0) for all c; c0 2 C.This de�nition resembles what can be found ina variety of models proposed in the literature, in-cluding [17; 19; 20; 25] and others. Notice that itstill leaves several aspects open, like single vs. mul-tiple inheritance; if the latter is desired, a conditionneeds to be added stating how to conicts shouldbe resolved. Also, implementations typically adda number of additional features, like attributes asfunctions [22; 29], a distinction of class attributesfrom instance attributes (the latter are shared byall objects associated with a class, while the for-mer represent, for example, aggregate informationlike an average salary only relevant to the class as awhole) [7], a unique root of the class hierarchy fromwhich every class inherits [20], a distinction betweenprivate and public attributes [12], a di�erent set ofconstructors (like one with an additional array con-structor to describe matrices), an explicit inclusionof distinct types of relationships between classes andtheir objects (in particular various forms of composi-tion, see [18]), integrity constraints which representsemantic information on the set of valid databasesinstances (a proposal in that direction appears in [3;4], where object constraints, class constraints, anddatabase constraints are distinguished). For anotherexample, the ODMG-93 proposal for a standardizedmodel [10] contains explicit keys, (binary) relation-ships, and inverse attributes. None of these featuresappear in our model, the reason being that these arenot speci�c to object-orientation.The second important aspect of an object-orienteddatabase is that it is intended to capture behavior,besides structure. To this end, the relevant intu-ition is that classes have attached to them a set ofmessages, which are speci�ed in the schema via sig-natures, and which are implemented as methods. Inaddition, behavior can be inherited by subclasses,and message names can be overloaded, i.e., re-usedin various contexts.So a behavioral schema is a named �ve-tuple ofthe form Sbehav = (C;M;P; messg; impl) where(i) C is a (�nite) set of class names as above (againneeded here since references to it have to bemade),(ii) M is a (�nite) set ofmessage names, where eachm 2 M has associated with it a nonempty setsign(m) = fs1; : : : slg, l � 1, of signatures; eachsh, 1 � h � l, has the form sh : c�t1�: : :�tp !t for c 2 C, t1; : : : ; tp; t 2 T(each signature has the receiver of the messageas its �rst component),(iii) P is a (�nite) set of methods or programs,(iv) messg : C ! 2M is a mapping s.t. for eachc 2 C and for each m 2 messg(c) there existsa signature s 2 sign(m) satisfying s[1] = c,(v) impl: f(m; c) j m 2 messg (c)g ! P is apartial function.

In combining structural and behavioral schemas,we �nally obtain an objectbase schema of the formS = (C; (T; type; isa;); (M;P; isa; messg; impl)).S is called consistent if the following conditions aresatis�ed:(i) c isa c0 implies messg(c0) � messg(c) for allc; c0 2 C,(ii) if c isa c0 and s; s0 2 sign(m) for m 2 M suchthat s : c�t1�: : :�tn ! t, s0 : c0�t01�: : :�t0n !t0, then ti � t0i for each i, 1 � i � n, and t � t0,(iii) for each m 2 messg(c) there exists a c0 2 C)s.t. c isa c0 and impl(m; c0) is de�ned.Condition (i) just says that subclasses inherit the be-havior of their superclasses. Condition (ii) says thatmessage-name overloading is done with compatiblesignatures, and is called the covariance condition in[20; 9]. The covariance condition is a signi�cant dif-ference fromwhat is used at a corresponding point inprogramming languages, and which is known as thecontravariance condition; for a detailed explanation,see [9]. Finally, Condition (iii) states that for eachmessage associated with a class, its implementationmust at least be available in some superclass.It is interesting to note that various natural con-ditions can be imposed on the programs that areused as implementations of messages. We now sketchone of them, which is based on the view that pro-grams are functions on domains [20]. More formally,if m 2 M and s : c � t1 � : : :� tn ! t 2 sign(m),then impl(m; c), if de�ned, is a program p 2 P ofthe formp : dom(c) � dom(t1) � : : : � dom(tn) ! dom(t)The condition in question informally states that ifmessage overloading appears in isa-related classes(so that the corresponding signatures satisfy the co-variance condition), then the associated programscoincide (as functions) on the subclass. More for-mally, we have: If jsign(m)j > 1 for some m 2 M ,then the following holds: If s; s0 2 sign(m) such thats : c � t1 � : : :� tn ! t, s0 : c0 � t01 � : : :� t0n ! t0,c isa c0, ti � t0i for each i, 1 � i � n, t � t0, andimpl(m; c) = p, impl(m; c0) = p0, then p and p0 agreeon dom(c) � dom(t1) � : : : � dom(tn).A variety of formal investigations for behavioralschemata in the sense de�ned above can alreadybe found in the literature, which investigate ques-tions including termination of method executions,limited depth of method-call nestings (an issue re-lated to precompilation of method executions), well-de�nedness of method calls, i.e., consistency as wellas reachability considerations (issues related to typeinference and schema evolution), expressiveness ofmethod implementation languages (relative to somenotion of completeness), complexity of method exe-cutions, or potential parallelism of method evalua-tions. To investigate such issues, our general notionof schema is made precise in various ways. For ex-ample, [15] �xes a simple imperative language forimplementing methods as retrieval programs, con-trasts them with update programs and shows un-decidability results for the latter. [1; 2] as well as

[11] introduce distinct notions of a method schemato study behavioral issues of OODBS; for example,[2] investigates implications of the covariance condi-tion using the formalism of program schemas, while[11] looks at tractability guarantees correspondingto those known for relational query languages. Also,it is pretty straightforward to de�ne an object alge-bra for a model like the one sketched in the previoussection; see, for example, the papers in [13]. Thatcarries over to issues like query optimization, imple-mentation of operations, and query processing. Asurvey of other recent investigations that have simi-lar bases or origins can be found in [28].We emphasize again that the model just sketchedcan be seen as description of the core of vastly anyobject-oriented model; however, this is valid only rel-ative to the fact that many specialities, which havebeen proposed in the literature, or which are beingbuilt into commercial systems, are neglected here.We conclude this section with a brief indication ofhow object databases, i.e., sets of class instances orextensions, can be de�ned over a given schema: Fora given objectbase schema S, an objectbase over S isa triple d(S) = (O, inst, val) s.t.(i) O � OID is a �nite set of object identi�ers,(ii) inst: C ! 2O is a total function satisfying thefollowing conditions:(a) if c; c0 2 C are not (direct or indirect) sub-classes of each other,then inst(c) \ inst(c0) = ;,(b) if c isa c0, then inst(c) � inst(c0),(iii) val: O ! V is a function s.t.(8 c 2 C) (8 o 2 inst(c)) val(o) 2 dom(type(c)).Notice that this de�nition closes the problem leftopen earlier, namely that class domains originallywere simply the set OID.3 Open IssuesWe next survey several modeling issues in object-oriented databases which have not yet receivedenough research attention:1. Entities can have roles that vary over time. Forexample, some person object may at one pointbe a student, at another an employee, and at athird a club member; while the person's identitynever changes, its type changes several times.2. Entities can have multiple types at the sametime. For example, a person may be a stu-dent, an employee, and a club member simul-taneously. So far the only way to represent thisin an object-oriented database is by multipleinheritance, but this might not be appropriatesince it can result in a combinatorial explosionof sparsely populated classes [21].3. Objects can be in various stages of development.For example, in a design environment it is usu-ally necessary to maintain incomplete designs,i.e., objects whose types get completed in thecourse of time.4. Classes may contain \too few" instances. Forexample, consider a database in which all

persons living in a large country are repre-sented. In this context, so many combi-nations of meaningful properties have to bedistinguished that it might become necessaryto introduce arti�cial name constructions forclasses, like unmarried-nonstudent-autoOwner-renter-taxpayer [26], and each such class hasonly very few instances. More generally, thename space available for classes might not besu�cient.5. Objects and their classes might come into ex-istence in reverse order. A database user ina design environment like CAD creates objectsin the �rst place, not type de�nitions or evenclasses. The usage of databases thus di�ers con-siderably from traditional applications whereschema design has to be completed prior to in-stance creation.We mention that one issue or the other from thislist is sometimes reected already in existing mod-els, but never as a basic design target. Alternativeapproaches, which takes these issues into considera-tion right from the start, appear, for example, in [21;24; 16]. A possible general concept for the solutionof these problems seems the exploitation of proto-type languages, which suggest to model applicationswithout a classi�cation that partitions the world intoentity sets. A prototype represents default behaviorfor some concept, and new objects can re-use partof the knowledge stored in a prototype by sayinghow they di�er from it. Upon receiving a messagean object does not understand, it can forward (del-egate) it to its prototype to invoke more general be-havior. In the area of object-oriented programminglanguages, many people believe that this approachhas advantages over the class-based one with inher-itance, with respect to the representation of defaultknowledge and incrementally and dynamicallymodi-fying concepts. The investigation of classlessmodelsin the context of object-oriented databases has onlyrecently been proposed in [26], and a concrete modelis reported in [14].4 ConclusionsIn this short paper we have tried to give a roughpersonal account of recent work on formal modelsfor object-oriented databases. Although there is nota single uniform such model, the foundations onwhich such models have to be built seem understood,and even standardization e�orts have recently beenlaunched [10]. On the other hand, a number of in-teresting research issues still deserve further investi-gation. In particular, formal models as they are cur-rently available seem hardly suited for the nonstan-dard applications which initiated the considerationof object-orientation in the context of databases. Areason seems to be that many researchers have toomuch of a relational background, and try to exploitthat as long as possible; this is more than con�rmedby the ODMG-93 proposal. As was done a numberof years ago, when database people discovered whatprogramming-language or knowledge-representationpeople had been studying for years already, it seems

again necessary to take recent developments in theseareas into account, and to adopt them for solving theproblems database applications have.References[1] S. Abiteboul, P.C. Kanellakis: The Two Facetsof Object-Oriented Data Models; IEEE DataEngineering Bulletin 14 (2) 1991, 3{7[2] S. Abiteboul, P.C. Kanellakis, E. Waller:Method Schemas; Proc. 9th ACM Symposiumon Principles of Database Systems 1990, 16{27[3] P.M.G. Apers et al.: Inheritance in an Object-Oriented Data Model; Memoranda Informatica90-77, University of Twente 1990[4] H. Balsters et al.: Sets and Constraints in anObject-Oriented Data Model; Memoranda In-formatica 90-75, University of Twente 1990[5] F. Bancilhon, C. Delobel, P. Kanellakis (eds.):Building an Object-Oriented Database System| The Story of O2. Morgan-Kaufmann 1992[6] C. Beeri: A Formal Approach to Object-Oriented Databases; Data & Knowledge Engi-neering 5, 1990, 353{382[7] E. Bertino et al.: An Object-Oriented DataModel for Distributed O�ce Applications;Proc. ACM Conference on O�ce InformationSystems 1990, 216{226[8] E. Bertino, L. Martino: Object-oriented Data-base Management Systems: Concepts and Is-sues; IEEE Computer 24 (4) 1991, 33{47[9] E. Bertino, L. Martino: Object-Oriented Data-base Systems; Addison-Wesley 1993[10] R.G.G. Cattell (ed.): The Object DatabaseStandard: ODMG-93. Morgan-Kaufmann 1994[11] K. Denningho�, V. Vianu: The Power of Meth-ods with Parallel Semantics; UCSD TechnicalReport No. CS91{184, University of California,San Diego, February 1991; extended abstract inProc. 17th Int. Conference on Very Large DataBases 1991, 221{232[12] O. Deux et al.: The Story of O2; IEEE Trans-actions on Knowledge and Data Engineering 2,1990, 91{108[13] J.C. Freytag, D. Maier, G. Vossen: QueryProcessing for Advanced Database Systems;Morgan-Kaufmann 1994[14] M. Gro�-Hardt, G. Vossen: Towards Class-less Object Models for Engineering Design Ap-plications; Proc. 4th International Conferenceon Database and Expert Systems Applications(DEXA) 1993, Prag, Springer LNCS 720, 36{47[15] R. Hull, K. Tanaka, M. Yoshikawa: Behav-ior Analysis of Object-Oriented Databases:Method Structure, Execution Trees, and Reach-ability; Proc. 3rd FODO Conference, SpringerLNCS 367, 1989, 372{388[16] T. Imielinski et al.: Incomplete Objects | AData Model for Design and Planning Applica-tions; Proc. ACM SIGMOD International Con-ference on Management of Data 1991, 288{297

[17] A. Kemper et al.: GOM: A Strongly Typed Per-sistent Object Model with Polymorphism; Proc.German GI Conference on \Datenbanken f�urB�uro, Technik und Wissenschaft" (BTW) 1991,Springer Informatik-Fachbericht 270, 198{217[18] W. Kim: Introduction to Object-Oriented Data-bases; MIT Press 1990[19] C. Lecluse et al.: O2, an Object-OrientedData Model; Proc. ACM SIGMOD Interna-tional Conference on Management of Data 1988,424{433[20] C. Lecluse, P. Richard: Foundations of the O2Database System; IEEE Data Engineering Bul-letin 14 (2) 1991, 28{32[21] J. Richardson, P. Schwarz: Aspects: Extend-ing Objects to Support Multiple, IndependentRoles; Proc. ACM SIGMOD International Con-ference on Management of Data 1991, 298{307[22] M.H. Scholl, H.J. Schek: A Relational ObjectModel; Proc. 3rd International Conference onDatabase Theory 1990, Springer LNCS 470, 89{105[23] H.J. Schek, M.H. Scholl: Evolution of DataModels; Proc. Database Systems of the 90s,November 1990, Springer LNCS 466, 135{153[24] E. Sciore: Object Specialization; ACMTransac-tions on Information Systems 7, 1989, 103{122[25] D.D. Straube, M.T. �Ozsu: Queries and QueryProcessing in Object-Oriented Database Sys-tems; ACM Transactions on Information Sys-tems 8, 1990, 387{430[26] J.D. Ullman: A Comparison of Deductive andObject-Oriented Database Systems; Proc. 2ndDOOD Conference, Springer LNCS 566, 1991,263{277[27] G. Vossen: Datenmodelle, Datenbanksprachenund Datenbankmanagement-Systeme; 2. Au-age, Addison-Wesley 1994[28] G. Vossen: Database Theory: An Introduction;Technical Report, University of M�unster, June1994[29] K. Wilkinson et al.: The Iris Architecture andImplementation; IEEE Transactions on Knowl-edge and Data Engineering 2, 1990, 63{75

