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1 Introduction

Object-oriented data models represent a current end-
point in the evolution of data models [23]. Their for-
malization has been attempted in a variety of papers,
including [5; 6; 19]. This short paper indicates what
we consider the common intersection of these (and
other) approaches; we list the relevant features and
components, and give an idea of how to formalize
the notion of an object-oriented database schema.

An object-oriented data model has to capture a
variety of requirements [8; 27], which differ consid-
erably from those that traditional data models have
to meet. However, many system developers seem
not to care about formal models as a solid foun-
dation of their system, but simply design a “data
definition language” in which the relevant features
can be coded. In our opinion, a formal model for
object-oriented databases basically has to capture
the same intuitions as models for other types of da-
tabases, which are the following:

1. It has to provide an adequate linguistic abstrac-
tion for certain database applications.

2. It should provide a precise semantics for a data
definition language.

3. It has to be composed of both a specification
and an operational part.

4. Tt represents a computational paradigm as a ba-
sis for formal investigations.

In this short note, we do not present a comprehensive
survey of formal models for object-oriented databa-
ses which have been proposed in the literature, but
instead try to point out the fundamentals of how
such models are obtained. The result can be con-
sidered as a framework in which the essentials of
the object-oriented paradigm can be expressed con-
cisely and further studied. Indeed, we give hints to
various such investigations that have recently been
undertaken.

2 Core Aspects of Formal OO
Models

In this section, we describe what we perceive as the
core aspects of various proposals for object mod-
els, and we do so by distinguishing structural from
behavioral aspects. Thus, we generally consider
schemas, the central notion of any conceptual data-
base description, to be pairs of the form S = (Sstryc,
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Figure 1: Core Aspects of an Object Model.

Spehav ); in what follows, we first consider each com-
ponent in isolation and then indicate how the two in-
teract. We mention, however, that while it is gener-
ally agreed that an object-oriented data model has to
capture both structure and behavior, the former can
be obtained by using the experience from the rela-
tional, nested relational and complex-object models,
but the latter represents a completely new challenge
to database researchers. Consequently, a consensus
seems achieved for structure, but not for behavior.
The core aspects of formal models for object-
oriented databases are summarized in Figure 1, in
which labels of arrows represent function names. In
brief, the only structuring mechanism is the class
which describes both structure and behavior for its
instances, the objects. Structure is captured as a
type for a class (in our notation, a function “type”
assoclates a type with each class; the other function
names shown above are to be interpreted similarly,
see below). A type is nothing but a description of
a domain, 1.e., a set of values, and may or may not
be named (in the former case, type names distinct
from class names and attribute names must be pro-
vided). Values comprise the state of an object and
can be as complex as the type system allows (i.e.,
depending on the availability of base types and con-
structors like tuple, set, bag, list, etc.). Behavior is
manifested in a set of messages associated with each



class (its external interface), which are internally im-
plemented using methods that are executable on ob-
jects. Hence, objects have a state and a behavior; in
addition, they are uniquely identified. Messages are
specified by providing a signature, and by associating
several signatures with the same message name, the
latter gets overloaded. Not shown in Figure 1 is the
possibility to organize classes in an inheritance hier-
archy; also not shown is the fact that class attributes
are allowed to reference other classes, thereby form-
ing an aggregation lattice.

We next look at structural as well as behavioral
aspects in more detail. Regarding the modeling of
structure, more precisely highly-structured informa-
tion, complex data types are all that is basically
needed, since they serve as descriptions for domains
of complex values. One way to introduce such types,
i.e., to define a type system T, is the following:

(i) integer, string, float, boolean C T}

(ii) if A; are distinct attributes and t; € T, 1 < ¢ <
n, then

[A1 8 ST A, tn]ET
(iii) ift € T, then {t} €T (“set type”);
(iv) ift € T, then <t > T  (“list type”).

In other words, a type system 1s made up of base
types, from which complex types may be derived us-
ing (eventually attributes and) constructors. Note
that this requires nothing additional but the avail-
ability of attribute names. Clearly, other base
types as well as additional or alternative construc-
tors could straightforwardly be included. Notice also
that here types are not named; for practical reasons,
the use of type names may be desirable (e.g., in order
to be able to reuse type definitions in various places
throughout a schema), and if it is, it can easily be
added to the above in the way indicated earlier.

The notion of a domain as a “reservoir” of possible
values can be defined as follows; it just has to obey
constructor applications:

(“tuple type”);

(a) dom(integer) is the set of all integers; dom
is analogously defined for string, float,
boolean;

(b) dom([Ay : ¢y, ...
{[A1 @ v1,.. ., An vy
dom(;)};

(¢) dom({1}) =

Hor, oo, v | (Vi1 <i < n) v € dom(t)};
(d) dom(<t>):=

{< V1, ..., Up >

dom(t)}.
In a structurally object-oriented context, the first
thing that needs to be introduced beyond complex
types and domains as defined above is the possibil-
ity to share pieces of information between distinct
types, or to aggregate objects from simpler ones. At
the level of type declarations, an easy way to model
this 1s the introduction of another reservoir of names,
this time called class names, which are additionally
allowed as types. In other words, object types are
complex types as above with the following new con-
dition:

| (Vi1 <i<n)u €

(v) C C T, where C'is a finite set of class names.

This states nothing but the fact that class names
are allowed as types (below we will complement this
with the requirement that classes themselves have
types).

The intuition behind this new condition is that ob-
jects from the underlying application all are distin-
guished by their identity, get collected into classes,
and can reference other objects (share subobjects).
To provide for this at the level of domains, let us
first assume the availability of a finite set OID of
object identifiers which includes the special identi-
fier nil (to capture “empty” references); next, ob-
gect domains, i.e., sets of possible values for objects
are complex values as above with the following ad-
ditional condition:

(e) dom(c) = OID for each ¢ € C.

Thus, classes are assumed to be instantiated by ob-
jects (class-name types take object identifiers as val-
ues, in the same way as, say, the integer type takes
integer numbers as values). Clearly, this alone is not
enough, since class instances commonly have distinct
sets of object identifiers associated with them. We
will show below how that (and, for example, the fact
that sometimes inclusion dependencies need to hold
between sets of class instances) is captured at the
instance level.

The object-oriented paradigm has another dimen-
sion for organizing information besides aggregation,
which is inheritance, or the possibility to define a
class as a specialization of one or more other classes.
To this end, a subtyping relation is needed through
which it can be expressed that a subclass inherits
the structure of a superclass. Such a relation can be
defined in various ways; for example, it can be de-
fined semantically by requiring that the sets of values
or instances of types, where one is a subtype of the
other, are in a subset relationship. We prefer a sim-
pler, syntactical approach, which has, for example,
the advantage that checking subtype relationships
can be automated:

Let T be a set of object types. A subtyping rela-
tion < C T x T is defined as follows:

(i) t <tforeachteT,
(i) [Ay ity ..o, Ap i tn] <ALt -

if
(a) (V/ A1 < j/§ m)(F A, 1 <i<n) A =
(b) n > m,

(i) {t} < {t}ift <,

(iv) <t>< <t >ift <t

AL ]

With these preparations, we arrive at the follow-
ing definition for objectbase schemas that can de-
scribe structure of arbitrary complexity: A struc-
tural schema is a named quadruple of the form
Sstrue = (C, T, type, isa) where

(i) C is a (finite) set of class names,

(i1) T is a (finite) set of types which uses as class
names only elements from C,



(iii) type : €' — T is a total function associating a
type with each class name,

(iv) isa € C x C'is a partial order on C' which is
consistent w.r.t. subtyping, i.e.,
cisa ¢ = type(e) < type(c’) for all ¢, ¢’ € C.

This definition resembles what can be found in
a variety of models proposed in the literature, in-
cluding [17; 19; 20; 25] and others. Notice that it
still leaves several aspects open, like single vs. mul-
tiple inheritance; if the latter is desired, a condition
needs to be added stating how to conflicts should
be resolved. Also, implementations typically add
a number of additional features, like attributes as
functions [22; 29], a distinction of class attributes
from instance attributes (the latter are shared by
all objects associated with a class, while the for-
mer represent, for example, aggregate information
like an average salary only relevant to the class as a
whole) [7], a unique root of the class hierarchy from
which every class inherits [20], a distinction between
private and public attributes [12], a different set of
constructors (like one with an additional array con-
structor to describe matrices), an explicit inclusion
of distinct types of relationships between classes and
their objects (in particular various forms of composi-
tion, see [18]), integrity constraints which represent
semantic information on the set of valid databases
instances (a proposal in that direction appears in [3;
4], where object constraints, class constraints, and
database constraints are distinguished). For another
example, the ODMG-93 proposal for a standardized
model [10] contains explicit keys, (binary) relation-
ships, and inverse attributes. None of these features
appear in our model, the reason being that these are
not specific to object-orientation.

The second important aspect of an object-oriented
database 1s that 1t is intended to capture behavior,
besides structure. To this end, the relevant intu-
ition is that classes have attached to them a set of
messages, which are specified in the schema via sig-
natures, and which are implemented as methods. In
addition, behavior can be inherited by subclasses,
and message names can be overloaded, i.e., re-used
in various contexts.

So a behavioral schema is a named five-tuple of
the form Spenay = (C, M, P, messg, impl) where

(i) C'is a (finite) set of class names as above (again
needed here since references to it have to be
made),

(i1) M is a (finite) set of message names, where each
m € M has associated with it a nonempty set
sign(m) = {s1,...s1},{ > 1, of signatures; each
sp, 1 < h <! hastheform sy :extyx.. . xt, —
tforceC, ty,... tp,t €T
(each signature has the receiver of the message
as its first component),

(iii) P is a (finite) set of methods or programs,

(iv) messg : C — 2M is a mapping s.t. for each
¢ € C and for each m € messg(c) there exists
a signature s € sign(m) satisfying s[1] = ¢,

(v) impl: {(m, ¢) | m € messg (¢)} — Pisa
partial function.

In combining structural and behavioral schemas,
we finally obtain an objectbase schema of the form

S = (C, (T, type, isa,), (M, P, isa, messg, impl)).

S 1s called consistent if the following conditions are
satisfied:

(i) ¢ isa ¢ implies messg(¢’) C messg(e) for all
e, € C,

(i) if ¢ isa ¢ and s,s" € sign(m) for m € M such
that s : exty X...xt, — 1,8 ' xt)x...xt], —
t', then t; <t foreach i, 1 <i<n,and t <,

(iii) for each m € messg(c) there exists a ¢ € ()
s.t. cisa ¢’ and impl(m, ¢') is defined.

Condition (i) just says that subclasses inherit the be-
havior of their superclasses. Condition (ii) says that
message-name overloading 1s done with compatible
signatures; and is called the covariance condition in
[20; 9]. The covariance condition is a significant dif-
ference from what is used at a corresponding point in
programming languages, and which is known as the
contravariance condition; for a detailed explanation,
see [9]. Finally, Condition (iii) states that for each
message associated with a class, its implementation
must at least be available in some superclass.

It is interesting to note that various natural con-
ditions can be imposed on the programs that are
used as implementations of messages. We now sketch
one of them, which is based on the view that pro-
grams are functions on domains [20]. More formally,
ifme Mands:exty x...xt, =1 €& sign(m),
then impl(m,¢), if defined, is a program p € P of
the form

p:dom(c) x dom(ty) x ... x dom(t,) — dom(?)

The condition in question informally states that if
message overloading appears in isa-related classes
(so that the corresponding signatures satisfy the co-
variance condition), then the associated programs
coincide (as functions) on the subclass. More for-
mally, we have: If |sign(m)| > 1 for some m € M,
then the following holds: If s, s’ € sign(m) such that
Stexty X ooxty =t s d xtxLLoxt, ot
cisa ¢, t; <t foreach i, 1 <i<n,t <t and
impl(m, ¢) = p, impl(m, ¢’) = p/, then p and p’ agree
on dom(e) x dom(?;) x ... x dom(ty,).

A variety of formal investigations for behavioral
schemata in the sense defined above can already
be found in the literature, which investigate ques-
tions including termination of method executions,
limited depth of method-call nestings (an issue re-
lated to precompilation of method executions), well-
definedness of method calls, i.e., consistency as well
as reachability considerations (issues related to type
inference and schema evolution), expressiveness of
method implementation languages (relative to some
notion of completeness), complexity of method exe-
cutions, or potential parallelism of method evalua-
tions. To investigate such issues, our general notion
of schema is made precise in various ways. For ex-
ample, [15] fixes a simple imperative language for
implementing methods as retrieval programs, con-
trasts them with update programs and shows un-
decidability results for the latter. [1; 2] as well as



[11] introduce distinct notions of a method schema
to study behavioral issues of OODBS; for example,
[2] investigates implications of the covariance condi-
tion using the formalism of program schemas, while
[11] looks at tractability guarantees corresponding
to those known for relational query languages. Also,
it is pretty straightforward to define an object alge-
bra for a model like the one sketched in the previous
section; see, for example, the papers in [13]. That
carries over to issues like query optimization, imple-
mentation of operations, and query processing. A
survey of other recent investigations that have simi-
lar bases or origins can be found in [28].

We emphasize again that the model just sketched
can be seen as description of the core of vastly any
object-oriented model; however, this is valid only rel-
ative to the fact that many specialities, which have
been proposed in the literature, or which are being
built into commercial systems, are neglected here.

We conclude this section with a brief indication of
how object databases, 1.e., sets of class instances or
extensions, can be defined over a given schema: For
a given objectbase schema S| an objectbase over S is
a triple d(S) = (O, inst, val) s.t.

(i) O C OID is a finite set of object identifiers,

(ii) inst: C' — 29 is a total function satisfying the
following conditions:

(a) if ¢, ¢’ € C are not (direct or indirect) sub-
classes of each other,
then inst(c) N inst(c’) = O,
(b) if ¢ isa ¢/, then inst(c) C inst(c’),
(iii) val: O — V is a function s.t.
(Ve € ) (Yo € inst(e)) val(o) € dom(type(c)).
Notice that this definition closes the problem left

open earlier, namely that class domains originally
were simply the set OID.

3 Open Issues

We next survey several modeling issues in object-
oriented databases which have not yet received
enough research attention:

1. Entities can have roles that vary over time. For
example, some person object may at one point
be a student, at another an employee, and at a
third a club member; while the person’s identity
never changes, its type changes several times.

2. Entities can have multiple types at the same
time. For example, a person may be a stu-
dent, an employee, and a club member simul-
taneously. So far the only way to represent this
in an object-oriented database is by multiple
inheritance, but this might not be appropriate
since 1t can result in a combinatorial explosion
of sparsely populated classes [21].

3. Objects can be in various stages of development.
For example, in a design environment it is usu-
ally necessary to maintain incomplete designs,
i.e., objects whose types get completed in the
course of time.

4. Classes may contain “too few” wnstances. For
example, consider a database in which all

persons living in a large country are repre-
sented.  In this context, so many combi-
nations of meaningful properties have to be
distinguished that it might become necessary
to introduce artificial name constructions for
classes, like unmarried-nonstudent-autoQuner-
renter-tazpayer [26], and each such class has
only very few instances. More generally, the
name space available for classes might not be
sufficient.

5. Objects and theiwr classes might come into ez-
istence in reverse order. A database user in
a design environment like CAD creates objects
in the first place, not type definitions or even
classes. The usage of databases thus differs con-
siderably from traditional applications where
schema design has to be completed prior to in-
stance creation.

We mention that one issue or the other from this
list 1s sometimes reflected already in existing mod-
els, but never as a basic design target. Alternative
approaches, which takes these issues into considera-
tion right from the start, appear, for example, in [21;
24; 16]. A possible general concept for the solution
of these problems seems the exploitation of proto-
type languages, which suggest to model applications
without a classification that partitions the world into
entity sets. A prototype represents default behavior
for some concept, and new objects can re-use part
of the knowledge stored in a prototype by saying
how they differ from it. Upon receiving a message
an object does not understand, it can forward (del-
egate) it to its prototype to invoke more general be-
havior. In the area of object-oriented programming
languages, many people believe that this approach
has advantages over the class-based one with inher-
itance, with respect to the representation of default
knowledge and incrementally and dynamically modi-
fying concepts. The investigation of classless models
in the context of object-oriented databases has only
recently been proposed in [26], and a concrete model
is reported in [14].

4 Conclusions

In this short paper we have tried to give a rough
personal account of recent work on formal models
for object-oriented databases. Although there is not
a single uniform such model, the foundations on
which such models have to be built seem understood,
and even standardization efforts have recently been
launched [10]. On the other hand, a number of in-
teresting research issues still deserve further investi-
gation. In particular, formal models as they are cur-
rently available seem hardly suited for the nonstan-
dard applications which initiated the consideration
of object-orientation in the context of databases. A
reason seems to be that many researchers have too
much of a relational background, and try to exploit
that as long as possible; this is more than confirmed
by the ODMG-93 proposal. As was done a number
of years ago, when database people discovered what
programming-language or knowledge-representation
people had been studying for years already, it seems



again necessary to take recent developments in these
areas into account, and to adopt them for solving the
problems database applications have.
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