
Editing Learning Object Metadata:
Schema Driven Input of RDF Metadata

with the OLR3-Editor

Tobias Kunze, Jan Brase, and Wolfgang Nejdl1

1 Institut für Informationssysteme – Wissensbasierte Systeme, Appelstrasse 4, 30167 Hannover, Germany and Learning Lab Lower Saxony (L3S),

Deutscher Pavillon, Expo Plaza 1, 30539 Hannover, Germany {kunze, brase, nejdl}@learninglab.de}

Abstract. The Institute for Knowledge Based Systems has
developed several learning repositories in the last five years based
on explicit use of metadata and (in the last two years) RDF. Using
standard and self-defined metadata schemas to represent the
structure and meta-information of learning objects, we decided to
make our latest generation of repositories (OLR3) flexible for all
kinds of schemes. To provide maximum flexibility we developed a
completely schema-driven and browser-based editor in which the
author can choose the type of metadata using any kind of RDF-
schema available on the WWW to annotate learning resources in
the OLR3 repository. In this paper we present the design, interface
and implementation of this editor together with the necessary
background information about metadata-standards and our learning
repository, we build the editor upon.

1 INTRODUCTION

In our group we have developed several learning repositories
during the last five years. In the latest generation, the Open
Leaning Repository (OLR), a course was represented completely
by RDF-metadata [1]. Using standard and self-defined metadata
schemas to represent the structure and meta-information of
different learning objects, we decided to make our latest version of
the OLR (OLR3) flexible for all kinds of schemes and integrated a
browser-based and schema-driven editor where the author can
choose metadata according to any RDF-schema available on the
WWW to annotate learning resources.
 Chapter 2 includes the necessary background information about
metadata-standards and the OLR3, followed by a presentation of
this editor in Chapter 3, and a comparison with other schema
editors in Chapter 4.

2 BACKGROUND

2.1 Metadata standards

One of the most common metadata schemes in the web today is
“Dublin Core” (DC) by the DCMI.

 Each Dublin Core element is defined using a set of 15 attributes
from the ISO/IEC 11179 standard for the description of data
elements, including for example: Title, Identifier, Language,
Comment.
 The “Learning Objects Metadata Standard” (LOM) [2] by the
Learnig Technology Standards Committee (LTSC) of the IEEE
was established as an extension of Dublin Core. Each learning
object can now be described using a set of more than 70 attributes
divided into nine categories responsible for general, technical, or
educational aspects of the resource.
 While the LOM standard defines the structure of a metadata
instance, it does not define how a learning technology system will
represent or use a metadata instance for a learning object. A great
amount of work in that area has been done by the IMS Global
Learning Consortium, who have developed an XML binding and
an RDF binding of LOM, the latter with cooperation from our
institute under guidance of Michael Nilsson from the SweLL
(Swedish Learning Lab) [3].

2.2 Beyond LOM

Regardless of the very useful work that has been done in
developing the LOM standard, the standard still fails to specify
important educational aspects of learning resources. As a lot of
work in this area is done by our colleagues at the Learning Lab
Lower Saxony (L3S) [4], it is important for us to be open for new
standards as well to take advantage of their schema developments.
Similar remarks are valid for the copyright and law-related
attributes in the current LOM standard. Thus, obviously, tools for
working with learning objects and learning object metadata
definitely need to be flexible and able to use differerent kinds of
schemas, some not yet specified, and in the ideal case create your
own personal, interoperable schema out of the best pieces of
existing schemas.

2.3 OLR3

Our Open Learning Repository, Version 3, the OLR3 system, is
implemented in Java and works as a JavaServlet, running on an
Enhydra Application Server (open source software)2. It is
connected to an Oracle Database via JDBC, which is used to store
the metadata entered by course authors and students. RDF
schemes, needed for either the annotation of metadata or the import
of externally prepared metadata, can come from anywhere in the
internet.
 The database does only hold the metadata annotated by the user
or imported from RDF files, that are prepared to act as a data
source for the courses metadata. The resulting RDF statements are
defined on basis of arbitrary RDF schemes, which are used as a
guideline to the user whenever he wants to add new metadata.
 The central part of the system is a storage called
“StatementPool”. It holds all metadata that is known to the system
at runtime. When an author starts working on a course, the pool is
filled with the already existing data about that course from the
database, and all statements from the used RDF schemes.
 Any referenced RDF schema will be parsed using the SiRPAC
RDF parser3, whereas imported RDF files are parsed by a VRP
RDF parser4, which provides semantical checks against given RDF
schema rules.

Figure 1. The architecture of the OLR3 system

3 OLR3 SCHEMA EDITOR

Mainly two considerations led to the development of the OLR3
metadata editor: Firstly, the need for an editor which allows to edit
content online from anywhere in the world without additional
client software, plug-ins or configuration. And secondly, the
demand for an extensible and flexible authoring interface, which
should not be limited to a certain metadata standard or schema, but
be open for arbitrary future developments, ideas and resulting
schemes.
 The OLR3 editor can handle any given RDF scheme and - once
it is registered to the editor - use it for metadata input. Thus, the
set of available RDF properties will only be limited by the number
of available schemes that define the properties. An author can
choose any desired property from existing standards (e.g. LOM,

DC) and compose his own set of metadata attributes to annotate
learning resources.

2 Enhydra Open Source Java/XML Application Server,

http://enhydra.enhydra.org
3 SiRPAC RDF Parser, Stanford, http://www-
db.stanford.edu/~melnik/rdf/api.html

4 K.Tolle. VRP RDF Parser, ICS Forth, Greece,

http://www.ics.forth.gr/proj/isst/RDF

3.1 General Design Considerations

OLR3 offers a web-browser based metadata editor/viewer and
provides two major user interfaces: One for readers with a more
graphically oriented view and only minor functions for
manipulation of the underlying metadata. The other one designed
for authors to provide a schema-driven and browser-based
metadata editor with flexible binding to different RDF schemes.

3.2 Reader Interface Layout

Readers of courses using this interface can navigate through an
existing course structure, displayed as a tree and extended by
additional, metadata-defined images for better understanding.
Within that tree they may select single course elements, whose
content will be shown in the center of the screen. A specific engine
prepares and filters the elements metadata (“content”), and displays
it in a certain manner - e.g. show inline links to linked web pages,
or display the course elements title at the top of the content screen.
The reader interface also offers the reader the possibility of making
minor additions to the metadata of a selected course element by
providing functions like “add comment”, “add bookmark”, etc. All
those additions can be made private or public to other course
readers.

Figure 2. The user interface for readers

 2

http://enhydra.enhydra.org/
http://www-db.stanford.edu/~melnik/rdf/api.html
http://www-db.stanford.edu/~melnik/rdf/api.html
http://www.ics.forth.gr/proj/isst/RDF

3.3 Author Interface Layout

Figure 3. The user interface for authors with the editor in the center

The second interface is the actual metadata editor, which is
intended for course authors, who can navigate through the structure
tree of a course and select any sub-element. All existing editable
metadata for this element is shown in the center of the screen, and
the user can choose from a set of existing RDF properties to add to
the metadata or to modify the existing data. The author can also
bind RDF schemes (e.g. DC, DCQ, LOM) from anywhere in the
Internet to extend the set of available properties for annotation, or
unbind RDF schemes, that are not needed anymore. A “toolbar”
holds those bound RDF schemes and offers the possibility of
navigating through their structure by displaying an expandable tree
view of any available property.

3.4 Structural Course Viewer

The OLR3 user interface offers an additional view on the metadata:
It is used for navigation through the existing metadata of a given
course, and is called the “Course Viewer”. For one selected RDF
schema, it will display all system-wide instances of those schema
classes in a tree view. Any such instance is represented by a node
in that tree, beginning at a defined root (the course class) and
forming a new branch at every occurrence of a property with a
schema-class-instance. Initially, the tree is collapsed, but one can
expand any desired node that contains sub elements. Additionally,
in the author mode one can select any item in the tree for further
annotation. The structure does not necessarily need to form a tree –
it may also contain loops, which are then unfolded as a tree.

Figure 4. The Course Viewer for the RDF schema “im”, and an
alternative viewer for “im2” in the background

 As described, the elements and the structure displayed by the
Course Viewer are entirely RDF schema driven, with only one
element statically implemented: the root, which is defined to be
represented by the class “Course”. The category and instance labels
within the viewer depend on the rdfs:label attribute specified in the
underlying RDF scheme and the particular instances. In the reader
mode, the category labels are replaced by small icons.
 The order of elements within the Course Viewer is arbitrary in
the author mode, but can be specified by additional sequence
definitions within the metadata to show a desired order in the
reader mode.
 OLR also enables users to have several Course Viewers at the
same time. Each viewer may base on a different RDF scheme and
thus provide a different view on a given course. The user can then
choose between all these viewers and highlight the favored one.

3.5 Structural Schema Viewer

The “Toolbar” within the author interface does not only hold all
system-bound RDF schemes, but also provides the possibility of
investigating the structure of any included schema. One can bind or
unbind RDF schemes given by their URI. Then each bound schema
may be expanded to show all included properties. A mouse-click
on a property or subitem exposes all its attributes with their
corresponding values. Thus, one can navigate through all elements
defined by the RDF schema. The underlying technique used here is
very similar to the one used for the Course Viewer.

 3

Figure 5. The Toolbar here contains several schemes, with “rdfs”
expanded and showing the subitems for the property “comment”

3.6 Interface – Input Types

Whenever the user selects an item from the course viewer in the
author mode, all its editable attributes will be displayed in the
content area of the editor. In this context, editable means: The
property is contained in one of the RDF schemes of the toolbar.
This way, its possible to reduce the shown properties to a subset of
significant ones by simply removing some bound RDF schemes
from the toolbar.
 A property can be displayed in several different manners,
depending on the properties range settings and the state of the
object.

3.6.1 Properties with literals

If the value of a property is a literal value, the user interface will
show a plain entryfield, containing the literal.
 If the property does not have a value yet (object is empty) and
there is no range definition given for the property, the interface will
show an empty entryfield, where the user may enter any valid URI.

Figure 6. A property with a literal value

3.6.2 Properties with range

If a property has no value yet (the object is empty) but has a range
definition, the user will see – depending on the existing resources
in the system – a select list with all instantiable classes for that

range and/or a select list with all existing resources, that fit into the
range. If rdfs:Literal is part of the instantiable classes, one will see
an additional empty entry field for any literal. In any case, the
system respects rdfs:subClassOf and rdfs:subPropertyOf
definitions to find all valid classes and resources.
 One can either choose to create a new instance from one of the
offered classes, select an existing resource or enter a literal as the
new value for the given property.

Figure 7. A property with range and an empty value

3.6.3 Properties with resources

Properties with an existing object resource that is known to the
system, will show an internal frame that contains the attributes of
that resource

Figure 8. A property with a resource

3.6.4 Adding properties

For any subject, the user can extend the existing annotation by
adding properties from the toolbar that fit to the type of the
resource. “Fit” means all properties with either no domain
definition, or a domain definition that somehow (by respecting
super-classes) refers to the origin class of the given subject. This
way, OLR3 ensures the construction of valid statements.

Figure 9. The list with valid properties for annotation

 One relevant element of the editor is the list containing all
properties available for annotation. For a selected resource (course
element), the editor will filter and provide only those properties
from the toolbar schemes with either no domain attribute or a
domain attribute that somehow (by respecting subClassOf and
subPropertyOf definitions) includes the type of the selected
resource. Thus, a user automatically gets a list with “valid”
properties for annotation, from which he can choose to add
attributes to the given resource.

3.7 Current status

At the moment (spring 2002) the OLR3-Editor is used by several
authors at our institute for the lecture “Artificial Intelligence I” and
“Artificial Intelligence II”, building up these courses on existing

 4

and new material. In this environment we are testing its
functionality and aim to make the system available as open source
within the next months.

4 COMPARISON WITH OTHER SCHEMA
EDITORS

4.1 CREAM and ONT-O-MAT

We decided to develop OLR3 on the basis of regular web-
browsers, to give every student the opportunity to access our
courses without further software installation. This is a different
approach from document viewers like CREAM from the
University of Karlsruhe [5], although the schema-driven metadata
approach is very similar.
 The current version of the OLR3 editor , however, assumes only
local data, which are stored in the OLR3 database, and is not yet
adapted for working with distributed data in the Edutella network
[6], unlike the ONT-O-MAT Implementation of CREAM, that is
able already to work with distributed data [7]. However, we are
working on extending the OLR3 editor to work also on resources
stored on distributed peers in the Edutella network

4.2 K-med course editor

A similar approach was developed in the K-Med project by the
university of Darmstadt [8]. The courses presented in their editor
are also only represented by metadata-schemes, using LOM
metadata. The system however is focused only on LOM and
therefore lacks our possibility to include new, self-created metadata
elements in the course schema.

4.3 Conzilla the Concept Browser

Conzilla the Concept-Browser, developed by the CID [9], is a very
interesting metadata-focused tool, with an editor using the LOM
standard, which is very similar to our approach. It is however no
course editor. Its main goal is to present complete fields of science
and their concepts.

ACKNOWLEDGEMENTS

We also gratefully acknowledge important input and discussion on
t e design and use of the OLR3 editor from Hadhami Dhraief. h
.
REFERENCES

[1] B.Wolf, H. Dhraief, M. Wolpers, W. Nejdl. Open Learning Repositories
and Metadata Modeling
International Semantic Web Working Symposium (SWWS) Stanford
University, California, USA, July 30 - August 1, 2001
[2] Draft Standard for Learning Objects Metadata IEEE P1484.12/D6.3 12
January 2002
[3] M. Nilsson. IMS Metadata RDF binding guide. May 2001
[4] H.Allert, H.Dhraief, W. Nejdl. How are Learning Objects Used in
Learning Process?
 ED-MEDIA 2002, World Conference on Educational Multimedia,
Hypermedia & Telecommunications, Denver Colorado, United States, June
24-29, 2002
[5] S.Handschuh, S. Staab, A.Maedche. CREAM- Creating relational
metadata with a component-based, ontology-driven annotation framework
ACM K-CAP, First International Conference on Knowledge Capture, 2001.
October, Vancouver.
[6] W. Nejdl, B. Wolf, Ch. Qu, S. Decker, M. Sintek, A. Naeve, M.
Nilsson, M. Palmér and T. Risch. EDUTELLA: A P2P Networking

Infrastructure Based on RDF , Edutella White Paper, 11th International
World Wide Web Conference, May 2002, Honolulu, USA
[7] W. Nejdl, B. Wolf, S. Staab, J. Tane EDUTELLA: Searching and
Annotating Ressources within an RDF-Based P2P network
11th International World Wide Web Conference, Sematic Web Workshop
May 2002, Honolulu, USA,
[8] S. Hoermann, A. Faatz, et.al Ein Kurseditor für modularisierte
Lernressourcen auf der Basis von LOM zur Erstellung von adaptierbaren
Kursen.
LLWA 01 - GI-Workshopwoche "Lernen-Lehren-Wissen-Adaptivität",
2002
[9] Nilsson, M. & Palmér M., Conzilla - Towards a Concept Browser,
(CID-53), KTH, 1999.

 5

http://www.aifb.uni-karlsruhe.de/WBS/sha/papers/kcap2001-annotate-sub.pdf
http://edutella.jxta.org/

