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Abstract. An approach to program design and synthesis using algebra-
algorithmic specifications and rewriting rules techniques is proposed. An alge-
bra-algorithmic toolkit based on the approach allows building syntactically cor-
rect and easy-to-understand algorithm specifications. The term rewriting system 
supplements the algebra-algorithmic toolkit with facilities for transformation of 
the sequential and parallel algorithms, enabling their improvement. 
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1 Introduction 

Nowadays uniprocessor systems are almost fully forced out by multiprocessor ones, 
as the latter allow getting the considerable increase of productivity of programs. Thus, 
the need of program parallelization arises [10]. There are libraries, such as pthreads, 
OpenMP, TBB and others [1], allowing developers to write parallel programs. Using 
these libraries a programmer manually divides code into independent sections, de-
scribes data exchange and synchronization between them. However, such method has 
substantial defects, in particular, related to committing of errors into program code 
and a time required for parallelization and debugging. Therefore, the parallelization 
process has to be automatized as much as possible, and in an ideal, should be carried 
out fully automatically, without participation of a programmer.  

This paper continues our research on automation of process of designing and de-
velopment of efficient parallel programs, started in [2], [9], [10], [11]. Our approach 
is based on usage of Integrated toolkit for Designing and Synthesis of programs (IDS) 
[2], [19]. The process of algorithm designing in IDS consists in the composition of 
reusable algorithmic components (language operations, basic operators and predi-
cates), represented in Systems of Algorithmic Algebras (SAA) [2], [9], [19]. We used 
IDS for generation of sequential and parallel programs in Java and C++ on the basis 
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of high-level algorithm specifications (schemes). To automate the transformations of 
algorithms and programs we use term rewriting system Termware [8], [11]. The nov-
elty of this paper is 1) adjusting IDS to generate parallel code in Cilk++ language, 
which is an extension to the C and C++ programming languages, designed for multi-
threaded parallel computing [7] and 2) closer integration between IDS and Termware 
systems. The approach is illustrated on a recursive sorting algorithm (quick sort). 

The problem of automated synthesis of program code from specifications has been 
studied extensively and many approaches have been proposed [13], [14]. Important 
aspects of program synthesis include 1) format of inputs (specifications), 2) methods 
for supporting concrete subject domains and 3) techniques for implementing trans-
formation from specifications to output program code (these aspects roughly corre-
spond to 3 dimensions of program synthesis discussed in [14]). For input specifica-
tion, a popular option is using domain-specific languages (DSLs) [4], [17] that allow 
capturing requirements of subject domain. Other options include graphical modeling 
languages [5], [17], formal specification languages [16], ontologies [6] and algebraic 
specifications [3]. Using such formalisms enables analysis and verification of specifi-
cations and generated code. There are also approaches that provide specification not 
of program or algorithm, but of problem to be solved, in form of functional and non-
functional constraints [18], examples of input/output pairs [15], or natural language 
descriptions [14].  

Another crucial aspect of program synthesis is specialization for subject domain. 
Some approaches are restricted to a single domain, such as statistical data analysis 
[12] or mobile application development [17]; others provide facilities for changing 
domain-specific parts, by using ontological descriptions [6], grammars [16], or by 
providing generic framework that is complemented by domain-specific tools [18].  

Finally, an important aspect is transformation from input specification into source 
code in a target language. A transformation algorithm can be hand-coded [12], but it 
reduces flexibility of system. Therefore, transformation is often described in a de-
clarative form, such as rewriting rules [16], visualized graph transformations [17], 
code templates [6]. More complex approaches require searching the space of possible 
programs [18], possibly using genetic programming or machine learning approaches 
[14]. In [4], partial synthesis is proposed: generic parts of application are generated, 
and then completed with specific details manually.  

In comparison, our approach uses algebraic specifications, based on Glushkov al-
gebra of algorithms [2], but they can be represented in three equivalent forms: alge-
braic (formal language), natural-linguistic and graphical, therefore simplifying under-
standing of specifications and facilitating achievement of demanded program quality. 
Another advantage of IDS is a method of interactive design of syntactically correct 
algorithm specifications [2], [19], which eliminates syntax errors during construction 
of algorithm schemes. Specialization for subject domain is done by describing basic 
operators and predicates from this domain. Our approach uses code templates to spec-
ify implementations for operators and predicates; program transformations, such as 
from sequential to parallel algorithm, are implemented as rewriting rules. Such sepa-
ration simplifies changing subject domain or transformations.   



40          A. Doroshenko, K. Zhereb and O. Yatsenko 

2 Formalized Design of Programs in IDS and Termware 

The developed IDS toolkit is based on System of Algorithmic Algebras (SAA), which 
are used for formalized representation of algorithmic knowledge in a selected subject 
domain [2], [9], [19]. SAA is the two-based algebra SAA = <{U, B}; >, where U is a 
set of logical conditions (predicates) and B is a set of operators, defined on an infor-
mational set;  = 1  2 is the signature of operations consisting of the systems 1 
and 2 of logical operations and operators respectively (these will be considered be-
low). Operator representations of algorithms in SAA are called regular schemes. The 
algorithmic language SAA/1 [2] is based on mentioned algebra and is used to describe 
algorithms in a natural language form. The algorithms, represented in SAA/1, are 
called SAA schemes. 

Operators and predicates can be basic or compound. The basic operator (predicate) 
is an operator (predicate), which is considered in SAA schemes as primary atomic 
abstraction. Compound operators are built from elementary ones by means of opera-
tions of sequential and parallel execution operators, branching and loops, and syn-
chronizer WAIT ‘condition’ that delays the computation until the value of the 
condition is true (see also Table 1 in next section). 

The advantage of using SAA schemes is the ability to describe algorithms in an 
easy-to-understand form facilitating achievement of demanded quality of programs. 
The IDS is intended for the interactive designing of schemes of algorithms in SAA 
and generating programs in target programming languages (Java, С++, Cilk++). In 
IDS algorithms are designed as syntactically correct programs ensuring the syntactical 
regularity of schemes. IDS integrates three forms of design-time representation of 
algorithms: regular schemes, SAA schemes (textual representation of SAA formulae) 
and flow graphs. For integration with Termware, in this paper IDS was also adjusted 
on generation of programs in Termware language. 

 

Fig. 1. Architecture of the IDS toolkit 

The IDS toolkit consists of the following components (Fig. 1): constructor, in-
tended for dialogue designing of syntactically correct sequential and concurrent algo-
rithm schemes and generation of programs; flow graph editor; generator of SAA 
schemes on the basis of higher level schemes, called hyper-schemes [19]; and data-
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base, containing the description of SAA operations, basic operators and predicates in 
three mentioned forms, and also their program implementations.  

The constructor is intended to unfold designing of algorithm schemes by superpo-
sition of SAA language constructs, which a user chooses from a list of reusable com-
ponents for construction of algorithms. The design process is represented by a tree of 
an algorithm [2], [19]. On each step of the design process the constructor allows the 
user to select only those operations, the insertion of which into the algorithm tree does 
not break the syntactical correctness of the scheme. The tree of algorithm constructing 
is then used for automatic generation of the text of SAA scheme, flow graph and the 
program code in a target programming language.  

Example 1. We illustrate the use of SAA on Quicksort algorithm, which is given 
below in the form of SAA scheme. The identifiers of basic operators in the SAA 
scheme are written with double quotes and basic predicates are written with single 
quotes. Notice that identifiers can contain any text explaining the meaning of operator 
or predicate. It is not interpreted: it has to match exactly the specification in the data-
base (however, since constructs are not entered manually, but selected from a list, the 
misspellings are prevented). The comments and implementations of compound opera-
tors and predicates in SAA schemes begin with a string of “=” characters. 
 
SCHEME QUICKSORT_SEQUENTIAL ====     

"main(n)" 
==== Locals ( 
     "Declare an array (a) of type (int) and size (n)"; 
     "Declare a variable (i) of type (int)"; 
     "Declare a variable (end) of type (int)"); 
     "Fill the array (a) of size (n) with random  
      values"; 
     "end := a + n"; 
     "qsort(a, end)";      
      
"qsort(begin, end)" 
==== IF NOT('begin = end') 
        "Reduce (end) by (1)"; 
        "Reorder array (a) with range (begin) and (end)  
         so that elements less than pivot (end) come  
         before it and greater ones come after it; save  
         pivot position to variable (middle)"; 
        "qsort(begin, middle)"; 
        "Increase (middle) by (1)"; 
        "Increase (end) by (1)"; 
        "qsort(middle, end)" 
     END IF      

END OF SCHEME QUICKSORT_SEQUENTIAL 
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To automate the transformation (e.g. parallelization) of programs we augment ca-
pabilities of IDS with rewriting rules technique [8], [11]. At the first step we construct 
high-level algebraic models of algorithms based on SAA in IDS (see also [2], [9], 
[19]). After high-level program model is created, we use parallelizing transformations 
to implement a parallel version of the program on a given platform (multicore in this 
paper). Transformations are represented as rewriting rules and therefore can be ap-
plied in automated manner. The declarative nature of rewriting technique simplifies 
adding new transformations. Also transformations are separated from language defini-
tions (unlike approach used in [16]), therefore simplifying addition of new transfor-
mations or new languages.  

We use the rewriting rules system Termware [8], [11]. Termware is used to de-
scribe transformations of terms, i.e. expressions in a form  1, ,  nf t t . Transforma-

tions are described as Termware rules, i.e. expressions of form source [condi-
tion]-> destination [action]. Here source is a source term (a pattern 
for match), condition is a condition of rule application, destination is a trans-
formed term, action is additional action that is performed when rule fires. Each of 
4 components can contain variables (denoted as $var), so that rules are more gener-
ally applicable. Components condition and action are optional. They can exe-
cute any procedural code, in particular use the additional data on the program. 

3 Generation of Terms and Programs and Experimental Results 

IDS system performs generation of programming code on the basis of an algorithm 
tree, received as a result of designing an algorithm in the IDS Constructor (see Sec-
tion 2), and also code templates – implementations of basic operators and predicates 
in a target language (Java, C++, Cilk++), that are stored in IDS database. In the proc-
ess of generation, IDS translates SAA operations into corresponding operators of 
programming language. Compound operators can be represented as subroutines 
(methods). IDS database contains various code patterns for generation of parallel 
programs, namely using WinAPI threads, Message Passing Interface (MPI), and 
Cilk++ operations [7]. For implementation of parallel version of our illustrative ex-
ample (Quicksort algorithm), we used Cilk++ as it facilitates programming of recur-
sive parallel programs [7]. Cilk++ is a general-purpose programming language, based 
on C/C++ and designed for multithreaded parallel computing. 

Table 1 gives a list of main SAA operations and templates of their implementation 
in Termware and Cilk++, which are stored in the IDS database. The implementations 
contain placeholders like ^condition1^, ^operator1^ etc., which are replaced 
with program code during the program generation. 

For the purpose of transformation of some algorithm, IDS performs the generation 
of a corresponding term and developer specifies a set of rules for transformation. 
Then Termware carries out the actual transformation, the result of which can further 
be used for code generation in a programming language. 
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Table 1. The main SAA operations and templates of their implementation in Termware and 
Cilk++ languages 

Text of SAA operation  Termware implementation Cilk++ implementation 
“operator1”; 
“operator2” 

then (^operator1^, 
^operator2^) 

^operator1^; 
^operator2^ 

IF ‘condition’ 
THEN “operator1” 
ELSE “operator2” 
END IF 

IF (^condition1^, 
^operator1^, 
ELSE (^operator2^)) 

if (^condition1^){  
^operator1^ } 
else {^operator2^} 

FOR '(var) from 
(begin) to 
(end)' 
LOOP “operator1” 
END OF LOOP 

FOR (%1, %2, %3, 
     ^operator1^ 
) 

for (%1, %2, %3) { 
  ^operator1^ 
} 

(“operator1” 
PARALLEL “opera-
tor2”) 

Parallel(   
^operator1^, 
^operator2^) 

cilk_spawn 
^operator1^; 
^operator2^ 

WAIT ‘condition’ WAIT 
(^condition1^) 

cilk_sync; 

Example 2. We will parallelize the sequential Quicksort algorithm (see Exam-
ple 1), using IDS and Termware. For the parallelization, function qsort has to be 
transformed, so we generated the term for this function: 
 
qsort(Params(begin, end), 
     IF (NOT(Equal(begin, end)), 
         then (Dec(end, 1), 
         then (Partition(a, begin, end, end), 
         then (CALL(qsort(begin, middle)), 
         then (Inc(middle, 1), 
         then (Inc(end, 1), 
         CALL (qsort(middle, end))))))))) 
 
Then the operation of parallel execution of operations has to be added to this term. 

This is done by applying the following two Termware rules: 
 

1. then(CALL($x), then ($y, $z)) -> 
                 Parallel (CALL($x), then($y, $z)) 
2. then($x1, Parallel($x2, $x3)) -> 
                 then($x1, then(Parallel($x2, $x3),  
                       WAIT(AllThreadsCompleted(n)))) 
 
The first rule replaces the operation of sequential execution of operators with paral-

lel execution. The second rule adds a synchronizer WAIT(AllThreads Com-
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pleted(n), which delays the computation until all threads complete their work. 
The result of the transformation is given below. 

 
qsort(Params(begin, end), 
IF(NOT(Equal(begin, end)), 
   then (Dec(end, 1), 
   then (Partition(a, begin, end, end), 
   then (Parallel(       
            CALL (qsort(begin, middle)), 
            then (Inc(middle, 1), 
            then (Inc(end, 1), 
            CALL (qsort(middle, end))))),  
         WAIT(AllThreadsCompleted(n))))))) 

Thus, as a result of parallelization, the first operator (thread) of Parallel opera-
tion executes the operator qsort(begin, middle), and the second one calls 
two Inc operators and qsort(middle, end). Operation 
WAIT(AllThreadsCompleted(n)) performs the synchronization of 
threads. The threads are created recursively; their quantity is specified as an input 
parameter of function main. Notice that these transformations are only valid if two 
qsort calls are independent. The system doesn’t check this property: it has to be 
asserted by a developer. 

The resulting parallel algorithm scheme Quicksort was used for generation of code 
in Cilk++ using IDS system. The parallel program was executed on Intel Core 2 Quad 
CPU, 2.51 GHz, Windows XP machine. Fig. 2 shows the program execution time in 
seconds. The speedup at execution of program with usage of 2, 3 and 4 processors 
was 2; 2.9 and 3.8 accordingly, which shows that the program has a good degree of 
parallelism and is scalable. 

 

Fig. 2. The execution time of parallel Quicksort program on a quad-core processor; the size of 
input array is 5107 elements 
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4 Conclusion 

We have described our approach of constructing efficient parallel programs using 
high-level algebra-algorithmic specifications and rewriting rules technique. Algebra-
algorithmic toolkit IDS and rewriting rules engine Termware are combined to enable 
formal, yet easy-to-understand algorithm specifications and automate program syn-
thesis and parallelization process. The combined development toolkit can be retar-
geted to various subject domains and implementation languages, as exemplified by 
Cilk++. The developed system could be further extended with automated code analy-
sis facilities based on rewriting technique.  
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