
 

 

An Adaptive Forecasting of Nonlinear Nonstationary 
Time Series under Short Learning Samples 

Elena Mantula1 and Vladimir Mashtalir1 

1 Kharkiv National University of Radio Electronics, informatics department 
Lenin ave., 14, 61166, Kharkiv, Ukraine 

Mashtalir@kture.kharkov.ua, ElenaMantula@gmail.com 

Abstract. Methods of nonstationary nonlinear time series forecasting under 
bounded a priori information provide an interdisciplinary applications area that 
is concerned with learning and adaptation of solutions from a traditional artifi-
cial intelligence point of view. It is extremely difficult to solve this type of 
problems in its general form, therefore, an approach based on the additive 
nonlinear auto regressive model with exogenous inputs and implemented on the 
base of parallel adalines set has been proposed. To find optimal combination of 
forecasts, an improvement of global random search has been suggested. 
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1 Introduction 

‘Conscious’ decision making, in all possible varieties, is perhaps the most principal 
goal of artificial intelligence systems. Necessary ‘creativity’ implies the ability to 
produce novel solutions which are better than previous ones. The computational tools 
that assist in decision making should be such that they should take into all aspects of 
dissimilarity between a priori and a posteriori uncertainty. Uncertainty account is, per 
se, a manifestation of information deficiency, and relevant information is, on the con-
trary, a capacity to reduce uncertainty. An elimination of such rich in content gaps 
provides groundwork of knowledge engineering and management. In machine intelli-
gence, manifold forecasts can be used for knowledge producing. The goal of the paper 
consists in reasonable (perfectly optimal) combination of forecasts to provide reliable 
semantic interpretation of achieved results with purpose knowledge generation. 

Nowadays mathematical forecasting models of the behavior of objects, systems 
and phenomena in a wide variety of applications are well understood. There is a 
wealth of publications on this subject. It should be noted that the behavior of the ob-
jects is often given in the form of time series. Thus to forecast its behavior a variety of 
approaches to the analysis of time series can be used. Such approaches can be either 
traditional statistical methods (regression, correlation, spectral, Box-Jenkins) or adap-
tive, based on an exponential smoothing, tuning or learning forecasting models, or 
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intellectual, using vrious neural networks. 
At present there are many objects (financial, economical, biomedical, etc.), de-

scribed by time series containing unknown behavior trends, seasonal components, 
stochastic and random components, which significantly complicate synthesis of an 
effective predictive model. This complexity is especially pronounced in the environ-
mental monitoring problems [1], where the analyzing time series have in equal meas-
ure stochastic and chaotic type of changes, have apparent nonstationarity and are sub-
jected to striking changes.  

In these conditions artificial ccc have proved to be useful tools in the best way [2-
13]. As a rule, they realize so-called NARX-model [14], which has the form 

A B( ) ( ( 1),..., ( ), ( 1),..., ( )ŷ k f y k y k n x k x k n      (1) 

where ( )ŷ k  is an estimation of forecasted variable ( )y k  at discrete time 1,2,...;k   

( )f   denotes certain nonlinear transform which is realized by a neural network; ( )x k  

is the observed exogenous factor that influences the behavior of ( )y k ; A B, n n  are 

observations memory parameters. 
Moreover, it is not a matter of available observations insufficiency, since proper-

ties of time series (e.g. such indicator as air pollution in ecological forecasting) are 
changed so often that a neural network does not have time to detect separate station-
ary parts. In this connection there is a need to construct based on the neural network 
approach simplified predictive models for training which require the small enough 
volume data set. 

2 Synthesis of a forecasting model 

In conditions of input data lack instead of NARX-model (1) it is appropriate to use the 
so-called ANARX-model introduced in [15, 16] and fully investigated in [17, 18]. In 
general ANARX-model can be written as 
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(2) 

where original task is decomposed into many local ones with two input variables 
( ), ( )y k l x k l  , A B1,2,..., { , }l max n n . 

For such nonlinear transforms it is quite convenient to use so-called N-adaline 
(abbr.: adaptive linear element) [19-21] that provide quadratic approximation of the 
data sequence. Fig. 1(a) demonstrates the architecture of N-adaline and (b) illustrates 
the architecture of ANARX-model constructed using N-adaline. 

As we can see, N-adaline represents a generally accepted two-input adaline with a 
nonlinear preprocessor formed by three blocks of the product ( ) and the evaluator 
of the quadratic combination in the form 

0 1 2 3 4 5
2 2( ( ), ( )) ( ) ( ) ( ) ( ) ( ) ( )l l l l l l lf y k l x k l w w y k l w y k l w y k l x k l w x k l w x k l               
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where each N-adaline contains 6 synaptic weights plw , 1,2,..., { , }A Bl max n n , 

0,1,...,5p  . As a matter of fact, ANARX-model is formed by two lines of delay ele-

ments 1z  and { , }A Bmax n n  parallel learned N-adaline.  

  
(a) N-adaline     (b) ANARX models 

Fig. 1. N-adaline and ANARX models based on N-adalines 

Each from N-adalines is configured with any of the linear learning algorithms [22], 
however, it is clear that a limited amount of a priori information requires the use of 
time-optimal procedures. As such can be, for example, adaptive-multiplicative modi-
fication of Kachmarz adaptive algorithm [23], which assumes in this case the form 

T

2
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( ) ( 1) ( )

( )

ll
l l l

l

y k w k k
w k w k k

k

  
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  
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where 2 3 4 50 1
T( , , , , , )l l l l l l lw w w w w w w ; 2( ) (1, ( ), ( ), ( ) ( ),l k y k l y k l y k l x k l       

2 T( ), ( ))x k l x k l  ; 0 2   , 0   are some algorithm parameters selected on the 

base of empirical reasons. 
If the data sequences are ‘contaminated’ by perturbations, instead of the one-step 

algorithm (3) it is profitably to apply procedures that provide filtering of perturbation 
and at the same time they have to be suitable for using in non-stationary conditions. It 
should be noted that modification of the recursive least squares method on a sliding 
window can be used [24]. The traditional estimation method of least squares on the 
window with s  observations has the form 

T 1
1 1( ) ( ) ( ) ( ) ( )( )k k

l l lk s k slw k y
               

and recurrent one can be presented as 
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(4) 

We also note that if the algorithm (3) is in fact time-optimal gradient procedure, 
then the algorithm (4) is produced by Gaussian-Newton optimization procedure. 

3 Optimal combination of forecasts 

In real conditions the choice of the forecasting model structure is not a trivial task, 
especially that the same time series can be effectively described by a variety of differ-
ent models. Also, the value of the lag orders A B, n n  remains unknown what makes it 
necessary to consider a set of competing models, and nonstationarity of analyzed 
series necessitates the use of various learning algorithms (in this case, (3), (4)) with 
different values , ,s  . Thus, there arises a set of forecasts of the same process, from 

which we have to select the best. 
To find the best forecast it is possible to use sufficiently effective approach, based 

on the optimal combination of forecasts [25], under which optimal in the sense of 

given criterion cJ  linear combination is searching for a set of existing forecasts of 
the same series ( ), 1,2,...,jŷ k j m  

1
( ) ( )

m
j j

j
ˆ ˆy k c y k


   (5) 

where the parameters of the combination satisfy the condition of unbiasedness 

1
1

m
j

j
c


 . (6) 

In [25], an analytical approach to the weights jc  finding in (5) by optimizing the 

sum of squared errors criterion for forecasting with the constraints (6) is proposed. 
The use of one-step squared forecast errors criterion leads to the estimation 

1

( )
( )

( )

j
j m

j
j

ŷ k
c k

ŷ k

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

. 

However, combining of the analytical parameter estimates can be obtained under 

application of standard quadratic criterion cJ  solely that specified by linearity of it 
derivatives so the solution of the problem reduces to solving a system of linear equa-
tions. At the same time for practitioners as a rule assess of the quality of forecasting 
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using the residual variance is unconvincing, and therefore characteristics allowing to 
estimate the accuracy in percentage are generally used, such as the criterion of a 
minimum of absolute percentage error 

1

( ) ( )
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( )

N
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ˆy k y k
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y k

   (7) 

or maximum of the determination coefficient 
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It is obvious that in this case analytical estimations can not be obtained, and the use 
of gradient optimization procedures becomes more complicated due to sufficiently 
complex properties of functions (7), (8). In this connection the use of genetic algo-
rithms is proposed in [26, 27]. Though such algorithms can find the global extremum, 
their own distinctive features are numerical awkwardness, they have a set of free pa-
rameters necessary defined by the user and at last it should be mentioned a low rate of 
convergence. Therefore, notice should be taken to more an efficient approach based 
on the random search [28] and its adaptive modifications. The most simple procedure, 
which allows to search for a global extremum, is walking random global search [28]. 
In general, this procedure is a statistic extension of the regular gradient search, and to 
provide the global search, random disturbance ( )k  superimposes on character on a 

gradient movement what creates stochastic walking mode.  
In the continuous case, the gradient method of minimization (maximization) of the 

goal function ( )cJ t  is reduced to the motion of a point 1( ) ( ),..., ( ),..., ( )j mc t c t c t c t  

in m -dimensional space of adjustable parameters by a force directed toward the anti-
gradient. 

The trajectory of movement by antigradient ( )c t  leads tuning process to a singular 

point. If starting point (0)c  belongs to an attraction region of global extremum then 

the corresponding trajectory will lead to a global minimum of the function ( )cJ t . But 

if the point (0)c  does not belong to this region, the movement in the direction of anti-

gradient will result in a local minimum, from which it is impossible to get out under 
the influence of forces directed by antigradient. Exactly because, it is helpful to use a 
random mechanism. Random shocks may help point ( )c t  to overcome the barrier that 

separates the local minimum in which the learning process hit from the area in which 

the objective function ( )cJ t  could further decrease. Under the influence of ‘skew’ 

toward anti-gradient and random shocks such movement is determined by the differ-
ential equation 

( ) ( ) ( )c
c

dc t J t t
dt

     

where ( )t  is m -dimensional normal random process with zero mathematical expec-
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tation, delta-figurative autocorrelation function and components variance 2
 ;  is 

parameter of step, c  denotes gradient vector. It should be emphasized that for func-
tion (7) the components of the gradient can acquire the value 1  or 1 . Generally, 
this algorithm provides searching for a global extremum [29]. 

Searching for global extremum can be speed up by reasonable selection of 2
  and 

an adaptation during this process can be introduced in two ways. First, under intro-
ducing inertia in the learning process, it is possible to get a search similar to the 
movement by the method of ‘heavy ball’ [30]. Such movement is described by the 
differential equation 

2

2
( ) ( ) ( ) ( )cd c t dc tb J t t

dtdt
      (9) 

where b  is shockproofing coefficient (the more b , the less manifest of inserted iner-
tia). 

On time series processing, i.e. in discrete time, procedure (9) corresponds to the 
learning algorithm, described by the second order difference equation [31] 

( ) ( 1) ( 2) ( ) ( ) ( )c
cc k c k bc k k J k t          (10) 

coinciding under 0b   with walking random search. It is interesting to note that (10) 
is none other than the ARX- model of the second-order. 

Second, the adaptation in the process of global search can be introduced by random 
process ( )t  control, for example, 

2( ) ( )
( ) H( )

cd t dJ t
t t

dt dt 
        (11) 

where 0   is a autocorrelation parameter of random process ( )t ; H( )t  is a vector 

of flat random noise. Introduce a modification of (11) in the discrete form 

2( ) (1 ) ( 1) ( ) ( ) H( )ck k k J k k             (12) 

where   is the symbol of the first difference (discrete analogue of the derivative). 
As it is easily seen from (11), (12), the optimization of the search process can be 

performed by appropriate selection of parameters  ,   and 2
 , since each of them 

acts on the certain properties of the search. Indeed, variation of the autocorrelation 
parameter   determines the rate of the process ( )k  decay that regulates its relations 

with the past. Thus, one can have an influence upon a search making it more or less 
dependent on the previous history if it is necessary. 

Some few words of comment are desirable for parameters   and   interaction 

explanation. If the search step   determines the intensity of accumulation of learn-

ing experience, then   characterizes the level of this experience forgetting during the 
search. In this sense, these parameters are antagonistic. If in general 0   and there 
is no forgetting the vector ( )k  increases in the direction of anti-gradient. Variance 
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of the process ( )k  is determined by the value 2
  and intensity of the flat random 

noise disturbance H( )k . If 2
  is sufficiently large then search may become unstable 

and, at low value, global properties are worsening. Thus, the use of a modified global 
random search allows simplify significantly the process of linear combination 

( ), 1,2,...,jc k j m  tuning. 

4 Conclusion 

The problem of nonstationary nonlinear time series forecasting under bounded a priori 
information has been considered. An approach based on the additive nonlinear auto 
regressive model with exogenous inputs and implemented on the base of parallel 
adalines set has been proposed. To find optimal combination of forecasts, an im-
provement of global random search has been suggested. Distinctive feature of the 
approach is the computational simplicity and high performance attained by significant 
reducing the number of adjustable parameters. 
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