

Multilevel Environments in Insertion Modeling System

Dmitriy M. Klionov1

1 Kherson State University, 40 rokiv Zhovtnya st. 27, Kherson, Ukraine

soulslayermaster@gmail.com

Abstract. The goal of this paper is to show that the Insertion Modeling Sys-
tem[1] developed by A.A. Letichevsky of the department 100/105 of the Glush-
kov Institute of Cybernetics, National Academy of Science of Ukraine, Kyiv,
Ukraine, can be used as an instrument for the modeling and analysis of complex
distributed systems, such as a client-server architectures. The Insertion Model-
ing [1] is based on the interactions of environments and agents inserted into that
environments. Agents have different behaviors represented as Behavior Alge-
bras, and can also be the environments themselves, having another agents with
different behaviors inserted into them. The definition for multilevel environ-
ments was first given in a paper [1], and was slightly extended in following pa-
pers.

Keywords. Insertion modeling, multilevel environments, compatibility relation,
client-server architecture

Key terms. Computation, Model, Insertion Modeling

1 Introduction

Insertion modeling is a technology for specification and verification of complex dis-
tributed systems based on the interactions of agents and environments. Agents and
environments are models of some entities of real world or components of complex
systems on different levels of abstraction that interact with one another by means of
insertion functions. Also if the environment is considered as an agent it can also be
inserted to other environments. In order to model complex systems those consist of a
lot of components that have hierarchical structure, the notion of multilevel environ-
ments, with agents that are able to move from one environment to another is required.
The notion of mobility of such mobile agents are based on the approach recently fa-
vored in declarative mobile language design is using mobile calculi that extend or
modify the π-calculus [10] with new features, including mechanisms for encryption
and security. Calculi of this kind include, among others, the Spi Calculus [6], and the
Ambient Calculus [7]. In addition, there is a broader body of work favoring declara-
tive approaches, including work in the field of coordination languages. There has also

Multilevel Environments in Insertion Modeling System 465

been a great expansion of the capabilities and security of agent-based languages such
as OAA [10] and D’Agents[13].

According to the Ambient Calculus [7], devised by Luca Cardelli the main diffi-
culty of mobile computations in Web is not in mobility itself but in handling of ad-
ministrative domains. In the early days of the Internet one could rely on a flat name
space given by IP addresses; knowing the IP address of a computer would very likely
allow one to talk to that computer in some way. This is no longer the case: firewalls
partition the Internet into administrative domains that are isolated from each other
except for rigidly controlled pathways. System administrators enforce policies about
what can move through firewalls and how.

The client–server model is the prevalent approach in computer networking. The
model assigns one of two roles to the computers in a network: a client or a server.
A server is a computer system that selectively shares its resources; a client is a com-
puter or computer program that initiates contact with a server in order to make use of
a resource. Data, CPUs, printers, and data storage devices are some examples of re-
sources. This model can be represented as a set of administrative domains, with de-
fined access rules, or as some architectural design pattern, like three-tier pattern. Both
of these are presented in this paper in terms of the insertion modeling.

2 Insertion Modeling System

Insertion modeling system is an environment for the development of insertion ma-
chines and performing experiments with them. Insertion model of a system represent
this system as a composition of environment and agents inserted into it, using the
insertion function. Contrariwise the whole system as an agent can be inserted into
another environment. In this case we speak about the internal and external environ-
ment of a system. Agents inserted into the internal environment of a system them-
selves can be environments with respect to their internal agents. In this case we speak
about multilevel structure of agent or environment and about high level and low level
environments.

Agent and environments have a set of action and a set of behaviors (processes),
defined in behavior algebra. Two set of actions: a set of environment actions and a set
of agent actions define the type of environment. If an agent is about to be inserted into
the environment at least one of its actions must be allowed by this environment. So
the set of agent actions define the type of environments it can be inserted in, as well
as the environment’s set of allowed agent actions define the type of agents that can be
inserted into this environment. Such a relation between types of agents and environ-
ments is called compatibility relation [2], which defines a directed graph. When an
agent is inserted into some environment, it is able to move to another environment if
it is compatible with this environment. For example the rule(1) shows an agent u that
moves to an external environment E, from environment R, it is currently inserted into.

),,,(
[]],[]][[)(_

emoveuREP
RuEuRE

uu
erupmove

emove

 (1)

466 D. M. Klionov

Here e and r – are the names of environments, R[] – describes environment R that
currently have no agents inserted into it. Insertion only occurs if a predicate P is true,
and in general case it may depend only on the types of agents and environments. This
example rule shows “one step” movement of an agent u, and if the new state of agent
u has the same type as u, and types of environments E and R had not changed as
well, rule (1) can be considered as commutative. Also“long range” movements can be
defined recursively, for any set of environments between E and R.

3 Insertion Models of Client-Server Architecture

3.1 Domain Model

This model describes a client-server-architecture as a set of administrative domains
that have certain access rules. Each of these domains is represented by an environ-
ment in IMS. Agents are messages that travel over these domains, trying to access
certain protected area of some administrative domain of the server. As an example we
take our website apsystem.or.ua. It is shown at picture below. The top-most environ-
ment E- represents some network (local-area network or internet), with environments
of apsystem itself , and a set of clients C1, C2, … , Cn inserted into the network. Cli-
ent environments create agents and send them over the network in order to gain ac-
cess to some function of apsystem if they have certain permission, or to a domain of
another client. One of the clients can represent a villain (Hacker), which goal is to
find all possible security risks and ways of an attack to curtain security protocol.

 In order to access administrative domain and to authorize on a server the client
has to show that it knows some secret, which is only known to client and server (or
two clients that want to exchange some data), and which is not transferred over the
network. This key is used to encode messages (transferred by the agents), and when
agents tries to move into the environment of administrative domain, this key is used to
decode the message, if it is possible than agent inserts into the environment, and pro-
ceeds further. There are many ways for generating such secret.

Fig. 1. The domain model of client server

Multilevel Environments in Insertion Modeling System 467

This model uses the standard Needham–Schroeder Public Key protocol [21]. Each
client and server has a secret key, which is used to decode messages encoded with
appropriate public key. When an agent gets inside the administrative domain (apsys-
tem for example), it have to get a permissions to act inside it. The message transferred
by this agent, contains the information about the access rights of the client who sent it.
This data is used to move further. When an agent reaches some function
(“download_paper” for example) it has a permission to, it is to be sent back by the
server to the client. Account environments that are inserted into the clients and the
top-most environment of the server store all information required to authorize at ap-
propriate client or server. Tables below show all types of environments and agents.

Types of environments of clients and the top-most environment of the server, are
identical. In general the client differs from the server only by the means of environ-
ments inside it, which require an action authorized_move.

Fig. 2. Compatibility graph for the client-server domain model

Vertexes represent agents and environments, and edges represent a compatibility
relation. Directions mean that for example the authorized agent can be inserted into
the environments of the account, server functions environments, clients and servers
environments.

Interactions with agents:

),,,,,(

]][[]],[[[]]]],[[[
asenduAACCEP

uACACEAuACCE

uu
asend

asend

 (2)

In equation (2) send(A) Means that client C sends the message u, with an appro-
priate account AC, to the server A[], over the network E, where a – is the name of
server A[]. The definition A[] means that there were no agents inserted into this envi-
ronment.

468 D. M. Klionov

Table 1. Actions of agents and environments in domain model

Agent / Envi-
ronments type

Attributes Actions

mb – message body, actual
information carried by this
agent;

sender – the name of the one
who sent this message;

send a - makes agent to move to the server envi-
ronment named a,

Simple message

enc_key – key that is used by
encryption algorithm;

access d - agent tries to authorize in order to
enter the environment named d, that is in the
server environment.
auth_move d - “authorized move” to some inter-
nal environments of the server named d

mb – message body, actual
information carried by this
agent;
 get_data(x) - agent shares the data it carries.

invoke(x) - invokes the main function of the
environments of the server functions, x – is the
access level of authorized agent. It receives as an
answer or the result of execution of function, or
the “access denied” message.

Authorized mes-
sage

role – defines the access
level of this information

done(x) - required to check if the result it carries
is equivalent to the expected result

Secretkey – an integer value
of the client’s secret key, that
is used by the Needham-
Schroeder algorithm

Clients and the
top-most envi-
ronment of the

server
Allowed actions:

send, access,
authmove

Nounce – a place for random
numbers.

allow(y) - environment checks the incoming
message from the server, y – is the secret key that
is used to decode the information from that
message.

server – the name of the
server it belongs to

update(x) - account is able to update its data
about the secret keys used in the Needham-
Schroeder algorithm

role – an integer value that
represent a role of this ac-
count at server

check_goal(x) - checks if the result brought by
the message, is equal to the expected result that is
x

publickey – the public key of
the server, that is used by the
Needham-Schroeder algo-
rithm

Accounts
Allowed actions:
access, authmove,
send, get_ data(y),

done(z)

secret – that will be obtained
by Needham–Schroeder
algorithm

create(r,t) - environment creates agent named r,
which has type t

Environments that
represent server

functions(
download_paper,

upload_paper)
Allowed actions:
authmove, invoke

permission – an integer value
indicating what the required
permissions to access it are.

check_permission u - checks if the access level
of agent u is appropriate for performing action, if
it do then it is delta, if not then agent receives a
message that it has no rights to perform the
function of this environment

E
Allowed actions:

send a

Multilevel Environments in Insertion Modeling System 469

),,,(

[]]],[[[]][],,[

,)(

caaccessuCAAP
DuCAADCAuA

uuAA
caaccess

caaccessyallow

; (3)

An agent u tries to gain access to the server A[], A tries to authorize it, using the
secret y, if the authorization succeeds, then u enters appropriate account on the server
that is CA, and ca is its name.

)),(),(_,,,(

[]]],,[[[]]],[[

,
),(

)(_),(

trcreatexdatagettuCAP
DruCAADuCAA

uuACCA
catrcreate

xdatagettrcreate

 (4)

An account environment CA creates a new agent named r, which type is t . It car-
ries all data received from u, by the action get_data(x), x – is that data. This rule cre-
ates an agent of type authorized_agent , but it can create an agent of any type that is
compatible with this environment.

),,,,(

]]][],[[[]]],,[[
dauthmoverDCAAP

rDuACADruCAA

rr
dauthmove

dauthmove

 (5)

The authorized agent u moves to the environment D[], that represent one of the
server functions;

),_,,(

][][

,_

invokerpermissioncheckrDP
rDrD

rrDD
invoke

invokeupermissioncheck

 (6)

The agent u invokes the main function of D[], and depending on the result of
check_permission u, the result of this invoke might be different.

))(),(_,,(

][][

)()(_

ydonexgoalcheckrACP
ACrAC

rCAAC ydonexgoalchech

 (7)

When an agent comes back to the client that sent it, the client checks the message
it carried, and it matches the required result then it is successful termination. These
rules only work if both the client and the server share a secret, known only to them. In
order to safely generate such secret the Needham–Schroeder public key algorithm is
used. Usually the Needham–Schroeder protocol requires a second server that hosts all
the public keys, but for simplicity we assume that all clients and servers know all the
public keys. If the secret has already been created, than it is taken instead of public
key and secret key for encoding and decoding of messages.

It runs as follows:

1. First we check if the secret exists for an account A, if not we send message to the
server A[] by the rule (2), and set the value of an agent’s attribute mb to N1 that is
a simple random number.

2. Then the server A[] uses the rule(3) to decode message using the secret key of
server A[],.if the secret is not created yet.

470 D. M. Klionov

3. Then the server replies by the rule (2) to client C the value of mb is set to (N1,N2),
N1 – is the random number created by the client C, and N2 – is the new random
number.

4. If the first part of the mb is equal to the random number that was generated before,
than C can take the pair (N1,N2), as a secret for the account A.

5. Then C sends a message to A[], that contains N2. When A will receive it, he will
also take the pair (N1,N2), as a secret for account C.

In order to verify this protocol one of the clients has to take the role of a villain, its
goal is to be authorized as another client from the network, using in this case a men-
in-middle attack. [22]

3.2 Insertion Model of Three-Tier Architecture

Unlike of the previous model this one focuses on the actual behavior of data-packages
represented by agents, inside the server environment, divided basically to three layers
according to the three-tier architecture. The example model of the server hosting two
sites apsystem and unarea, is presented.

Fig. 3. Insertion model of three-tier client-server architecture

Their frontends are located inside the presentation tier.

[]]]]]_[],_[[[

[]],_[[]],_[[[[],[],[Pr[

dundapsmysqlData

lunPylapsPhpAppunapsE

(8)

(8) is the state of environment in such example. E – the top-most environment, Pr-
the presentation tier, aps – the apsystem frontend, un – the unarea frontend, App – the
application tier, PHP\ PY – all sites developed in php and python accordingly,
aps_l\un_l – the logic of apsystem\unarea, Data – the data tier, aps_d\un_d – the data-
base of apsystem\unarea. The user only works with frontend. This means, that the

Multilevel Environments in Insertion Modeling System 471

incoming agent is compatible only with environments of the presentation layer. An
agent inserted into one of the frontends carries one request.

Table 2. Types of agents and environments

Agents/Environments types Actions
execute(x) - executes the request brought by user,
x-is the request data

User request
User_move d - User agent moves to environment,
named d
execute_script(y) - executes the request brought by
script, y-is the request data

Script request
Allowed actions: ex-
cute(x),User_move d

Script_move d - script agent moves to environment
named d

Execute_query(z) - Executes the request brought by
data base, z-is the request data

Data base request
Allowed actions: execute_script(y),
Script_move d

Data_base_move d - Data base agent moves to
environment named d

Environments of the Presentation tier
Allowed actions: exe-
cute(x),User_move d, Script_move d

Create (r,t) - Creates agent named r, of the type t

Environments of the Application tier
Allowed actions: execute_script(x),
Script_move d,Data_base_move d

Create (r,t) - Creates agent named r, of the type t

Environments of the Data tier
Allowed actions: execute_query(x),
Script_move d, Data_base_move d

Interaction with environments: In the rule (9) u gets inside Pr using user_move pr,

where pr is the name of the environment Pr, if P can allow this. (a simple one step
insertion). The same way u gets inside the environment aps[], using in(aps). This
shows how a user goes to some web-site (apsystem in our case), in order to download
a page for example. In order to do so he has to load a web-page that has a required
link to the paper he wants.

))_,(Pr,

[]]]]]]_[[[],_[[],,[r[P

[]]]]]]_[[[],_[[],Pr[,[)_

_

prmoveuseruP

dAPSmysqlDatalAPSAppAPSuE

dAPSmysqlDatalAPSAppAPSuE

uu
prmoveuser

prmoveuser

(9)

The link to the paper is stored in the site’s data base that is inside the Data tier,
and the rules for extracting these data, and displaying them is inside the Application
layer. So, the frontend part (environment of apsystem in our case) creates a new
agent, that is compatible only with this environment, and with according environ-
ments of the Application layer:

472 D. M. Klionov

))(,,(
]]]],[[r[P]]],[[Pr[)(

)(

xexecuteuAPSP
QSAPEQuAPSE

u
xexecute

xexecute

(10)

Here we check if u is able to execute its request x if it succeeds than it is DELTA,

if it is NOT able to, than we have to check if there any environments inside aps, that
are compatible with u, go inside them, and again try the same rule. Q is put for sim-
plicity; it describes all rest of environments that are not involved in the current rule. If
there are no such environments or even after insertion to such environment u is still
unable to solve(x), then we have to create a new agent r that will get necessary data
from application tier.

)),(,,(

]]]],,[[r[P]]],[[Pr[),(

),(

trcreatetAPS
QrusapEQuapsE

SAPAPS
trcreate

trcreate

 (11)

Note: r has to be created inside that environment, which u is currently inserted in.

))(_,,_(

]]]]][_[[],[[r[P

]]]]][_[[],[[Pr[)(

)(_

yscriptexecuterlAPSP

rlAPSPPHpApuAPSE

rlAPSPHPAppuAPSE

rr
ysolve

yscriptexecute

 (12)

The agent r moves to that environment (APS_l). It should go first to the environ-
ment PHP, which is the top-environment of all sites based on PHP, and then moves to
the environment APS_l. The rule for its movement is similar to the movement of a
user request. The execution of script request is different:

)_,,_,,,,(

[]]]]]_[[],,[[r[P

]]]]][_[[],[[Pr[_

_

apsmovescriptrlAPSAPSPHPAppPRP

lAPSPPHpApruAPSE

rlAPSPHPAppuAPSE

rr
apsmovescript

apsmovescript

 (13)

If the execution succeeds, than r moves back to the environment, which created it.
If not, then the environment APS_l, creates a new agent, which is the query for the
data tier. The rules are similar.

4 Conclusions

The client-server model can be considered as a prevalent approach in computer net-
working, and is one of the best examples of complex distributed systems. Two exam-
ples of insertion models of client-server architecture are presented in this paper: the
domain model – as a set of administrative domains with pre-defined access rules; and
a three-tier architecture - a client–server architecture in which the presentation, the
application processing, and the data management functions are logically separated.
Both these insertion models with multilevel environments and mobile agents can be
extended later for more complicated applications, such as the verification of crypto-

Multilevel Environments in Insertion Modeling System 473

graphic protocols, the problem solving, the constraint propagation, the cognitive ar-
chitectures.

References

1. Letichevsky, A. A.: Insertion Modeling. Control Systems and Computers, 6, 3-14 (2012)
2. Letichevsky, A.: Algebra of Behavior Transformations and its Applications. In:

Kudryavtsev, V. B., Rosenberg, I. G. (eds.) Structural Theory of Automata, Semigroups,
and Universal Algebra. NATO Science Series II. Mathematics, Physics and Chemistry,
vol. 207, pp. 241-272, Springer (2005)

3. Baranov, S., Jervis, C., Kotlyarov, V., Letichevsky, A., Weigert, T.: Leveraging UML to
Deliver Correct Telecom Applications. In: L. Lavagno, G. Martin, and B.Selic (eds.) UML
for Real: Design of Embedded Real-Time Systems. Kluwer Academic Publishers, Amster-
dam (2003)

4. Letichevsky, A.A., Kapitonova, J., Letichevsky, A. Jr., Volkov, V., Baranov, S., Kot-
lyarov, V., Weigert, T.: Basic Protocols, Message Sequence Charts, and the Verification of
Requirements Specifications. Computer Networks, (47), 662–675 (2005)

5. Kapitonova, J., Letichevsky, A., Volkov, V., Weigert, T.: Validation of Embedded Sys-
tems. In: R. Zurawski (ed.) The Embedded Systems Handbook. CRC Press, Miami (2005)

6. Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: the spi Calculus. In:
Proc. 4th ACM Conference on Computer and Communications Security, pp. 36-47, (1997)

7. Cardelli., L., Gordon, A.: Mobile Ambient. In: Nivat, M. (ed.) Proc. FoSSaCs’98: Founda-
tions of Software Science and Computational Structures, LNCS 1378, pp. 140–155,
Springer-Verlag (1999)

8. Lange, D.B., Oshima: Programming and Deploying Java Mobile Agents with Aglets. Ad-
dison-Wesley (1998)

9. Kotz, D., Gray, R.S.: Mobile Agents and the Future of the Internet. ACM Operating Sys-
tems Review 33(3), 7–13, (1999)

10. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes (Parts I and II). Infor-
mation and Computation 100, pp. 1-77 (1992)

11. Martin, D., Cheyer, A., Morgan, D.: The Open Agent Architecture: A Framework for
Building Distributed Software Systems. Applied Artificial Intelligence, 12, 91–128 (1999)

12. Gray, R.S., Kotz, D., Cybenko, G., Rus, D.: D’Agents: Security in a Multiple-Language,
Mobile-Agents System. In: Vigna G. (ed.) Mobile Agents and Security, LNCS 1419, pp.
154–187, Springer-Verlag (1998)

13. Milner, R.: A Calculus of Communicating Systems, LNCS 92, Springer-Verlag, (1980)
14. Milner, R.: Communication and Concurrency. Prentice Hall, (1989).
15. Milner, R.: The Polyadic π-Calculus: a Tutorial. Tech. Rep. ECS–LFCS–91–180, Labora-

tory for Foundations of Computer Science, Department of Computer Science, University
of Edinburgh, UK (1991)

16. Park, D.: Concurrency and Automata on Infinite Sequences. In: LNCS 104. Springer-
Verlag, (1981)

17. Roggenbach, M., Majster-Cederbaum, M.: Towards a Unified View of Bisimulation: a
Comparative Ctudy. TCS, 238, 81–130 (2000)

18. ITU-T. Z.120 Recommendation Z.120 (11/99): Languages for telecommunications appli-
cations – Message Sequence Charts (MSC) (1999)

19. ITU-T. Z.100 Recommendation Z.100 – Specification and Description Language (SDL)
(1999)

474 D. M. Klionov

20. Rutten, J.: Coalgebras and Systems. TCS, 249
21. Needham, R., Schroeder, M.: Using Encryption for Authentication in Large Networks of

computers. Comm. ACM, 21(12), 993–999 (1978)
22. Lowe, G.: An Attack on the Needham-Schroeder Public Key Authentication Proto-

col. Information Processing Letters, 56(3), 131–136 (1995)
23. Eckerson, W.: Three Tier Client/Server Architecture: Achieving Scalability, Performance,

and Efficiency in Client Server Applications. Open Information Systems. 3(20), 10, 1
(1995)

