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Abstract. Problems concerning formal semantics for Clock Constraint
Specification Language (CCSL) are considered in the paper. CCSL is
intended for describing logical time models for real-time embedded sys-
tems and the language is a part of UML profile for MARTE. There exist
two approaches to introduce a denotational semantics for CCSL. A pure
relational subset of CCSL is defined in the paper. The notion of time
structure with clocks is introduced to refine describing denotational se-
mantics for this CCSL subset, which authors called RCCSL. Semantic
properties of RCCSL have been studied. Theorem about coincidence se-
mantics of RCCSL for the two approaches is proved.
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1 Introduction

Nowadays, the growth of using distributed real-time systems (including embed-
ded systems) [4] is the developing trend for Information and Communication
Technology. There are two reasons for such growth: first, the physical limit for
processor acceleration is reached, and, second, using mobile and cloud technolo-
gies are explosively expanded. The impossibility to continue over-clocking of a
processor leads to using a multi-core system, which is parallel and distributed.
A complex consisting of a computational cloud and an ensemble of mobile de-
vices is a parallel and distributed system too. Moreover its structure is not fixed.
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Each of the cases requires using different kinds of multiprocessing architectural
and software solutions [3]. Therefore, providing correct working of such systems
requires more research in the area.

Mathematical modelling of systems makes possible to develop formal specifi-
cations and methods of their analysis as a base for trustworthy system construct-
ing. There are a lot of approaches to modelling multiprocessor systems. First of
all, the following ones should be noticed: CSP of C.A.R. Hoare [8], π-calculus of
R. Milner [11], abstract state machine model [5], and processing algebra [14].

This paper is devoted to formal methods for an important subclass of mul-
tiprocessing distributed systems, namely, real-time embedded (RTE) systems.
These methods are closely connected with the UML profile for MARTE (Mod-
elling and Analysis of Real-Time and Embedded systems) [2, 15]. In the context
of the MARTE approach UML [16, 17] is used to build engineering models of a
developing system. But the UML notation does not support detailed description
of interactions for joining components into a united RTE system. A very com-
mon way to specify conditions for the system integrity is through the Object
Constraint Language (OCL) [12]. However, no facilities for specifying temporal
constraints are provided by the OCL standard. The Clock Constraint Specifica-
tion Language (CCSL) [2] was defined in an annex of MARTE as a way to build
logical and temporal constraints on model elements.

CCSL is intended to describe the temporal ordering of interactions between
components of a distributed software system. It focuses on the ordering of event
occurrences, but not on their chronometric characteristics. It relies on a logical
time model inspired by the work on synchronous systems and their polychronous
extensions.

The denotational semantics for basic constructions of CCSL is given in [10].
It is based on the notion of a time structure with clocks, other approach [1]
defines an operational way to compute runs for CCSL specifications. The main
contribution of this paper is a demonstration that the relationship of semantics
consequence based on time structures as models of constraints and semantics
consequence based on time structures associated with runs are only equivalent
for a subset of CCSL, which we call RCCSL.

2 Syntax of Pure Relational CCSL

In the paper we restrict ourself to a very simple sublanguage of CCSL, which
we call the pure relational CCSL (RCCSL). Syntax of this subset is given here
using EBNF [6].

clock constraint =

clock relation, {’,’, clock relation};

clock relation =

clock reference, sign of clock relation, clock reference;

sign of clock relation =

’subclocking’ |
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’exclusion’ |

’coincidence’ |

’cause’ |

’precedence’;

clock reference =

? any element of clock set ?;

Below we use the next notation for symbols of clock relations (see Table 1).

Table 1. Symbols of clock relations

Relation name Relation symbol

subclocking ⊂

exclusion #

coincidence =

cause 4

precedence ≺

These five binary relations on a clock set C are determined as logical primi-
tives for CCSL in [1].

Defining semantics for RCCSL is one of the paper objectives. Following the
paper [10], we define the denotational meaning for a set of clock constraints as
some class of time structures expanded by a classification for event occurrences.
The next section is devoted to describing such structures.

3 Time Structure with Clocks

Let consider a set of event occurrences, which is below denoted by I. Elements of
the set I are called instants. Some pairs of instants denotes instant pairs, whose
elements are ordered in time: i1 4 i2 is denoted the fact ”an instant i1 causes
an instant i2” or equivalently ”an instant i1 cannot occur later than an instant
i2”, where i1, i2 ∈ I. This relation is called ’cause’. It is naturally to suppose
that cause is a pre-order.

As known [7, section 1.3], each pre-order can be decomposed uniquely into
the union of two relations such that the former is a strict order (it is denoted
bellow by ’≺’ and called a precedence) and the latter is an equivalence (it is
denoted bellow by ’≡’ and called a coincidence). These relations are connected
by the next property:

for any instants i1, i
′
1, i2, i

′
2 ∈ I

the validity of i1 ≡ i′1, i2 ≡ i′2, and i1 ≺ i2 implies
truth of i′1 ≺ i′2.

(1)
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Moreover, if we have a strict order and an equivalence on the same set and these
relations satisfy (1) then their union is a pre-order.

Now, we can introduce the notion of a time structure for formalising our
understanding a set of instants.

Definition 1. Let (I,4) be a pair of a set and a pre-order on this set respec-
tively. Denote by ≺ the strict order corresponding to the pre-order 4. The pair
(I,4) is called a time structure if the next property (the property of cause finite-
ness [13]) holds:

the set {i′ ∈ I | i′ ≺ i} is finite for all i ∈ I. (2)

Definition 1 is based on the corresponding definition in [10]. One can compare
them with the definition of a time structure in [13]. Difference consists in a
possibility of modelling an instant coincidence.

Note that Definition 1 specifies the set of instants and some time relations
on it but it does not determine any classification of instants in compliance with
their sources. Therefore, in the following [2] we introduce such a classification
by adding a finite set of instant sources called clocks and by mapping the set of
instants into this clock set.

Definition 2. Let (I,4) be a time structure, C be a finite set of clocks, and
π : I → C be a map then the quadruple (I,4, C, π) is called a time structure with
clocks if the next property holds:

for any clock c ∈ C and i1, i2 ∈ π−1(c)
the validity of i1 6= i2 implies truth of i1 ≺ i2 ∨ i2 ≺ i1,
i.e. π−1(c) is linearly ordered by the restriction of the cause.

(3)

If c ∈ C then the set π−1(c) is usually denoted by Ic. It can be considered as an
event stream generated by the source associated with the clock c.

From Definition 1 and Definition 2 the next fact follows immediately.

Proposition 1. Let (I,4, C, π) be a time structure with clocks then

1. Ic is well-ordered by the strict order ≺ for all c ∈ C;
2. ordinal type of Ic for any c ∈ C is less or equal to ω, where ω is the first

infinite ordinal.

Proof. Firstly note that property (3) implies linear ordering Ic for an arbitrary
c ∈ C.
Further, suppose that A is some non-empty subset of Ic for an arbitrary c ∈ C,
i is some element of A.
If for all i′ ∈ A the statement i ≺ i′ ∨ i = i′ is true then inf A = i ∈ A.
If there exists i0 ∈ A such that i0 ≺ i then the set A(i) = {i′ ∈ A | i′ ≺ i} is
not empty. It is evident that A(i) = A

⋂
{i′ ∈ Ic | i′ ≺ i}. This equality and the

property of cause finiteness (2) imply finiteness of A(i). So, taking into account
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property (3) we can conclude that A(i) is a finite linearly ordered set. Hence,
there exists i∗ ∈ A(i) such that i∗ = inf A(i). It is evident that

inf A = inf A(i) = i∗ ∈ A(i) ⊂ A.

Thus, inf A ∈ A and Ic is well-ordered.
The supposition that ordinal type of Ic for some c ∈ C is greater than ω is

inconsistent with the property of cause finiteness (2). ut

Corollary 1. Any instant i ∈ I is uniquely determined by the pair (π(i), idx(i)),
which is an element of the set C×N. Here, idx is a map from I into N such that

idx(i) = |{i′ ∈ Iπ(i) | i′ ≺ i}|+ 1,

where the number of elements in a set A is denoted by |A|.

The designation TC is used below to refer to the class of time structures with
C as a set of clocks.

Remark 1. One can show that this class is a set but we do not do it in the paper.

4 Denotational Semantics for RCCSL

Usually, a denotational semantics can be considered as the theory of models for
the corresponding language. We shall use time structures with clocks as models
for describing meaning of clock constraints.

4.1 Some General Notes

One can identify a class of event occurrences of the same type with a set of
instants for some clock in the process of specifying interactions between compo-
nents of distributed parallel systems. Such an identification is provided by fixing
a set of clocks C and describing rules of interacting system components. These
rules divide the set TC into two subsets: the subset of time structures satisfying
the constraints and the set of time structures contradicting them. Taking into
account the specification of RCCSL one can say that a clock constraint is a finite
set of clock relations. If the set of clock relations determining the constraint is
denoted by C then the fact ”the time structure T ∈ TC satisfies the constraint
C” can be written as T |= C. More precisely, T |= C means that for each C ∈ C
the clause T |= C is true.
Further, for a constraint C, JCK denote the following set {T ∈ TC | T |= C}.

The first important problem is the consistency problem for the constraint.
The rigorous problem formulation has usually the form:

Problem 1 (Consistency Problem). For a constraint C check that the set JCK is
not empty.
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The second important problem is the semantic consequence for the constraints.
The rigorous problem formulation has the next form:

Problem 2 (Semantic Consequence Problem). For a constraint C and a clock
relation r check that JCK ⊂ JrK (or in the another notation C  r).

Below we use the notation {C} for the set of clock relations that form the
constraint C. It is easy to see that the next properties of the relationship  are
true.

Proposition 2. The next properties are satisfied:

1. if a constraint C and a clock relation r satisfy the condition r ∈ {C} then
C  r;

2. if constraints C1 and C2 and a clock constraint r satisfy the next condition
C1  r′ for all r′ ∈ {C2} and C2  r are true then C1  r is true.

Proof is omitted ut
To complete defining the denotational semantics for RCCSL we should determine
the meaning of basic clock relations.

4.2 Subclocking

This relation is intended for specifying a requirement to synchronize each instant
of one clock with some instant of an other clock. In this case the first clock is
called a subclock of the second clock.

More precisely, let c′, c′′ ∈ C and T ∈ TC then T |= c′ ⊂ c′′ means that
there exists a strict monotonic map h : Ic′ → Ic′′ such that i ≡ h(i) for any
i ∈ Ic′ .

Proposition 3 (Trivial Subclocking). For each c ∈ C the clause  c ⊂ c is
true.

Proof is trivial ut

Proposition 4 (Transitivity Law for Subclocking). For each c′, c′′, c′′′ ∈ C
the clause c′ ⊂ c′′, c′′ ⊂ c′′′  c′ ⊂ c′′′ is true.

Proof. Let hc′′ c′ : Ic′ → Ic′′ , hc′′′ c′′ : Ic′′ → Ic′′′ be strict monotonic maps pro-
viding the validity of the clauses T |= c′ ⊂ c′′ and T |= c′′ ⊂ c′′′ respectively
for some T . It is easy to see that the map hc′′′ c′′ ◦ hc′′ c′ provides the validity of
the clause T |= c′ ⊂ c′′′ ut

4.3 Exclusion

This relation is used for specifying the mutual exclusion for two events.

More formally, let c′, c′′ ∈ C and T ∈ TC then T |= c′ # c′′ means that for

any i′ ∈ Ic′ , i′′ ∈ Ic′′ the coincidence i′ ≡ i′′ is false.
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Proposition 5 (Irreflexivity Law for Exclusion). For each c ∈ C the equal-

ity Jc # cK = ∅ is true.

Proof is trivial ut

Proposition 6 (Symmetry Law for Exclusion). For each c′, c′′ ∈ C the

clause c′ # c′′  c′′ # c′ is true.

Proof is trivial ut

4.4 Coincidence

This relation describes synchronization of two event sources.
More precisely, let c′, c′′ ∈ C and T ∈ TC then T |= c′ = c′′ means that

there exists a strict monotonic bijection h : Ic′ → Ic′′ such that i ≡ h(i) for any
i ∈ Ic′ .

Proposition 7 (Trivial Coincidence). For each c ∈ C the clause  c = c is
true.

Proof is trivial ut

Proposition 8 (Symmetry Law for Coincidence). For each c′, c′′ ∈ C the
clause c′ = c′′  c′′ = c′ is true.

Proof. Let h : Ic′ → Ic′′ be a strict monotonic bijection providing the validity
of the clause T |= c′ = c′′ for some T and h−1 be its inverse map.
Suppose that i′, i′′ ∈ Ic′′ , i′ ≺ i′′, and h−1(i′) 6≺ h−1(i′′) then either h−1(i′) =
h−1(i′′) or h−1(i′′) ≺ h−1(i′). But the first alternative contradicts to bijectivity
of h, and the second alternative and strict monotonicity of h implies i′′ ≺ i′. The
last clause contradicts to irreflexivity of the precedence relation. These contra-
dictions show that h−1 is a strict monotonic map.
Further, for any i ∈ Ic′′ we have that h−1(i) ∈ Ic′ and h−1(i) ≡ h(h−1(i)) = i.
Thus, the clause T |= c′′ = c′ is true ut

Proposition 9 (Transitivity Law for Coincidence). For each c′, c′′, c′′′ ∈ C
the clause c′ = c′′, c′′ = c′′′  c′ = c′′′ is true.

Proof is similar to proof of Proposition 4 ut

4.5 Cause

This relation is intended for specifying that each instant of one clock is caused
by an instant in another clock.

More precisely, let c′, c′′ ∈ C and T ∈ TC then T |= c′ 4 c′′ means that

there exists a strict monotonic map h : Ic′′ → Ic′ such that h(i) 4 i for any
i ∈ Ic′′ .

Proposition 10 (Trivial Cause). For each c ∈ C the clause  c 4 c is true.
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Proof is trivial ut

Proposition 11 (Transitivity Law for Cause). For each c′, c′′, c′′′ ∈ C the

clause c′ 4 c′′, c′′ 4 c′′′  c′ 4 c′′′ is true.

Proof is similar to proof of Proposition 4 ut

4.6 Precedence

This relation is a stronger variant of the cause relation.
Namely, let c′, c′′ ∈ C and T ∈ TC then T |= c′ ≺ c′′ means that there exists

a strict monotonic map h : Ic′′ → Ic′ such that h(i) ≺ i for any i ∈ Ic′′ .

Proposition 12 (Irreflexivity Law for Precedence). For each c ∈ C the
equality Jc ≺ cK = ∅ is true.

Proof is trivial ut

Proposition 13 (Transitivity Law for Precedence). For each
c′, c′′, c′′′ ∈ C the clause c′ ≺ c′′, c′′ ≺ c′′′  c′ ≺ c′′′ is true.

Proof is similar to proof of Proposition 4 ut

4.7 Interdependencies Laws for the Basic Relations

Above we considered properties of each basic relation but interdependencies
between these relations were not in our focus. Thus, such interdependencies are
considered below. The next lemma is needed to ground these dependencies.

Lemma 1. Let (X,≤) be a well-ordered set and φ : X → X be a strict mono-
tonic map such that for all x ∈ X the assertion φ(x) ≤ x is true then φ is the
identity map.

Proof. One can prove the lemma by using the transfinite induction ut

Proposition 14 (Interdependencies Laws for the Basic Relations).

1. For each c′, c′′ ∈ C the clause c′ ⊂ c′′, c′′ ⊂ c′  c′ = c′′ is true.

2. For each c′, c′′ ∈ C the clock relations c′ ⊂ c′′ and c′ # c′′ are inconsistent,

i.e. Jc′ ⊂ c′′, c′ # c′′K = ∅.
3. For each c′, c′′ ∈ C the clause c′ ⊂ c′′  c′′ 4 c′ is true.

4. For each c′, c′′ ∈ C the clause c′ 4 c′′, c′′ 4 c′  c′ = c′′ is true.

Proof. 1) For any T ∈ TC the validity of the assertion ”T |= c′ = c′′ implies

T |= c′ ⊂ c′′” is evident.
Let’s check the validity of the inverse assertion. Denote the strict monotonic maps
that provide for some T ∈ TC the validity of T |= c′ ⊂ c′′ and T |= c′′ ⊂ c′
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by hc′′ c′ : Ic′ → Ic′′ and hc′ c′′ : Ic′′ → Ic′ respectively. We claim that they are
mutually inverse.
Indeed, for any i ∈ Ic′ we have the next coincidences: i ≡ hc′′ c′(i) and hc′′ c′(i) ≡
hc′ c′′(hc′′ c′(i)). These coincidences and the Transitivity Law for Coincidence (see
Proposition 9) provide the validity of the coincidence i ≡ hc′ c′′(hc′′ c′(i)). Taking
into account that both i and hc′ c′′(hc′′ c′(i)) are elements of Ic′ and the fact that
restriction of 4 on Ic′ is a strict order (see Proposition 1) one can derive the
equality i = hc′ c′′(hc′′ c′(i)).
The equality i = hc′′ c′(hc′ c′′(i)) for all i ∈ Ic′′ is derived similarly. Thus, hc′′ c′

is a bijection.
2) Proof is trivial.
3) Proof is trivial.
4) Really, let hc′′,c′ : Ic′ → Ic′′ and hc′,c′′ : Ic′′ → Ic′ be strict monotonic

maps provided for some T ∈ TT the validity of the clauses T |= c′′ 4 c′ and

T |= c′ 4 c′′ respectively. Then the map φ = hc′,c′′ ◦ hc′′,c′ : Ic′ → Ic′ is

strict monotonic and it satisfies the condition φ(i) 4 i. Therefore, applying the
Lemma 1 allows to conclude that φ and the identity map are equal ut

5 Runs and Chronometers

Following [1], in this section we introduce the notion of a run for a set of clocks.
We use this notion to define a behavioural model for the set of clocks.

Definition 3 (see [1]). Let C be a finite set of clock then any map r : N → 2C

such that r(t) = ∅ implies r(t′) = ∅ for all t′ > t is called a run for C.

This definition means that if r is a run then at the (global) time t all clocks of
the set r(t) and only them are triggered.

For each run r one can construct a quadruple T [r] = (Ir,4, C, πr) by the
following way:

– Ir = {(c, t) ∈ C × N | c ∈ r(t)};
– (c′, t′) 4 (c′′, t′′) if and only if t′ ≤ t′′;
– πr(c, t) = c for all (c, t) ∈ Ir.

Proposition 15. T [r] is a time structure with clocks for given run r.

Proof. It is proved by trivial checking properties (2) and (3) ut

Hence, we can define the semantic relationship between a run r and a constraint
C by the next way: r |= C if and only if the clause T [r] |= C is true. Also, we can
introduce the relationship C1 run C2 as an abbreviation of the sentence ”for
any r such that r |= C1 the next relationship r |= C2 is valid”.
Proposition 15 allows to suggest that a run carries more information than a time
structure because a run depends on global time. A refinement and a substanti-
ation of this hypothesis is discussed below.

The notion of chronometer is introduced to specify dependences between time
structures and runs.
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Definition 4. Let T = (C, I,4, π) be a time structure with clocks and χ : I → N
be a map such that the next assertions are true:

for any i′, i′′ ∈ I the coincidence i′ ≡ i′′ implies χ(i′) = χ(i′′) (4)

for any i′, i′′ ∈ I the strict precedence i′ ≺ i′′ implies χ(i′) < χ(i′′) (5)

for any t, t′ ∈ N the validity of the clauses t ∈ χ(I) and t′ < t
implies truth of the clause t′ ∈ χ(I)

(6)

then χ is called a chronometer on T [9].

Example 1. Let C be a finite set of clocks, r be a run for C. Then it is evident that
the map χ∗ : Ir → N determined by the equality χ∗(c, t) = t is a chronometer.

Hence, Example 1 shows that each time structure generated by a run has a
native chronometer χ∗.

Proposition 16. Let T be a time structure with clocks and χ : I → N be a
chronometer then the map r[T , χ] : N→ 2C defined by the next formula

r[T , χ](t) = π(χ−1(t)) (7)

is a run.

Proof. To prove the proposition we should show that r[T , χ](t) = ∅ for some
t ∈ N implies r[T , χ](t′) = ∅ for any t′ ≥ t.
Suppose existence of t1 and t2 such that t1 < t2, π(χ−1(t1)) = ∅, but π(χ−1(t2)) 6=
∅. Taking into account this assumption one can derive that χ−1(t1) = ∅ and
χ−1(t2) 6= ∅. Hence, t1 /∈ χ(I) and t2 ∈ χ(I). We have obtained the contradic-
tion to condition (6) of Definition 4 ut

The next property for the chronometer χ∗ from Example 1 holds.

Proposition 17. Let r be a run for a clock set C then the next equality holds

r[T [r], χ∗] = r. (8)

Let T = (C, I,4, π) be a time structure with clocks and χ : I → N be a chronome-
ter on T then the map χ̂ : I → C ×N defined in the next way χ̂(i) = (π(i), χ(i))
is a map onto Ir[T ,χ] such that any coincidence i′ ≡ i′′ implies the coinci-
dence χ̂(i′) ≡ χ̂(i′′) in T [r] and any precedence i′ ≺ i′′ implies the precedence
χ̂(i′) ≺ χ̂(i′′) in T [r].

Proof. Really,

r[T [r], χ∗](t) = πr(χ−1∗ (t)) =

πr({(c, t) ∈ Ir}) = πr({(c, t) ∈ C × N | c ∈ r(t)}) = r(t).

Further, (c, t) ∈ Ir[T ,χ] if and only if c ∈ r[T , χ](t). It is easy to see that the last
clause is equivalent to existence of i ∈ I such that c = π(i) and t = χ(i), i.e. it
is equivalent to (c, t) = χ̂(i).
If i′ ≡ i′′ then χ(i′) = χ(i′′) by definition of a chronometer, hence χ̂(i′) ≡ χ̂(i′′).
Similarly, if i′ ≺ i′′ then χ(i′) < χ(i′′), therefore χ̂(i′) ≺ χ̂(i′′) ut
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Proposition 18. There exists only one chronometer on T [r] for any run r.

Proof. For any run r there exists the chronometer χ∗ on T [r]. Let χ be an
other chronometer on T [r]. For (c′, t), (c′′, t) ∈ I[r] using (4) we have χ(c′, t) =
χ(c′′, t). Hence, taking into account Definition 3 one can obtain that χ(c, t) = τ(t)
where τ is strict monotonic function from α into α for some cardinal α ≤ ω. Thus,
τ is the identity function and χ = χ∗ ut

Hence, a chronometer exists on a time structure associated with a run. We claim
that a chronometer exists on any time structure with clocks.

The next binary relation / on a time structure with clocks will be used for
describing an algorithm that calculates timestamps for instants. More precisely,
if i′, i′′ ∈ I then i′ / i′′ means that for all i ∈ I the validity of the next clause
i ≺ i′′ & i′ 4 i implies truth of the coincidence i ≡ i′. It is easy seen that if
i1 ≡ i′1, i2 ≡ i′2, and i1 / i2 then i′1 / i

′
2.

Now we can construct the algorithm that allows to calculate timestamps
for instants on an arbitrary time structure with clocks. This Algorithm 1 is a
generalization of Lamport’s algorithm [9].

Algorithm 1: Computing timestamp for an instant

input : T = (C, I,4, π) is a time structure with clocks,
i is an element of I

output: timestamp for the instant i

1 begin
2 count← 1; D ← ∅; W ← ∅ ; // -- initializing work variables --

3 while i /∈ D do // -- main loop --------------------

4 W+ ← {j ∈ I | j /∈ D & idx(j) = count};
5 W+ ←W+

⋃
{j ∈ I | j /∈ D & (∃j′ ∈W+)j′ ≡ j};

6 W ←W
⋃
W+;

7 D+ ← {j ∈W | (∀j′ ∈ I)(j′ / j ⇒ j′ ∈ D)};
8 D ← D

⋃
D+;

9 W ←W \D+;
10 count← count + 1;

11 end
12 return count;

13 end

Theorem 1 (existence of a chronometer). Let T be a time structure with
clocks and χ0 : I → N be the function calculated by Algorithm 1 then χ0 is a
chronometer on T .

Proof. One can see that Algorithm 1 builds two sequences of sets

D0 ⊂ D1 ⊂ D2 ⊂ · · · ⊂ Dn ⊂ . . .
W0,W1,W2, . . . ,Wn, . . .
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in accordance to the following computational scheme:
W0 = ∅
D0 = ∅
Wn+1 = (Wn

⋃
{j ∈ I | (∃j′ ∈ I)(j′ ≡ j & idx(j′) = n+ 1)}) \Dn

Dn+1 = Dn

⋃
{j ∈Wn+1 | (∀j′ ∈ I)(j′ / j ⇒ j′ ∈ Dn)}

and maps an instant i ∈ I into χ0(i) = inf{n ∈ N | i ∈ Dn}.
Firstly, note that supposition about partial definiteness of χ0 implies existence of
an infinite sequence i1 . i2 . . . . . But it contradicts the causes finiteness property
(2).
Secondly, it is true by the construction of Dn that the validity of i′ ≡ i′′ implies
the truth of the following statement: i′ ∈ Dn if and only if i′′ ∈ Dn. Hence, we
obtain that i′ ≡ i′′ implies χ0(i′) = χ0(i′′).
Further, similar reasoning provides the validity of the following statement: i′ ≺ i′′
implies χ0(i′) < χ0(i′′).
Finally, the simple inequality idx(i) ≤ χ(i), which is correct for any i ∈ I and
any chronometer χ on T , provides the validity of property (6) ut

Corollary 2. There exists a chronometer on an arbitrary time structure with
clocks.

6 Equivalence of Semantics for RCCSL Determined by
Relations  and run

In the section the notion of a chronometer is used to prove the theorem about
equivalence of the relationships  and run. The theorem is the main result of
the paper. Taking into account the theorem one can confine himself to checking
semantic consequence by using runs. This opens a way to constructing an opera-
tional semantics of RCCSL so that it is equivalent to the denotational semantics
defined above.

We need two lemmas to prove the main theorem.
Let’s use the notation i1 ‖ i2 for instants i1 and i2 such that i1 64 i2 & i2 64 i1.

Lemma 2. Let T = (C, I,4, π) by a time structure with clocks and i1, i2 be
instants such that the clause i1 ‖ i2 is true then there exists a chronometer χ on
T satisfied the following condition χ(i1) < χ(i2).

Proof. Let’s consider the quadruple T ′ = (C, I,4′, π) such that i′ ≺′ i′′ is valid
if one of the next conditions is true

1. i′ = i1 and i′′ = i2;
2. i′ ≺ i′′;
3. i′ ≺ i1 and i2 ≺ i′′;

and i′ 4′ i′′ if and only if i′ ≡ i′′ or i′ ≺′ i′′. It is easy seen that the relation
4′ is a pre-order. More over, it satisfies properties (2) and (3). Hence, T ′ is
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a time structure with clocks. Using Corollary 2 we obtain that there exists a
chronometer χ on T ′. But then χ is a chronometer on T and χ(i1) < χ(i2) is
true ut

Corollary 3. Let T = (C, I,4, π) be a time structure with clocks, i′, i′′ ∈ I be
instants, then

1. i′ ≺ i′′ is valid if and only if for any chronometer χ on T the inequality
χ(i′) < χ(i′′) is true;

2. i′ ≡ i′′ is valid if and only if for any chronometer χ on T the equality
χ(i′) = χ(i′′) is true.

Lemma 3. Let T = (C, I,4, π) be a time structure with clocks, ∗ be an arbi-
trary sign of a clock relation, c′ and c′′ be clocks then T |= c′ ∗ c′′ if and only
if r[T , χ] |= c′ ∗ c′′ for any chronometer χ on T .

Proof. It is evident that T |= c′ ∗ c′′ implies r[T , χ] |= c′ ∗ c′′ for any
chronometer χ on T . Hence, we need to prove the inverse statement.
1) Suppose that r[T , χ] |= c′ ⊂ c′′ for any chronometer χ on T . Then for any
i ∈ Ic′ and for each chronometer χ there exists an instant iχ ∈ Ic′′ such that
χ(i) = χ(iχ). Denote by X the set formed all iχ. It is a nonempty subset of
Ic′′ . Suppose that there exists at least two different elements in the set X. Let’s
denote them by iχ1 and iχ2 . Taking in account linearity of the order on Ic′ and
iχ1 6= iχ2 one can suppose that iχ1 ≺ iχ2 . Therefore χ1(i) = χ1(iχ1) < χ1(iχ2).
Thus, one of the two cases is realised: i ≺ iχ2 or i ‖ iχ2 . But in the first case
we obtain the inequality χ2(i) < χ2(iχ2), which contradicts to the choice of iχ2 .
Hence, i ‖ iχ2 is true. Similarly, one can obtain that i ‖ iχ1 is true. Therefore,
we proved that |X| > 1 implies i ‖ iχ for all i ∈ Ic′ and any chronometer χ.
Let i∗ = inf

χ∈X
iχ then i ‖ i∗ and χ(i∗) ≤ χ(iχ) = χ(i). This is a contradic-

tion because Lemma 2 provides existence of some chronometer χ0 such that
χ0(i∗) > χ0(i). Hence, X contains only one element, which we denote by h(i).
By construction we have χ(i) = χ(h(i)) for any chronometer χ. The last prop-
erty implies strict monotonicity of h and the coincidence i ≡ h(i). Therefore,
T |= c′ ⊂ c′′.
2 and 3) Suppose that r[T , χ] |= c′ ∗ c′′ for any chronometer χ on T then it is

evident that T |= c′ ∗ c′′ where ∗ equals to # or = .

4 and 5) Suppose that r[T , χ] |= c′ ∗ c′′ for any chronometer χ on T where ∗
equals to 4 or ≺ . Similarly, in the first case one can derive that T |= c′ ∗ c′′

is true ut

Theorem 2 (about equivalence of semantics). Let C be an arbitrary finite
set of clocks, C1 and C2 be RCCSL constraints then the C1  C2 is true if and
only if C1 run C2 is true.

Proof. One can easily see that the Theorem is the direct consequence of the
Lemma 3 ut
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7 Conclusion

In the paper we have considered the pure relational subset of CCSL (RCCSL)
and have introduced semantics for it by using a class of mathematical objects
called by authors time structures with clocks.
We have studied semantic properties of RCCSL (see Propositions 3 – 9). We hope
that these properties can be a background of an axiomatic basis for analysing
relational clock constraints.
Further we have introduced the notions ”a run” and ”a chronometer”. It allowed
us to study interrelations between time structures and runs, to introduce the
alternative semantics closer to the operational approach than the denotational
semantics discussed earlier.
Finally, the main theorem about equivalence of these two semantics (see Theo-
rem 2) has been proved.
We are planning to continue our research in the next areas:

– building an axiomatic theory of the semantic consequence for RCCSL con-
straints;

– extending results on complete CCSL;
– studying an operational semantics of CCSL and specifying its interrelations

to the denotational semantics.
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