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Abstract. We present the technique that allows splitting first-order logic formu-
lae into parts which helps to use the special algorithms of satisfiability checking 
and predicate transformer, which are the specializations. We describe the 
mathematical description of the algorithm of the constructing specializations 
and a few particular approaches to them, which speed up modeling of industrial 
models. We prove the correctness of satisfiability and predicate transformer 
functions. We consider forward and backward applicability of basic protocols 
during symbolic modeling and verification We introduce the examples for each 
specialization. We provide the experiments with typical real examples.  
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1 Introduction 

The technique of symbolic verification of requirement specifications of software sys-
tems has shown good results in automatic detection of reachability of deadlocks and 
violation of user-defined properties [1]. In previous works [2-4] symbolic models of 
systems being transition systems with symbolic states represented by formulae of first 
order logic were considered. A relation of transitions between the formulae is deter-
mined and marked by basic protocols, which are considered as actions, performed in 
the system. A basic protocol is a formula of dynamic logic 

)),(),(),(( axaxPaxx    and it describes local properties of the system in 

terms of pre- and postconditions α and β. Both are formulae of first order multisorted 
logic interpreted on a data domain, P is a process, represented by means of MSC dia-
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gram and describes the reaction of a system triggered by the precondition, x is a set of 
typed data variables, and a is a set of environment attributes. The general theory of 
basic protocols is presented in [5]. 

A transition is considered as an operator in the space of postcondition formulae. 
As the operator transforms one formula to another, in [6] a term “predicate trans-
former” is used. Thus, to compute transitions between the states of such models basic 
protocols are interpreted as predicate transformers: for given symbolic state of the 
system and given basic protocol the direct predicate transformer generates the next 
symbolic state as its strongest postcondition, and the backward predicate transformer 
generates the previous symbolic state as its weakest precondition. These concepts 
have been implemented in VRS (Verification of Requirement Specifications) system 
[7] and IMS (Insertion Modeling System) system [8]. 

An amount of papers with novel and very efficient techniques for computing satis-
fiability using SAT/SMT has been published in the last years, and some very efficient 
SMT tools are now available (e.g., BarceLogic [9], CVCLite/CVC/CVC4 [10,11,12], 
DLSAT [13], haRVey [14], MathSAT [15], SDSAT [16], TSAT++ [17], UCLID 
[18], Yices [19], Verifun [20], Zapato [21], Z3 [22]). An amount of benchmarks, 
mostly derived from verification problems, is available at the SMT-LIB [23]. Work-
shops devoted to SMT and official competitions on SMT tools are run yearly.  

All these tools could be configured with the help of many parameters, which 
means the usage of some techniques, tactics, heuristics or not, in order to gain in per-
formance. In the paper [24] the algorithm configuration problem is stated as follows: 
given an algorithm, a set of parameters for the algorithm, and a set of input data, 
found parameter values under which the algorithm achieves the best possible per-
formance on the input data. It gives a possibility of automated tuning of algorithm for 
obtaining performance on formulae of some theory. 

Usually during modeling of real projects we deal with complex environment states 
and simple formulae of basic protocols (pre- and postconditions). It means that we 
should check the satisfiability of the conjunction of the environment state and the 
precondition formula and transform this whole big formula with the help of predicate 
transformer [6]. Obviously, the manipulation with whole formulae is not required for 
most of cases. 

For example, let intint:int,:, fji  be attributes and  5)0(0)( fif  
0 j  be an environment state, and 1:1  jj  be a basic protocol. Let’s apply 

this basic protocol to the environment state. First, the satisfiability of conjunction of 
basic protocol precondition and environment state should be checked: 

05)0(0)(  jfif . This checking should use the notion of functional sym-

bols: ))0()(()0( fifi  . After that we should apply basic protocol postcondi-

tion to conjunction of environment state and precondition (see section Application of 
Basic Protocol):  

15)0(0)(

))1(0int)(:(5)0(0)(

))1(05)0(0)(int)(:(






jfif

vjvvfif

vjvfifv

 



492          V. Peschanenko, A. Guba and C. Shushpanov 

It is known that basic protocol changes attribute j only (see section about predicate 
transformers). It means that we could apply basic protocol to small part of environ-
ment state that depends on j, but not to whole environment state formula. In this ex-
ample it could be 0j only. If there are no predicates in projects ,which could com-

pare values of attribute j with values of other attributes, then we could use some spe-
cial theories for manipulating with such formulae. In this example numeral intervals 
could be used for representation of values of attribute j. We call such special theories 
Specialization of sat, pt functions according to our general algorithm. 

So, the main goal of this paper is to present a mathematical description of algo-
rithm of constructing specializations and a few particular approaches to specialization 
which speed up modeling of industrial models. This paper is a continuation of the 
[25], where only concrete values as a kind of specialization were described. 

In the Section 2 we describe the process of forward application of a basic protocol 
with the help of the satisfiability and the forward predicate transformer. In the Section 
3 we present an applicability of basic protocols using satisfiability and backward 
predicate transformer.  The specializations by memory usage and functional symbols 
are proposed in the Section 4. The results of experiments are discussed in the Section 
5. In the Section 6 we summarize advantages of usage of the specializations and what 
could be done in the nearest future.  

2 Forward Application of Basic Protocol 

Let S(a) be an environment state, )),(),(),(( axaxPaxx    be a basic proto-

col, where x – parameters of basic protocol, a – attributes of model, 
),()(),( axaEaxD   – conjunction of environment state and precondition of 

basic protocol.  
At the first step of application of basic protocol satisfiability of conjunction of en-

vironment state and precondition of basic protocol is checked: )),(( axDsat . If the 

formula is unsatisfiable, then basic protocol is not applicable to environment state 
S(a). If not, then process ),( axP  is run and after forward predicate transformer is 

applied: )),(),,(( axaxDpt  . The process of ),( axP  is not considered in the paper, 

because the specialization tries to speed up the functions sat and pt. 

2.1 Satisfiability 

The checking formula satisfiability function sat is based on the Shostak method, 
adapted to combination of numerical, symbolic and enumerated data types. If all of 
the attribute expressions (simple attributes and functional symbols with parameters) 
that are free in the formula S are simple, then for satisfiability checking it is sufficient 
to prove validity of the closed formula ),(),( axDxa , where a is a set of all simple 

attributes which occur in S, x is a set of parameters of basic protocol. For attribute 
expressions with parameters (including access functions to the elements of arrays), 
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the Ackermann reduction of the uninterpreted functional symbols is used, where at-
tribute expression is an attribute or functional symbol with parameters. 

The Shostak method consists of the following. An expression of the form )(xf  is 

called as Functional Expression, if f is an attribute and x is a list of its parameters. At 
first, superpositions of functional expressions are eliminated by successive substitu-
tion of every internal occurrence of )(xf  by a new variable y, bounded by existential 

quantifier and added to the formula )(xfy  . For example, formula )))((( xgfP  is 

replaced by formula )))(()(( yfPxgyy  . After all such replacements there will 

not be complex functional expressions in the formula. Further, for every attribute 
expression f of functional type all its occurrences )(),...,( 1 nxfxf  with the different 

parameters nxx ,...,1  are considered. Occurrence )( ixf  is replaced by variable iy , 

bounded by existential quantifier and substitutive equations )()( jiji yyxx   

are added. Now in the formula there are only simple attributes, and a method consid-
ered in [26] is used. 

2.2 Forward Predicate Transformer 

In general case, the post-condition looks like ),(),(),( axCaxRax  , where 

...)::( 2211  trtrR  is a conjunction of assignments and C(x,a) is a formula 

part of post-condition. 
We will consider three sets of functional expressions (we consider attributes as a 

functional expression with 0 arity): r, s and z. Set ,...),( 21 rrr   consists of the left 

parts of assignment, and also of other functional expressions that recursively depend 
on the left parts. In other words, r consists of the left parts of assignments and, if 
some functional expression f is included into this set, then all functional expressions 
in which f occurs are also included in r. Set ,...),( 21 sss   consists of functional ex-

pressions which have external occurrences (not in arguments of such functional ex-
pressions) in formula part C of post-condition, but do not coincide with expressions 
from the set r. Finally, set ,...),( 21 zzz   consists of functional expressions which 

have external occurrences in formula D in right parts of assignments and in internal 
occurrences (in arguments if functional expressions) of the functional expressions of 
formula part C of post-condition and left parts of assignments, but these assignments 
are not included in two other sets (including parameter of basic protocol). Now, con-
sidering formulae, from which a post-condition and formula D are constructed as 
functions of external occurrences of elements of these sets, we get a presentation of 
post-condition in the following form: 

),,(...)),,(:),,(),,(:),,((),,( 2211 zsrCzsrtzsrrzsrtzsrrzsrB  , 

Predicate transformer is determined by the following formula:  
...)),,(),,,((pt 21  qqzsrzsrD  ,where 

)),,(),,(),,(),,()(,( zsrCzvuEzvuRzvuDvuq ii  , 

...))),,(),,(()),,(),,((),,( 2211  zvutzvurzvutzvurzvuR , 
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Formula ),,( zvuR  is a quantifier-free part of the assignment formula. Set of the 

variables u(v) represents new variables for each attribute expression from r(s) set. The 
pt substitutes attributes from r(s) set to variables from u(v) set in corresponded part of 
formula. 

Each of disjunctive members iq  corresponds to one of possible means of identifi-

cation of functional expressions occurring in formulae ),( ax , and ),,( zvuEi  is a set 

of equalities and inequalities corresponding to such identification.  
To describe the construction of ),,( zvuEi  we will consider the set M of all pairs 

of functional expressions in the form ,...),(,...),,()),(),(( 2121 lllkkklfkf  , where 

)(kf  is chosen from set z, and )(lf  – from sets r and s. These functional expressions 

shall be equal if their arguments were equal before application of basic protocol. 
Let’s choose arbitrary subset MN   (including an empty set for every pair 

Nlfkf ))(),(( we will consider conjunction of equalities 

...)(, 2211  lklklk . We will unite all such conjunctions in one and will add 

to it conjunctive negations of all equalities, which correspond to pairs which are not 
included into the set N. We will denote the obtained formula as ),,( zsrGi . If this 

formula is satisfiable, then the choice is successful. Now obviously, )(kf  is not inde-

pendent and shall change the value because ),,( zsrGi  is true.  Thus, )(kf  shall 

change the value in the same way as )(lf .  Set ),,(),,(),,( vuzHzsrGzsrE iii   

where ),,( vuzHi  is a conjunction of equalities wkf )(  if a variable w corresponds 

to )(lf . Thus, if )(kf  coincides with several functional expressions, it is not impor-

tant what variable is chosen (transitivity of equality) [6].  

3 Backward Application of Basic Protocol 

Let )(aS  be an environment state after the application of the basic protocol  

)),(),(),(( axaxPaxx   , where x is parameters of basic protocol, a – attrib-

utes of model, ),(),(),( axCaxRax  , where ...)::( 2211  trtrR  is a 

conjunction of assignments and C is a formula part of post-
condition, ),()(),( axCaSaxD   is a conjunction of environment state and formula 

part of postcondition of basic protocol.  

3.1 Satisfiability 

At first step of application of basic protocol in backward mode satisfiability of con-
junction of environment state and formula part of postcondition of basic protocol is 
checked: )),(( axDsat . If the formula is unsatisfiable, then the basic protocol is not 

applicable to environment state )(aS .If not, then process ),( axP  is run and after a 

backward predicate transformer is applied: )),(),,((1 axaxDpt  .  
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3.2 Backward Predicate Transformer 

A backward predicate transformer considers three sets of functional expressions r, s 
and z (as forward too). A postcondition of the basic protocols is represented by the 
following formula: 

),,(...)),,(:),,(),,(:),,((),,( 2211 zsrCzsrtzsrrzsrtzsrrzsrB   

A backward predicate transformer is determined by the following formula:  

...)),,(),,,((pt 1
2

1
1

-1   qqzsrzsrD  , where  

),,()),,(),,,(),,()(,(1 zsrzvuEzsruRzvuDvuq ii  , 

,...},{...),)),,(()),,(),,((),,,( 212211 uuuzsrtuzsrtzsruzsruR  , 

Each of disjunctive members iq  corresponds to one of possible identification of 

functional expressions, occurring in formulae ),( ax and environment state S(a), 

where ),,( zvuEi  are sets of equalities and inequalities corresponding to such identifi-

cation. Formula ),,( zvuEi  is built in the same way as in forward predicate trans-

former [27].  

4 Specialization 

We propose to use two types of specializations: 
1. Specialization by memory usage 
2. Specialization by functional symbol 

4.1 Specialization by memory usage 

Let 21,aa  be sets of attributes from initial environment state and 

aaaaa  2121 ,  )()()( 2211 aSaSaS   is environment state, 

)),(),(),(),(),((),( 222111222111 axaxaxPaxaxxaxB    is basic 

protocol, where xxxxx  2121 . 

If )),(),(),((),( axaxPaxxaxB i
i

   then  ))),(()(( axaSsat i
i
  

)),()(( axaSsat i
i

  and  )(()),()),,(()(( aSptaxaxaSpt
i

i
i

  

)),(),,( axaxi  . So, in the next text we consider basic protocol as ),( axB  only. 

4.2 Theorem 1 

)),()(()),()((

)),()(),()((

22221111

22221111

21

21

axaSsataxaSsat

axaSaxaSsat








 

Proving. 
Function sat builds closed formula. So, 
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)),()(),()()(,,,(

)),()(),()((

222211112121

22221111

21

21

axaSaxaSxxvv

axaSaxaSsat









 
where 21,vv  are variables generated for attribute expression which depend on at-

tributes 21,aa .  It is known that  212121 xxaaaaa  
xxx  21  . It means that scope of quantifiers could be narrowed: 

)),()(()),()((

)),()()(,()),()()(,(

)),()(),()()(,,,(

22221111

222222111111

222211112121

21

21

21

axaSsataxaSsat

axaSxvaxaSxv

axaSaxaSxxvv













i 

Theorem is proved. 
This theorem means the following: 

1. If )()()( 2211 aSaSaS   and ),(),( 111 axxa   and )(aS  is satisfiable, then it 

is enough to check satisfiability of conjunction of ),()( 11111 axaS   for satisfi-

ability checking of ),()( axaS  . Checking of satisfiability of )( 22 aS  is not re-

quired. 
2. Checking of each part )),()(( iiiii axaSsat   could be done concurrently. 

This case could be easily generalized to naa ,....,1  case, because if it is possible to 

build subsets iiiiiiii aaaaaaaa  212121,  and to spilt an environment 

state and basic protocol accordingly to the theorem 1, then 
)),()(()),()(( iiiii

i
iiiii

i
axaSsataxaSsat   . So, after if we say about such 

pair of two sets iiiiiiii aaaaaaaa  212121, , then we understand that it 

could be applicable and for n sets. 
Let’s see how forward and backward predicate transformer can be applied. 

4.3 Theorem 2 

For forward application of basic protocol it is true that: 

)),(),,()(()),(),,()((

)),(),(),,()(),()((

222222111111

221122221111

2211

2121

axaxaSptaxaxaSpt

axaxaxaSaxaSpt








 

Proving. 
pt function builds sets zsr ,,  from postcondition ),(),( 2211 21 axax    and 

formula ),()(),()( 22221111 21 axaSaxaS   , where r  is a set of attribute ex-

pressions from left parts of assignments of postcondition, s  is a set of attribute ex-
pressions from formula part of postcondition, z  is a set of other attribute expressions 
from formula and postcondition. We know that sets of attribute expressions from pairs 

),()( 1111 1 axaS  , ),( 11 1 ax  and ),()( 2222 2 axaS  , ),( 22 2 ax  are not inter-

sected. It means that we could split each set zsr ,,  on subsets 
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212121 ,, zzzsssrrr   and  21 rr ,  21 ss , 

 21 zz , because  21 aa . Let’s write formula which is built by pt func-

tion. 
Let ),()(),(),,(),(),( 11111222111 111 axaSaxDaxDaxDxaD   , 

),()( 2222 22 axaSD    and ),,(),,(),( 11111111111 zsrCzsrRax  , 

),,(),,(),( 22222222222 zsrCzsrRax  . So, general formula of predicate trans-

former is the following: 
)),,()),,((),,(),,()(,( zsrCzvuEzvuRzvuDvuq i

i
i

i
  

where ),,(),,(),,( 22221111 zvuRzvuRzvuR  ,  ),,(),,( 1111 zsrCzsrC  

).,,( 2222 zsrC  because ),(),(),( 2211 21 axaxxa   . 

Let’s write in details how to obtain ),,( zvuEi
i
 . It is known that  21 rr , 

 21 ss ,  21 zz . To build such disjunction we should take into account 

all pairs of functional attribute expressions from sets r,s and z. It means that each such 
pair should be in set of attribute );( 111 zsr   or );( 222 zsr  . So, 

)),,(()),,((),,( 222111 2
2

1
1

zvuEzvuEzvuE i
i

i
i

i
i

  

Let’s consider formula of predicate transformer: 

)),(),,(()),(),,((

...)),,()),,((

),,(),,()(,()),,(

)),,((),,(),,()(,(

)),,(),,(

)),,(()),,((

),,(),,(

),,(),,()(,,,(

)),,()),,((),,(),,()(,(

)),(),(),,()(),()((

22221111

2222222

2222222221111

111111111111

22221111

222111

222111

111211112121

221121221111

2211

2
2

1
1

2
2

1
1

2121

axaxDptaxaxDpt

zsrCzvuE

zvuRzvuDvuzsrC

zvuEzvuRzvuDvu

zsrCzsrC

zvuEzvuE

zvuRzvuR

zvuDzvuDvuuu

zsrCzvuEzvuRzvuDvuq

axaxaxaSaxaSpt

i
i

i
i

i
i

i
i

ii

i
i

i
i






















 

Theorem is proved. 

4.4 Theorem 3 

For backward mode it is true that: 
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)),(),,,()((

)),(),,,()(()),(),(

),,,()(),,()((

22222222

11111111
1

2211

222222111111
1

2

121

axzsrCaSpt

axzsrCaSptaxax

zsrCaSzsrCaSpt














 

Proving. 
),,(),,(),,( 222111 zvuRzvuRzvuR  , ),,(),,(),,( 22221111 zsrCzsrCzsrC   

because ),(),(),( 21 2211 xaxaxra   .  )),,((),,( 1111
1

zvuEzvuE i
i

i
i

 

)),,(( 2222
2

zvuEi
i
  from previous theorem. 

)),(),,,()(()),(),,,()((

),,())),,((),,(),,()(,(

),,())),,((),,(),,()(,(

),,(),,(

))),,(()),,((

),,(),,(

),,(),,()(,,,(

),,()),,(),,,(),,()()(,(

)),,(),,,()((pt

2222222211111111
1

22222222222222222

11111111111111111

22221111

222111

22221111

222211112121

1-1

21

2
2

1
1

2
2

1
1

axzsrCaSptaxzsrCaSpt

zsrzvuEzsrCzsrSvu

zsrzvuEzsrCzsrSvu

zsrzsr

zvuEzvuE

zsrCzsrC

zsrSzsrSvvuu

zsrzvuEzsruRzsrCaSvu

qzsrzsrCaS

i
i

i
i

i
i

i
i

i
i

i
i
































 

Theorem is proved. 
Theorem 2 and theorem 3 mean that: 

1. Functions pt, pt-1 could be applied separately and concurrently.  
2. If postcondition contains ),( 111 ax  only, then 

)),(),,,()((),,()(

)),(),,,()(),,()((

)),(),,()((),()(

)),(),,()(),()((

11111111
1

222222

11222222111111
1

1111112222

1122221111

1

1

112

121

axzsrCaSptzsrCaS

axzsrCaSzsrCaSpt

axaxaSptaxaS

axaxaSaxaSpt



















  

So, functions )),(),,(()),,(( iiiiiiiii axaxDptaxDsat   are called specialization, be-

cause we could use some special theories for implementation of it. 



Specializations and Symbolic Modeling          499 

 

5 Examples of Usage of Specializations 

5.1 Examples of Specializations by Memory Usage 

Example 1. Concrete values. Let )/()2()( iaSiaS   be an environment state 

where int:i  and ia /  is a set of all attributes in model except i, 
))1:()0((  iiixb . For application of such basic protocol we should 

check satisfiability of the next formula: 1))0()2((  iisat , and the postcondi-

tion should be applied to )2( i : )3())1()0()2((  ivivvv . For such 

examples direct C++ translation could be used instead of using some special theories, 
and it will work much faster because it doesn’t require any additional checking, just 
direct translation into C++ code and compilation of it.  

Example 2. Let )/()2()( iaSiaS   be environment state where int:i  and 

ia /  is a set of all attributes in model except i, ))1:()0((  iiixb . For 

application of such basic protocol we should check satisfiability of the next formula: 
1))0()2((  iisat , and the postcondition should be applied to )2( i : 

)3()1())1()0()2((  iivivvv . For such examples numerical 

intervals could be used. So, )/())2;(()( iaSiaS  , 

))1:());0(((  iiixb . Satisfiability checking looks like just crossing of 

two numerical intervals: ]1;1[)2;0();0()2;(  iii  for integer. Appli-

cation of pt creates the following formula:  ))1(])1;1[(( vivv  
]2;2[]1;1[1  ii . This approach will work faster than general satisfiability 

checking and quantifiers eliminations. Such approach could be used for all numeric 
and enumerated types. 

5.2 Examples of Specializations by Functional Symbol 

It is not always possible to represent environment state and basic protocols in the 
following way: )()()( 2211 aSaSaS  , and  ),((),( 111 axxxaB   

)),(),(),(),( 222111222 axaxaxPax    where  21 aa , 

aaa  21 , xxxxx  2121 . One of such situation occurs when a value 

of functional attribute expression and its parameter has different types and belongs to 
the different subsets ia . For example, if functional attribute: Tfji int:int,:,  is 

defined where ),,( 321 cccT   is enumerated type with three enumerated constants: 

321 ,, ccc , then formula 0))(( 1  icif  could be represented with specializations 

as follows: )0()())(:( 111  icvifvf . Let ):)((1 2cjfb   be a basic 

protocol. Its specialized representation is: 1):())(:(1 211  cvjfvfb . 

It is required to merge such data structures for pt function which should consider all 
pairs of functional attribute expression from sets r,s and z: 
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))(),(:())(:())(:( 2111 jfvifvfjfvfifvf  . After that basic protocol 

should be transformed in the following form: 
1):())(:(1 222  cvjfvfb . It is required to take into account two 

possible combinations: )()( jiji  . So, we obtain: 

)(0)()())(),(:(

)(0)())(:(

)(0)()())(),(:(

)(0)())(),(:(

0))()()((

))()()((

))(),(:(

):,0)())(),(:((

221121

211

221121

2221

2211

221

21

221121

jiicvcvjfvifvf

jiicvifvf

jiicvcvjfvifvf

jiicvjfvifvf

icvcvjiv

cvcvjiv

jfvifvf

cvicvjfvifvfpt













 

Let )()(),,,,...,,()( 2211212121 aSaSaavvffFaS   be an environment state 

where ...21  ff  are names of functional symbols, 21,vv  are variables for each 

functional attribute expression from sets 21,aa  correspondently, and 

...),...),...,,(,...),,(:

,...),...,,(,...),,(:(

),,,,...,,(

2
2

1
2

2
2

2
2

2
2

1
22

1
22

2
1

1
11

2
1

2
1

1
11

1
11

212121

ttfvttfvf

ttfvttfvf

aavvffF







 

where ,...,,,
21

2
2

1
2

2
1

1
1 ff avvavv   are variables of type of functional names 

,..., 21 ff   for each attribute expression, fia  is set of attribute, such as  ji af  ,  

}{ i
i
i

j
i aat  , … - corresponded arguments for each functional with the same name 

are in one specialization, and Shostak’s method could be applied for each right part of 
equation in F. 

Let )()(),,,,...,,()( 2211212121 aSaSaavvffFaS  . and 

)),,(),.(),(),,(

),,(),,,,,,...,,(()(

222211112222

111121212121

axvaxvxaPaxv

axvxxaavvffFxab b







 

5.3 Theorem 4 

)),,(),((

)),,(),(),,(),(

))(,...)),(,...),(((()),()((

22222221111111

2121

),,(

iiiiiiii
i

l
i

k
iiiiiii

lki

xavavSqsat

axvavSaxvavS

vvttfttfsataxaSsat











 

where ,...),(,...),( 2121
iiiiii ttfttf   is equality of arguments of functional attribute 

expressions. 
Proving 
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Let’s define   ),,,,...,,(),,,,,,...,,( 21
1
2

1
12121212121 aavvffFxxaavvffF  

),,,,,,...,,( 2121
2
2

2
121 xxaavvffFb . We combine all equations with the same name of 

functional symbol if  and renaming variables names after such union for equations 

from basic protocol. After that we obtain sets of variables 21,vv    and new basic 

proto-
col  ),,(),,,,,,...,,(()( 111121212121 axvxxaavvffFxab b 

)),,(),,(),(...),,( 222211112222 axvaxvxaPaxv   . 

For satisfiable checking we should add corresponded implication for each pair of 
equation from ),,,,,,...,,( 21212121 xxaavvffF   with the same name of functional 

symbol if .  
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Each left and right parts of equation and negation of equations are in the same 
specialization. It means that we could build here a disjunction of conjunction. Each 
conjunct in such disjunction is iq  which will be in one form of our specialization. So, 

it means that we could check satisfiability in the following form 
)),,(),(( iiiiiiii

i
xavavSqsat   . 

Theorem is proved. 

5.4 Theorem 5 
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Proving. 
The sets 21,vv   are built in the same way as in theorem 3. Let’s consider a general 

formula of predicate transformer: 
),,(),,(),,(),,()(,()),,(),,,((pt zsrCzvuEzvuRzvuDvuzsrzsrD i

i
 . 

Coefficient ),,( zvuEi
i
  looks like disjunction of conjunction of all possible 

matchings with functional attribute expressions from sets r,s and z. So, we can present 
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it as conjunction of two disjunctions: )),,(()),,((),,( zvuEzvuEzvuE l
l

k
k

i
i

  

where ),,( zvuEk
k
  is disjunction for matching of functional attribute expression 

where parameters and its value are from different sets of ja . ),,( zvuEl
l
  is a dis-

junction of matching of other functional attribute expression. Each conjunct of such 
disjunction could be considered as a conjunction which depends on different sets of 
memory ja . It means that disjunction of conjunction ),,( zvuEk

k
  could be prepared 

early before calling of some pt function without corresponded substitution of x,y. So, 

),,(),,(),,( 22221111 axvEaxvEzvuE kk

k
k

k
 . Disjunction ),,( zvuEl

l
  could be 

presented in the same way. So, the theorem is proved. 

5.5 Theorem 6 
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This theorem could be proved in the same mode as theorem 4. 

6 Experiments 

In this section we present some results from our test suites. All experiments are 
devided into several groups. We compare the time of modeling of the satisfiability 
and the predicate transformer, presented in the Section 2, and these algorithms with 
the specializations. 

The first group of experiments refers to specialization by memory usage. Projects 
contain formulae in which some attributes have only concrete values. Let us present 
one typical real example. This example has a functional attribute of symbolic type 
with integer parameters, simple enumerated and simple integer attributes. All of these 
integer attributes initialize with concrete values and have concrete values at all times 
during trace generation (basic protocols do not change those to symbolic ones). Other 
attributes are symbolic. We provide a specialization for attributes, which are always 
concrete. The difference of modeling time for this example and for this one special-
ized by concrete values is more than in 3 times. Of course,  the speedup depends on 
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project: more concrete attributes we have, more speedup we shall obtain. In [25] it 
was shown that speedup could be in thousands times. 

The second group of experiments refers also to specialization by memory usage, 
but not to concrete values. Examples from this group have enumerated attributes and 
integer attributes. Some of the integer attributes memories are intersected, some of 
them are independent. First of all, we provide the splitting of formulae into two parts 
according to attribute types: enumerated part and integer part. For the enumerated part 
we use bitsets, for integer – common Pressburger algorithm. Speedup was about 5-
7%. After we specialize an integer part. We consider the attributes which memory is 
independent and obtain speedup in 10 times. 

So, the results of comparison of modeling time using general satisfiability func-
tions and functions with specialization are given. 

Table 6. Results of experiments 

Group of tests General 
algorithm 

With specializations 

1 930 sec 300 sec (memory usage/concrete values) 
2 300 sec 280 sec (splitting by types) 
3 300 sec 33 sec (memory usage/independent memory) 

7 Conclusions 

Symbolic modeling is a powerful technique for the automated reachability of dead-
locks and violations of user-defined properties. The main complexity of the reachabil-
ity problem is in the complexity of satisfiability and predicate transformer functions. 
There are a lot of SMT-based techniques which speed up the satisfiability of formulae 
that satisfy some particular theory. We propose a technique that allows to speedup 
classical symbolic modeling when formulae could be splitted in several parts and used 
some special theories for manipulations with them, which are called specializations. 
The mathematical description of the algorithm for constructing specializations is pro-
vided and the correctness of such specializations is proved. 

Specializations by memory usage and functional symbols are considered and ex-
amples for each are given. 

The nearest plans are the investigation of additional kinds of specialization, be-
cause the more specializations we have, the more speedup we obtain. 
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