
A Formal Model of Resource Sharing Conflicts
in Multithreaded Java ?

Nadezhda Baklanova and Martin Strecker

Institut de Recherche en Informatique de Toulouse (IRIT), Université de Toulouse

{nadezhda.baklanova,martin.strecker}@irit.fr

Abstract. We present a tool for analysing resource sharing conflicts
in multithreaded Java programs. We consider two models of execution:
purely parallel one and sequential execution on a single processor. A Java
program is translated into a system of timed automata which is verified
by the model checker Uppaal. We also present our work in progress on
formalisation of Real-Time Java semantics and the semantics of timed
automata.

Keywords. resource sharing, Java, timed automata, model checking

Key terms. Model, Development, ConcurrentComputation, FormalMethod,
QualityAssuranceProcess

1 Introduction

Along with increasing usage of multithreaded programming, a strong need of
sound algorithms arises. The problem is even more important in programming
of embedded and real-time systems where liveness conditions are extremely im-
portant. To certify that no thread would starve or would be deadlocked, lock-free
and wait-free algorithms have been developed. Lock-free algorithms do not use
critical sections or locking and allow to avoid thread waiting for getting access to
a mutual exclusion object. Nevertheless, only one thread is guaranteed to make
progress. Wait-free algorithms prevent starvation by guaranteeing a stronger
property: all threads are guaranteed to make progress, eventually. Such algo-
rithms for linked lists, described for example in [4,11], are very complex, difficult
to implement and, consequently, hard to verify.

What is worse, these algorithms seem to be incompatible with hard real-time
requirements: the progress guarantees are not bounded in time. Thus, a lock-free
insertion of an element into a linked list by a thread may need several (possi-
bly infinitely many) retries because the thread can be disturbed by concurrent
threads. Under these conditions, it is not possible to predict how much time is
needed before the thread succeeds.

? Part of this research has been supported by the project Verisync (ANR-10-BLAN-
0310)

A Formal Model of Resource Sharing Conflicts in Multithreaded Java 551

Critical sections are used in many applications in order to ensure concurrent
access to objects although if the scheduling order is wisely planned, locks are not
necessary since threads access objects at different moments of time. This is the
motivation for our work: we develop a tool for checking resource sharing conflicts
in concurrent Java programs based on the statement execution time. This gives a
“time-triggered” [6] flavor to our approach of concurrent system design: resource
access conflicts are resolved by temporal coordination at system assembly time,
rather than during runtime via locking or via retries (as in wait-free algorithms).

We assume that a program is annotated with WCET information known from
external sources. The checker translates a Java program into a timed automaton
which is then model checked by a tool for timed automata (concretely, Uppaal).

In this paper, after an informal introduction (Section 2), we present a formal
semantics of the components of the translation, namely Timed Automata (Sec-
tion 3) and a multi-threaded, timed version of Java (Section 4). Then we describe
the mechanism of the concrete translator written in OCaml (Section 5) and give
some preliminary correctness arguments (Section 6) – the formal verification still
remains to be done. The conclusions (Section 7) discuss some restrictions of our
current approach and possibilities to lift them.

Status of the present document: We give a glimpse at several aspects of our
formalisation, which is far from being coherent. Therefore, this paper is rather
a basis for discussion than a finished publication.

2 Informal Overview

To show the main idea, we present an example of a concurrent Java program.
It is a primitive producer-consumer buffer with one producer and one consumer
where both producer and consumer are invoked periodically. The program is
annotated with information about statement execution time in //@ ... @//

comments.

private class Run1 implements Runnable{

public void run(){

int value ,i;

//@ 1 @//

i=0;

while(i<10){

synchronized(res){

//@ 2 @//

value=Calendar.getInstance ().get(Calendar.

MILLISECOND);

//@ 5 @//

res.set(value);

}

Thread.sleep (10);

//@ 2 @//

i++;

552 N. Baklanova and M. Strecker

}

}

}

private class Run2 implements Runnable{

public void run(){

int value ,i;

//@ 1 @//

i=0;

Thread.sleep (9);

while(i<10){

synchronized(res){

//@ 4 @//

value=res.get();

}

Thread.sleep (8);

//@ 1 @//

i++;

}

}

}

One of the possible executions is shown in Figure 1.

0 1 8 20

Fig. 1: Possible execution flow. Black areas represent execution without locks,
blue and green areas - execution within a critical section, grey areas - sleeping,
white areas - waiting for processor time.

After having translated this program to a system of timed automata we run
the Uppaal model checker to determine possible resource sharing conflicts. The
checked formula is

A[]∀(i : int[0, objNumber − 1])∀(j : int[0, autNumber − 1])waitSet[i][j] < 1,
(1)

where waitSet is an array of boolean flags indicating whether a thread waits
for a lock of a particular object. If all array members in all moments of time
are false, no thread waits for a lock therefore no resource sharing conflicts are
possible.

A Formal Model of Resource Sharing Conflicts in Multithreaded Java 553

3 Timed Automata Model

Timed automata are a common tool for verifying concurrent systems; the under-
lying theory is described in [1]. We formalize the basic semantics of an extension
of timed automata used in the Uppaal model checker. The formalized syntax
and semantics are adapted from [3].

An automaton edge is composed of a starting node, a condition under which
the edge may be taken (guard), an action, clocks to reset and a final node.

type-synonym (′n, ′a) edge = ′n × cconstr × ′a list × id set × ′n

An invariant is a condition on a node which must be satisfied when an au-
tomaton is in this node.

type-synonym ′n inv = ′n ⇒ cconstr

An automaton consists of a set of nodes, a starting node, a set of edges and
an invariant function.

type-synonym (′n, ′a) ta = ′n set × ′n × (′n, ′a) edge set × ′n inv

We use the model checker Uppaal which proposes an extension of classical
timed automata with variables. A full state comprises a node and a valuation
function. There are two types of variables: integer (aval) and boolean (bval),
and clock variables which have a special semantic status in timed automata.
The available transitions can be defined knowing given this state.

record valuation=
aval :: id⇒nat
bval :: id⇒bool
cval :: id⇒time

type-synonym ′n state = ′n × valuation

A timed automaton can perform two types of transitions: timed delay and
edge taking. If an automaton takes an edge, variables may be updated or clocks
may be reset to 0. The Transition constructor takes a list of variable and clock
updates as an argument.

datatype ′a ta-action = Timestep time | Transition ′a list

Accordingly, the timed automata semantics has two rules: delay and tran-
sition. If an automaton is delayed, it stays in the same node, and values of all
clocks are increased to the value d. The invariant of the current node must be
satisfied.

If an automaton takes a transition, the node is changed, and clock values
remain unchanged unless they are reset to 0. The invariants of both starting
and final nodes must be satisfied as well as the guard of the taken transition. If
the action of the transition involves variable updates, the valuation function is
updated as well. This is done by the function application eval-stmts varv a.

554 N. Baklanova and M. Strecker

varv ′ = varv(|cval := add (cval varv) d |)
varv |= invs l varv ′ |= invs l l ∈ nodes

(nodes, init , edges, invs) ` (l , varv) −Timestep d→ (l , varv ′)

(l , g , a, r , l ′) ∈ edges
varv |= g varv ′ = eval-stmts varv a(|cval := reset (cval varv) r |)

varv ′ |= invs l ′ l ∈ nodes l ′ ∈ nodes

(nodes, init , edges, invs) ` (l , varv) −Transition a→ (l ′, varv ′)

A network of timed automata is a product automaton with exceptions in case
of handshaking actions [2]. Handshaking allows to synchronize two automata so
that both take an edge simultaneously.

(s1, g1, a, cs1, s1
′) ∈ edges1 (s2, g2, a, cs2, s2

′) ∈ edges2

a ∈ getEdgeActions edges1 ∩ getEdgeActions edges2

((s1, s2), g1 d∧e g2, a, cs1 ∪ cs2, s1
′, s2

′) ∈ edges-shaking edges1 edges2

(s1, g , a, cs, s1
′) ∈ edges1 a ∈ getEdgeActions edges1

a /∈ getEdgeActions edges2 s2 ∈ getEdgeNodes edges2

((s1, s2), g , a, cs, s1
′, s2) ∈ edges-shaking edges1 edges2

(s2, g , a, cs, s2
′) ∈ edges2 a ∈ getEdgeActions edges2

a /∈ getEdgeActions edges1 s1 ∈ getEdgeNodes edges1

((s1, s2), g , a, cs, s1, s2
′) ∈ edges-shaking edges1 edges2

4 Java Model

The look of the Java semantics has been inspired by the Jinja project [5] and its
multithreaded extension JinjaThreads [7]. The Java execution flow is modeled
by three transition relations: evaluation, scheduler and platform. The evaluation
semantics is the semantics of a single thread, the scheduler semantics is respon-
sible for thread scheduling, and the platform semantics formalizes the notion
of time advancement. Taking into account the passage of time is the essential
increment wrt. the above-mentioned semantics.

Following Jinja, we do not distinguish expressions and statements; their
datatype is the following:

datatype expr
= Val val
| Var vname
| VarAssign vname expr
| Cond expr expr expr
| While expr expr

A Formal Model of Resource Sharing Conflicts in Multithreaded Java 555

| Annot annot expr
| Sync expr expr
| Sleep expr

... and others.

The system state is large and complex; it stores local information of all
threads such as local variable values and expression to be evaluated, shared
objects, time, actions to be carried out by the platform, locks and wait sets.
Given this state and scheduler logic, the further execution order is deterministic.

record full-state =
threads :: id ⇒ schedulable option — threads pool
th-info :: thread-id ⇒ thread-state option — expression to be evaluated and state
sc-info :: schedule-info — locks and thread statuses
pl-info :: platform-info — global time
gl-info :: heap — heap state
ws-info :: waitSet — wait sets
running-th :: thread-id — currently running thread
pending-act :: action — action to be carried out by platform

Evaluation semantics depends solely on local and heap variables therefore we
use the reduced variant of full state for thread evaluation step.

record eval-state =
ev-st-heap :: heap
ev-st-local :: locals

When a thread expression is reduced, the duration of the performed action
is not taken into account on the evaluation step, so the action type is passed
further to the platform step where time advances according to the action. For
now we assume that any action of a particular type takes a fixed amount of time
for execution.

The evaluation rules take an expression and a local state and translate them
to the new pair of expression and state and also emit an action for the platform
step. Here are some examples of evaluation rules.

fs ` (e, s) −act→ (e ′, s ′)

fs ` (VarAssign vr e, s) −act→ (VarAssign vr e ′, s ′)

fs ` (VarAssign vr (Val vl), s) −EvalAct (exec-time VarAssignAct)→ (Val Unit ,
s(|ev-st-local := ev-st-local s(vr 7→ vl)|))

Several rules use information about locks and wait sets that is not included
in the local state therefore they pull it from the full state.

¬ locked a fs

fs ` (Sync (Val (Addr a)) e, s) −lock-action a fs 0→ (Sync (Val (Addr a)) e, s)

556 N. Baklanova and M. Strecker

locked a fs fst (the (sc-lk-status (sc-info fs) a)) 6= runnint-th fs

fs ` (Sync (Val (Addr a)) e, s) −lock-action a fs 0→ (Throw [ResourceSharingConflict], s)

locked a fs

fs ` (Sync (Val (Addr a)) (Val v), s) −unlock-action a fs 0→ (Val Unit , s)

5 Abstracting Java to Timed Automata

We consider two models of program execution. The first one is purely parallel, i.e.
each thread is assumed to execute on its own processor so that no thread waits
for CPU time. Another model is the sequential one when a program executes
on a single processor. The parallel model is easier, however, it does not seem to
be realistic. The sequential model represents the realistic situation for real-time
Java applications since the RTSJ (Real-Time Specification of Java [8]) specifies
the behavior for monoprocessor systems only.

The translated Java programs must be annotated with timing information
about execution time of the following statement. The translation uses timing
annotations to produce timed automata which model the program. The obtained
system is model checked for possible resource sharing conflicts.

5.1 General principles

We suppose that the translated program has a fixed number of threads and
shared fields, all of them defined statically. The initialization code for threads
and shared fields must be contained in the main method. The classes implement-
ing Runnable interface must be nested classes in the class containing the main

method. The required program structure is shown in the figure 2.
Each thread created in the program is translated into one automaton, and

one more additional automaton modeling the Java scheduler is added to the
generated system.

Java statements are translated into building blocks for condition statement,
loop etc. which are assembled to obtain the final automaton. Annotated state-
ment is translated into its own block. Method calls and wait/notify statements
are not translated for now.

The timed automata system contains an array of object monitors representing
acquired locks on shared objects. When a thread acquires a lock of an object,
the monitor corresponding to this object is incremented, and when the lock is
released, the monitor is decremented.

There is a number of checks which are performed before on the program
source code which guarantee correctness of the generated model. One of the most
critical is the requirement that the whole parse tree must be annotated, i.e. for
any leaf of the AST there is a timing annotation somewhere above this leaf.
With this requirement the behavior of the generated system can be determined
in each moment of time.

A Formal Model of Resource Sharing Conflicts in Multithreaded Java 557

public class Main{

Res1 field1; // shared fields declaration

public static void main(String [] args){

Run1 r1; // declarations of Runnable object instances

Thread t1,t2; // thread declarations

r1=new Run1(); // Runnable objects initialization

field1=new Res1(); // shared fields initialization

t1=new Thread(null ,r1,"t1"); // thread creation

t1.start(); // thread start

}

private class Run1 implements Runnable{

public void run(){ // thread logic implementation

...

}

}

}

private class Res1{ // resouce classes

...

}

Fig. 2: Required program structure

5.2 Parallel model

In the parallel model threads are supposed not to wait for processor time if
they want to execute a statement. However, threads can wait for a lock if they
need one which has been taken by another thread. Since this model is not very
realistic we concentrate on the sequential model further.

5.3 Sequential model

In the sequential model we assume that at every moment of time only one thread
or scheduler can execute. Threads which do not execute in a particular moment
of time wait for processor time. Also threads can wait for a lock; waiting does
not consume CPU time.

Automata communicate with the scheduler through channels: if the scheduler
has selected one thread, it sends a message to it so the thread starts executing.
After finishing its execution, the thread sends a message to the scheduler, and
the next scheduling cycle starts. The scheduler uses channels run[i] to call the
i-th automaton, and the automata use the channel scheduler to give the control
back to the scheduler.

There is an array of clocks c[i], each of them corresponding to one thread
automaton. These clocks are used to calculate time of annotated statements
execution or sleeping time. There is also one clock cGlobal used for tracking
global time.

558 N. Baklanova and M. Strecker

schedule!

run[i]?

START

MIDDLE

FINAL

(a) Assignment

start1

final2

final1_start2

(b) Sequence

START

c[i]>=execTime[i]

MIDDLE

FINAL

c[i]<=execTime[i]

execTime[i]=<annot>,
c[i]=0

execTime[i]=0
schedule!

run[i]?

(c) Annotation

schedule!
run[i]?

schedule!
run[i]?

start1

final1START

auxIf

auxElse

(d) Condition I

schedule!
run[i]?

schedule!
run[i]?

start1

start2

final1_final2START

auxIf

auxElse

(e) Condition II

Fig. 3: Building blocks for automata. Elements added on the current step are
red; blue and green elements have been generated in the previous step.

The building blocks and their translation are the following for the sequential
model:

(a) Assignment (3a). Three new states and two transitions between them are
added. The transition from START to MIDDLE listens to the channel run[i],
and the transition from MIDDLE to FINAL calls the channel schedule. The
state MIDDLE is urgent since we assume that any statement except the an-
notated one takes time for execution.

(b) Sequence (3b). Having two automata with start and final states called start1,
start2 and final1, final2 correspondingly, the states final1 and start2

are merged.
(c) Annotation (3c). Three new states and two transition between them are

added. The transition from START to MIDDLE listens to the channel run[i],
sets the variable execTime[i] to the value of the current annotation and
resets the clock c[i] to 0. The transition from MIDDLE to FINAL calls the
channel schedule and resets the variable execTime[i] back to 0. The state
MIDDLE has an invariant forbidding the automaton to stay in this state if the
value of the clock c[i] bypasses execTime[i]. The transition from MIDDLE

A Formal Model of Resource Sharing Conflicts in Multithreaded Java 559

<class_name>_monitor[j]--

<class_name>_monitor[j]++,
waitSet[j][i]=0

waitSet[j][i]=true

schedule!

run[i]?schedule!

run[i]?

schedule!

run[i]?

<class_name>_monitor[j]==0

<class_name>_monitor[j]>0

start1 final1

FINAL

START

auxWait

auxIn auxOut

(a) Lock

schedule!

run[i]?

schedule!

run[i]? start1

FINAL

START

auxLoop

auxEnd

(b) Loop

execTime[i]=0

execTime[i]=<annot>,
c[i]=0

schedule!

run[i]?schedule!

run[i]?

c[i]>=execTime[i]

START

MIDDLE

FINALauxSleep auxWake

(c) Sleeping

Fig. 4: Building blocks for automata. Elements added on the current step are
red; blue and green elements have been generated in the previous step.

to FINAL has a guard enabling this transition only if the value of c[i] is
greater or equal to execTime[i]. The invariant and the guard ensure that
the automaton would be in the MIDDLE state as long as the annotation claims.

(d) Condition (3d,3e). Three new states and four transitions are added. If both
if and else branches are presented, the final states of automata representing
the branch internals are merged. The states auxIf and auxElse are auxiliary
states introduced to divide listening and calling transitions therefore they
are made committed. Two transitions from START to auxIf and auxElse

listen to the channel run[i], and the transitions from auxIf to start1 and
from auxElse to start2 (or to final1 in case of absence of the else branch)
call the channel schedule.

(e) Lock (4a). Two meaningful states and two auxiliary states are added. The
transition from START listens to the channel run[i] and has a guard checking
whether a lock for the object in the argument of the synchronized statement
is not taken by other threads.

560 N. Baklanova and M. Strecker

(f) Loop (4b). Two meaningful states and two auxiliary states are added. One
transition from the START goes to the next loop iteration, another one exits
the loop. Both transitions from START to auxLoop and auxEnd listen to the
channel run[i]. The transitions from auxLoop to start1 and from auxEnd

to FINAL call the channel schedule. Both auxLoop and auxEnd are made
committed. The final state of the automaton corresponding to the loop body
is merged with the START state.

(g) Sleeping (4c). The automaton for sleep statement resembles the automa-
ton for annotated statement with additional elements for returning control
to the scheduler during sleeping. There are three meaningful and two aux-
iliary states with transitions connecting them into a chain. The auxiliary
states, auxSleep and auxWake, are committed. The transition from START

to auxSleep listens to the channel run[i], sets the variable execTime[i] to
the duration of sleeping period and resets the clock c[i] to 0. The transition
from auxSleep to MIDDLE calls the channel schedule so that the scheduler
can schedule other threads. The transition from MIDDLE to auxWake listens
to the channel run[i] and has a guard enabling this transition only if c[i]
is greater or equal to execTime[i]. The update on this channel resets the
value of execTime[i] back to 0. Unlike the automaton for the annotated
statement, there is no invariant in the MIDDLE state because a thread is not
obliged to continue its execution right after it has woken up. It may wait
for processor time before. The transition from auxWake to FINAL calls the
schedule channel.

5.4 Scheduler

The Java scheduler maintains thread statuses and grants permission to execute
to threads. The scheduler model has three states: scheduling, runThread, wait.
The scheduler starts in the state scheduling which has transitions for updating
thread eligibility statuses. When all thread statuses are updated, the scheduler
moves to the state runThread calling the channel run[i] for some thread with
index i which is eligible for execution. While the thread is executing, the sched-
uler stays in the state runThread. When the thread has finished its execution,
it calls a channel schedule, and the scheduler returns back to the scheduling

state, and the new scheduling cycle starts. If there was no thread eligible for
execution, the scheduler goes to the wait state where it can stay for some time
and repeat scheduling.

Each thread gets two transitions for status updates. One assumes that a dead-
line for an action performing by a thread has passed, another one assumes that
the deadline has not been reached yet. In the first case the flag isEligible[i]

is set to true, and the thread with index i can be scheduled for execution. Oth-
erwise, isEligible[i] is set to false, and the thread with index i cannot be
scheduled.

A Formal Model of Resource Sharing Conflicts in Multithreaded Java 561

isEligible[1]=false,
isUpdated[1]=true,
updateAllStatuses()

isEligible[0]=true,
isUpdated[0]=true,
updateAllStatuses()

isEligible[0]=false,
isUpdated[0]=true,
updateAllStatuses()

resetStatusUpdated()

isEligible[1]=true,
isUpdated[1]=true,
updateAllStatuses()

resetStatusUpdated()

i:int[0,1]

wait runThread

run[i]!

scheduling

schedule?

c[1]<execTime[1]&&
!isUpdated[1]

c[0]>=execTime[0]&&!isUpdated[0]

c[0]<execTime[0]&&
!isUpdated[0]

isEligible[i]&&
statusUpdated

c[1]>=execTime[1]&&!isUpdated[1]

noScheduled&&
statusUpdated

Fig. 5: Scheduler for a system with two threads.

6 Correctness of Abstraction

Java threads have a complex lifecycle shown in Figure 7. We adopt it to our
model with limitations (see Figure 6). States in building blocks for automata
can be attributed to a single class. For example, the start and end states of any
building block belong to the scheduling state.

scheduling

executing

sleeping

blocked

wait for lock

sleep(time)

//@ time @//
deadline passed

deadline passed

lock acquired

Fig. 6: Thread model used by the trans-
lation.

Each thread automaton starts
in the scheduling state; after being
scheduled it can go to one of the three
states below. A thread is in the state
executing if there is an assignment or
an annotated statement to be exe-
cuted. A thread goes to the sleeping
state if it has met a sleep call; if a
thread wants to acquire a lock but it
cannot because another thread owns
it, the active thread has to go to the
blocked state and wait until another
thread releases the lock.

The listed states are general, and
automata may perform several inter-
nal steps while staying in the same
generalized state.

Based on the state classification
above, the simulation function can be
easily built by mapping states of Java
semantics to states of TA semantics

562 N. Baklanova and M. Strecker

Fig. 7: Java 6 thread model (taken from [12]).

belonging to the same class. This is a preliminary thought concerning a con-
struction of the simulation function.

6.1 Outline of Correctness Proof

We are in the process of carrying out a formal correctness proof. In the foresee-
able future, we will concentrate on the following ingredients:

1. We will define a simulation relation � between the TA semantics (Section 3)
and the Java execution semantics (Section 4). Both semantics are instances
of timed transition systems.

2. We show that for each thread i, the Java execution semantics of thread i is
simulated by the execution semantics of the TA obtained from abstracting
(Section 5) the thread. Thus: Let Ji be the code executed by thread i. Let
TAi = abstr(Ji) be the automaton obtained by the abstraction function
sketched in Section 5. Then we show that Ji � TAi.

3. We establish an analogous simulation relation between the Java code of the
scheduler JS and the corresponding timed automaton TAS (Figure 5), and
show JS � TAS .

A Formal Model of Resource Sharing Conflicts in Multithreaded Java 563

4. Timed automata can be run in parallel, as sketched at the end of Section 3, by
combining them with a parallel composition operator ⊗TA. Similarly, there
is a parallel operator ⊗J for composing thread-local actions (see statement
evaluation semantics of Section 4) to obtain a combined transition semantics
for the full Java state. We show that these operators are compatible with
simulation: J � TA∧J ′ � TA′ =⇒ J ⊗J J

′ � TA⊗TA TA′. Combined with
the results of (3), we show that our TA abstraction correctly simulates our
full Java execution semantics.

Future work will concentrate on establishing a correspondence between timed
transition systems (TTSs), logics, and simulation, in the following sense:

1. We will formalize a notion of execution trace of a TTS, formalize an appro-
priate temporal logic and establish the traditional model relation between
traces and formulae of the temporal logic. In this context, we hope to be
able to extend previous work described in [9].

2. We will show that simulation � induces a trace inclusion property, which
again induces preservation of a certain class of models of formulae.

3. Using this result and the system refinement property of (4), we will show
that the correctness formula established by model checking (1) makes indeed
a correct prediction about the behaviour of our concurrent Java programs.
Differently said: A Java program certified as free of resource access conflicts
by model checking has no execution traces in which two threads access a
resource at the same time.

7 Conclusions

This paper describes work in progress. The generation of Timed Automata out
of Java code is still undergoing major changes, and the precise definition of a
correctness statement and its proof still have to be done.

We may however comment on some fundamental assumptions of our ap-
proach, which may in part seem unrealistic.

– Obtaining WCET annotations: In the examples of this paper, the WCET
annotations are fictitious values. There are WCET analysis tools especially
geared at Java [10] that could be used to provide these annotations.

– Worst-case vs. exact execution time: Even then, the problem remains that
our assumptions refer to the exact execution time of the code, whereas a
WCET analysis only provides an upper bound. We intend to introduce sleep
statements at the end of annotation statements so that a thread remains
blocked until its WCET has indeed elapsed.

– Granularity: The size of code blocks we analyze (included, for example, in
annotation statements) is not supposed to be in the order of a few instruc-
tions, but in the order of several hundred instructions. This is meant to
reduce the relative error when estimating the WCET, and also to obtain
reasonably-sized timed automata.

564 N. Baklanova and M. Strecker

– Non-interruptible annotation statements: We presently assume that annota-
tion statements are not interrupted, without verifying it. Future work will
try to extend our approach in such a way
• that threads are annotated with more accurate timing information (such

as: periodicity) so that the mentioned assumption can be verified;
• this assumption can be relaxed and interruption by higher-priority threads

is possible, again under the hypothesis that the release parameters of pe-
riodic threads are known.

Acknowledgements. We are grateful to Marie Duflot-Kremer, Pascal Fontaine
and Stephan Merz (Loria) and Jan-Georg Smaus (Irit) for discussions about this
work.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126, 183–235 (1994)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
3. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: De-

sel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets,
Lecture Notes in Computer Science, vol. 3098, pp. 87–124. Springer Berlin / Hei-
delberg (2004), 10.1007/978-3-540-27755-2

4. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Lecture
Notes in Computer Science. pp. 300–314. Springer-Verlag (2001)

5. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual
machine, and compiler. ACM Trans. Program. Lang. Syst. 28(4), 619–695 (2006)

6. Kopetz, H., Bauer, G.: The time-triggered architecture. Proceedings of the IEEE
91(1), 112–126 (2003)

7. Lochbihler, A.: Verifying a compiler for Java threads. In: Gordon, A.D. (ed.) Eu-
ropean Symposium on Programming (ESOP’10). LNCS, vol. 6012, pp. 427–447.
Springer (Mar 2010)

8. The Real-Time for Java Expert Group: The Real-Time Specification for Java (Jan
2006)

9. Schimpf, A., Merz, S., Smaus, J.G.: Construction of Büchi automata for LTL model
checking verified in Isabelle/HOL. In: Nipkow, T., Urban, C. (eds.) 22nd Intl.
Conf. Theorem Proving in Higher-Order Logics (TPHOLs 2009). Lecture Notes in
Computer Science, vol. 5674. Springer, Munich, Germany (2009)

10. Schoeberl, M., Pedersen, R.: WCET analysis for a Java processor. In: Proceedings
of the 4th international workshop on Java technologies for real-time and embedded
systems. pp. 202–211. JTRES ’06, ACM, New York, NY, USA (2006)

11. Timnat, S., Braginsky, A., Kogan, A., Petrank, E.: Wait-free linked-lists. In: Ra-
manujam, J., Sadayappan, P. (eds.) PPOPP. pp. 309–310. ACM (2012)

12. uml-diagrams.org: Java 6 thread states and life cycle. http://www.uml-diagrams.
org/examples/java-6-thread-state-machine-diagram-example.html?

context=stm-examples

http://www.uml-diagrams.org/examples/java-6-thread-state-machine-diagram-example.html?context=stm-examples
http://www.uml-diagrams.org/examples/java-6-thread-state-machine-diagram-example.html?context=stm-examples
http://www.uml-diagrams.org/examples/java-6-thread-state-machine-diagram-example.html?context=stm-examples

