Towards the Coexistence of Divergent Applications on
Smart City Sensing Infrastructure

Rajiv Ramdhany, Geoff Coulson

School of Computing and Communications
Lancaster University, Infolab21, LA1 4WA
Lancaster, UK

{r.ramdhany, g.coulson}@lancaster.ac.uk

Abstract. Based on the trends of divergent sensor node software evolution and
on-node multi-application coexistence observed from a real smart city WSAN
deployment, we propose requirements for optimum exploitation of the infra-
structure. In particular, we advocate the need to switch between concurrency
models depending on usage context.

1 Introduction

Long-term Wireless Sensor and Actuator Network (WSAN) deployments as in smart city
infrastructures/testbeds are becoming increasingly large-scale, multipurpose and ‘infra-
structural’ in nature. Because of their multi-purpose nature and the major capital invest-
ments involved, we envisage that the owners/ operators of future infrastructural WSAN
deployments will increasingly be driven to adopt agile, multi-stakeholder usage models.
Economically-viable exploitation models require multiplexing concurrent experiments,
applications and users on the WSANs and are characterised by /) the need to run divergent
and ever-changing software configurations across their (heterogeneous) node base, and 2)
multi-application sensing, the sharing of sensing hardware or sensed data among multiple
coexisting applications.

As a growing set of novel applications are requiring additional complexity and ‘intelli-
gence’ to be pushed to the WSAN leaf nodes [1], we argue a simplistic concurrent-usage
model based exclusively on sensor-data sharing or on coarse-grain scheduling of sensor
nodes via group reservations (and node reprogramming) [2] [3] does not deliver the flexi-
bility and efficiency required for an optimum, cost-effective infrastructure exploitation.

In this paper, we identify several requirements for enabling the coexistence the WSAN
applications on sensor nodes and focus on the need for OS-level concurrency. The execu-
tion model of current WSN operating systems embodies a particular concurrency strategy
usually based on one of the following: split-phase FIFO task scheduling, synchro-
nous/asynchronous events, cooperative multithreading, time-sliced preemptive multi-
threading or real time scheduling. The choice of a concurrency model often implies a
trade-off between the degree of concurrency, scheduling predictability and resource usage,
made necessary by the resource paucity in the host embedded devices. For example, event-
based execution models are more energy-efficient and conservative at memory utilisation
[4] than multithreading but result in unpredictable scheduling behavior when event han-
dlers are long-lived. Preemptive multithreading models, in contrast, are more deterministic
and offer better event processing capabilities in terms of meeting processing deadlines; but
they incur memory overhead and higher energy consumption [4]. Due to ever changing
applications and software configurations in smart city WSANSs, we argue that this trade-off



Towards the Coexistence of Divergent Applications on Smart City Sensing Infrastructure 27

is itself dynamic and divergent. Concurrency models have associated costs/benefits and
tend to suit particular WSAN usage scenarios and node roles. Hence, not all nodes need to
commit permanently to a single concurrency model. Instead, we advocate i) concurrency
strategy selection for every IoT node based on its tasks assignment and role (e.g. applica-
tion data fusion point or packet forwarder) and, ii) switching between concurrency models
when WSAN nodes participate in different applications serially or simultaneously.

2 Motivation and State-of-the-Art

We consider the usage model of a real-life smart city WSAN, in occurrence the

SmartSantanter platform, to explain our position. The SmartSantander platform [2] is a

multi-purpose city-scale experimental research facility in support of typical applications

and services for a smart city. It comprises of a large number of Internet of Things (IoT)
devices which are deployed in several urban scenarios, and federated into a single testbed
for the purpose of concurrent experimentation and service provisioning. In addition to
testbed services for experimentation, a number of smart-city services are currently de-
ployed, namely: city parking control & management, environmental monitoring, on-
vehicle mobile sensing, transport vehicle tracking, traffic congestion monitoring and pre-
cision irrigation for urban parks. An analysis of these concurrent services/experiments

reveals that the tasks assigned to IoT nodes usually involve: /) sensor data sampling, 2)

data collection from neighbouring nodes 3) data processing (e.g. temporal aggregation,

compression or signal processing) 4) data encryption/decryption before pro-
cessing/forwarding, or 5) routing data to sink nodes. Further, the functionality that need to
be deployed on sensor nodes is itself application-specific and diverse, for example condi-
tional triggers for sensor readings, routing behaviour triggered by frequency-analysis of
sensor data, sophisticated data aggregators and compression to name but a few. Also evi-
dent is the need for cohabitation of applications on nodes (for instance, environmental
monitoring, parking control and experimentation sharing repeater nodes).

Our analysis has identified the following requirements for achieving concurrent sensor-
node use and gauged their current level of support in the state-of-the art.

— Dynamic local sensor-node reconfiguration - the capability to dynamically aug-
ment/adapt sensor node software by instantiating/removing software modules using
runtime dynamic linking. Various degrees of support for in-situ software update are of-
fered by modular WSN OSes. Contiki [5] only supports one updatable module at any
one time loaded on top of a fixed kernel. Lorien [6] supports runtime addition, removal
and replacement of software components more naturally.

— Support for managed sensor node software evolution. A systematic ongoing, effi-
cient and non-disruptive means of determining and executing software compositional
changes on WSAN nodes such that different nodes can evolve along different lines to
support the software configuration that meet the needs of different stakeholders. OS-
level architectural reflection and a suite of lightweight protocols are used in [6] to
track/report software configurations, and perform component dissemination and in-
structed configuration updates on behalf of users.

— Application Isolation. With multiple applications sharing a node, it is necessary to
isolate access to node resources (hardware, memory and network) to avoid applications



28 R. Ramdhany and G. Coulson

corrupting each other by overwriting unprotected memory locations or race conditions
on sensors or network interfaces. Since hardware support for virtual memory (personal
address spaces) is inexistent on current WSAN MCUs, the common approach for
memory isolation is through the creation and policing of software protection domains
as proposed in [7] or sandboxing via on-node virtualisation as in the Maté VM [8].
Hardware access isolation can be provided through virtualised access: SenShare [12]
provides a compile-time Hardware Abstraction Layer (a set of interfaces used by appli-
cations) which redirects hardware access requests to a runtime comprising of virtual
hardware controllers that serve access requests to the underlying hardware. Network
traffic isolation is achieved by maintaining per-application network overlays as in Lo-
rien [6] and SenShare [12].

— OS-level Concurrency. This involves scheduling the processor between tasks from
coexisting applications and/or experiments efficiently so that they meet their processing
deadlines. Concurrency in TinyOS [9] is realised through events, and the split-phase
operation of tasks (deferred computation/calls) and event handlers. Tasks run to com-
pletion and are only preemptible by events (triggered as a result of hardware inter-
rupts); they must therefore be kept reasonably short as not to delay other time-sensitive
tasks such as network stack packet-processors. At the other end of the design space,
concurrent tasks are implemented as threads as in Mantis OS [10]; applications as well
as system components such as stacks may spawn threads which must be scheduled.
Context switching between threads is performed by a thread scheduler, which follows a
priority-based algorithm with round-robin semantics.

Different concurrency models are adopted by existing WSN OSes but none provide opti-
mal scheduling/resource-consumption under the full range of operating conditions encoun-
tered in multi-purpose WSANSs. Run-to-completion event-driven systems such as TinyOS
are efficient in terms of memory usage (single stack usage) and energy consumption (more
time spent in idle mode than other schemes) [4]. But they force programmers to model
their algorithms as finite state machines, split-phase operations and short tasks. Long-
running tasks may cause other parts of the OS to perform poorly as they cannot be
preempted. At high packet arrival rates, for instance, packet processors are unable to
dequeue packets from the radio module’s buffer fast enough since their execution cannot
be prioritised over other tasks. The average execution time of task is variable and this non-
deterministic scheduling behavior is further exacerbated under high load.
Task prioritisation and time-sliced preemption are accepted notions in contemporary OSes
to achieve low execution-delay variation and fairer scheduling between application tasks
although this comes at a price. Preemptive multithreading enables independence between
tasks [4] but requires extra programmable memory for capturing and restoring execution
context when threads are switched. Each thread has its own stack which typically has to be
over-provisioned as stack-space consumption of threads is hard to predict. Moreover,
locking mechanisms are required to serialise concurrent thread access to shared resources,
introducing additional overhead. Context switching causes the processor to spend less time
in idle mode, resulting in higher battery power consumption.

Cooperative threading support in WSN OS such as Tiny-Threads [11], rely on applications

to voluntarily yield the processor, thereby providing concurrency without the costs of

preemption. However, it places the burden of managing concurrency explicitly on the



Towards the Coexistence of Divergent Applications on Smart City Sensing Infrastructure 29

programmer and the inexact science of placing yielding points in code cause highly-
variable inter-yield intervals. Hybrid models attempt to combine the advantages of both
events and cooperative threading. Contiki, for example, is primarily event-driven i.e. pro-
cesses are implemented as event handlers that run to completion and share a common
stack; but it additionally supports multithreading capability as an optional library that
applications can link to.

3 Pluggable Concurrency Models for MultiApplication Sensing

Due to divergent evolution of sensor node software and the multi-application coexist-
ence, we believe the choice of single network-wide concurrency model to be sub-optimal.
In particular, we recommend the adoption of different concurrency strategies to suit each
sensor nodes’ operating context and application requirements, and enabling switching
between them as requirements change. To this end, we propose the following set of dy-
namically loadable context-dependent concurrency schemes for smart-city usage scenarios
and provide implementations in Lorien, our reflective component-based WSN OS.

- Split-Phase FIFO Task Scheduling. This concurrency scheme is suitable for usage
scenarios where single-application tasks run on nodes, are short-lived and do not require
scheduling guarantees. As tasks are executed serially on the main thread, race conditions
do not occur and programmers need not use synchronisation primitives. The MCU spends
time either executing tasks and interrupt handlers or sleep duty cycling thereby consuming
less power than if context-switching. Split-Phase FIFO Task Scheduling is preferable on
dedicated single-application leaf nodes for example, in parking sensors nodes buried in the
asphalt or nodes.

- Cooperative Fibers. When a sensor node becomes a data fusion point or is assigned
more CPU-intensive data processing tasks such as Huffman compression of data samples
or pattern matching, yield points can be introduced though cooperative fibers to allow the
CPU to switch to other tasks. A fiber waiting for the radio hardware module to become
available after a transmission can hence voluntarily yield to allow other tasks to execute.
To ensure that suspended fibers are resumed, task continuations are captured in the form
of execution context (including the stack pointer) and restored, using the setcontext fami-
ly of functions: getcontext, setcontext and swapcontext.

- Preemptive Time-Sliced Multithreading. This concurrency model is suitable where
task independence and prioritization are required for performance and responsiveness. As
an example, repeater nodes also participating in environmental monitoring scenarios must
prioritise packet forwarding over sensing tasks to avoid inducing network delays. When
sudden high activity is encountered by a node that requires timely processing of tasks
(during a flash flood or volcanic eruption), this concurrency scheme allows tasks to be
scheduled for more frequent sensor data sampling, processing and transmission. For in-
stance, to enable data collection when Disruption Tolerant Networking (DTN) gateway
nodes on top of buses in SmartSantander come into contact opportunistically with isolated
sensor node islands, data aggregation and transmission must be prioritized over other tasks
as to reliably send data while the bus is still in radio range. Our preemptive thread sched-
uler for Lorien is priority-based and uses round robin semantics to ensure a fair distribu-
tion of CPU time slices. Binary and counting semaphores are supported to synchronise
access to shared resources such as device drivers. When a thread blocks on a device driver,



30 R.Ramdhany and G. Coulson

it is moved from a ready-list to a semaphore list. It is removed when, upon receiving a
hardware interrupt, the device-driver posts a semaphore to release the thread. Power-
saving is handled by a thread called idle-task which is scheduled when no threads are
active.

4 Work in Progress and Conclusions

To date, we have provided implementations for the aforementioned concurrency mod-
els; their relative suitability to various usage scenarios is under investigation. Further, we
are currently exploring the use of proxy interfaces to make switching between concurrency
models be non-invasive for applications. Also under investigation are the relative benefits
of mixing cooperative and preemptive multithreading in the sensor node context. In this
paper, based on the trends of divergent sensor node software evolution and on-node multi-
application coexistence observed from a real smart city WSAN deployment we have pro-
posed requirements for optimum exploitation of the infrastructure. In particular, switching
between concurrency models depending on context is recommended and a number of
dynamically loadable concurrency models proposed.

5 References

1. R. Shimizu, K. Tei, Y. Fukazawa, S. Honiden. Case studies on the development of wireless
sensor network applications using multiple abstraction levels. In SESENA 2012, June 2012.

2. L. Sanchez, J.A. Galache, V. Gutierrez, J.M. Hernandez, J. Bernat, A. Gluhak, T. Garcia.
SmartSantander: The meeting point between Future Internet research and experimentation
and the smart cities. In Future Network & Mobile Summit (FutureNetw), 2011 , June 2011.

3. G. Coulson, B. Porter, I. Chatzigiannakis, and T. Baumgartner. Flexible experimentation in
wireless sensor networks. Commun. ACM 55, 1 (January 2012), 82-90.

4. C. Duffy, U. Roedig, J. Herbert, C. Sreenan. An Experimental Comparison of Event Driven
and Multi-Threaded Sensor Node Operating Systems. PerCom Workshops '07. March 2007.

5. A. Dunkels, B. Gronvall, T. Voigt. Contiki - a lightweight and flexible operating system for
tiny networked sensors. Local Computer Networks, 2004. Nov. 2004.

6. B. Porter, U. Roedig, G. Coulson. Type-safe updating for modular WSN software. DCOSS
2011, June 2011.

7. N. Weerasinghe, G. Coulson. Lightweight module isolation for sensor nodes. In MobiVirt
2008. ACM, New York, NY, USA.

8. P. Levis and D. Culler. Maté: a tiny virtual machine for sensor networks. SIGARCH Com-
put. Archit. News 30, October 2002.

9. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture direc-
tions for networked sensors. SIGPLAN Not. 35, 2000.

10. S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruenwald, A.
Torgerson, and R. Han. MANTIS OS: an embedded multithreaded operating system for
wireless micro sensor platforms. Mob. Netw. Appl. 10, August 2005.

11. W. P. McCartney and N. Sridhar. Abstractions for safe concurrent programming in net-
worked embedded systems. In Proc. of SenSys 06, 2006.

12. L. Leontiadis, C. Efstratiou, C. Mascolo, and J. Crowcroft.. SenShare: transforming sensor
networks into multi-application sensing infrastructures. In Proc. EWSN']2.



