ITAT 2013 Proceedings, CEUR Workshop Proceedings Vol. 1003, pp. 44-51
http://ceur-ws.org/Vol-1003, Series ISSN 1613-0073, © 2013 M. Kravec, M. Bobak, B. Brejova, T. Vinaf

A
ITAT

Variants of Genes from the Next Generation Sequencing Data

Martin Kravec, Martin Bobédk, Brona Brejova, and Tomas Vinar

Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynskd dolina, 842 48 Bratislava, Slovakia

Abstract: A typical next generation sequencing platform
produces DNA sequence data of a very fragmented nature,
consisting of many short overlapping reads that need to be
assembled into a longer DNA sequence by an assembly
program. There are many families of genes that evolve by
gene duplication. In the genomes, such genes have several
copies that are very similar to each other, and therefore
they pose a difficult challenge for sequence assembly pro-
grams. In this paper, we present a method for recovering
variants of genes from the NGS data without need for as-
sembly of the whole DNA sequence. We show that our
problem is NP-hard, but also demonstrate that in practice
it can be solved by integer linear programming.

1 Introduction

The next generation sequencing (NGS) has brought much
cheaper and much faster technologies for obtaining DNA
sequences of various organisms. In the process of se-
quencing, the technology generates many short reads (sub-
sequences of the original DNA sequence), which are of-
ten sequenced as pairs with known ordering, orientation,
and approximate gap length in the original sequence (see
Fig.1). For example, typical reads from Illumina HiSeq
sequencing technology are approx. 100 bp long and the
length of the gap between paired reads is approx. 60 bp.
The result of genome sequencing is thus a giant puz-
zle of overlapping pieces that need to be assembled into
the original sequence. The most popular methods for
assembling short reads are based on creating so called
deBruijn graphs [Pevzner et al., 2001], where the prob-

Figure 1: Illustration of genome sequencing data. The re-
sult of the sequencing are many short overlapping reads
(thin lines, top) from the original sequence (green line,
bottom) that can be assembled into longer contigs (thick
black lines). Some regions cannot be assembled due to
low coverage, resulting in sequencing gaps. Some prob-
lems can be solved by considering paired read information
(brackets), which discloses order, orientation, and the dis-
tance between paired reads.

lem of sequence assembly is formally transformed into
a problem of following a path in a graph. Several prac-
tical assembly programs have been developed based on
this idea (see e.g., [Zerbino and Birney, 2008]). Since
some regions are not necessarily covered by sequencing
reads (sequencing gaps), and some regions are too sim-
ilar to each other in order to be distinguished by short
reads (repetitive sequences), the resulting assembly is of-
ten fragmented into contigs, that cannot be further assem-
bled without resolving ambiguities or closing the gaps by
additional sequencing. To overcome some of these prob-
lems, information from paired reads can be used, how-
ever, a systematic use of the paired reads has been in-
corporated into deBruijn graph framework only recently
(see e.g., [Medvedev et al., 2011, Bankevich et al., 2012,
Pham et al., 2013]).

Assuming that we already have an assembled sequence
template, another problem is to align all sequencing reads
from a given experiment to the template. Due to over-
whelming amount of data, fast text search methods are
used (e.g., FM index [Ferragina and Manzini, 2001]) to
find perfect or almost perfect matches of reads to the tem-
plate sequence (see e.g. [Li et al., 2008a, Li et al., 2008b,
Lin et al., 2008, Langmead et al., 2009]).

Software for all of these tasks has now become part of
a standard bioinformatics toolbox for processing and anal-
ysis of the NGS data. However, a single sequencing run
can produce up to 50 GB of data [Minoche et al., 2011],
and consequently time and memory requirements of these
tools impose limitations on researchers working with NGS
data.

This has motivated research into use of NGS data with-
out assembling or aligning reads, focusing on sequence
patterns on a local scale rather than globally. Targeted as-
semblers use short regions as seeds to assemble short re-
gions of interest to the researcher [Warren and Holt, 2011,
Peterlongo and Chikhi, 2012]. [Philippe et al., 2011] have
developed a data structure for querying large read collec-
tions in main memory. [Zhai et al., 2012] have developed
a framework for approximating the distribution of word
occurrences in NGS data without assembly or alignment.
GapFiller [Nadalin et al., 2012] utilizes paired reads to lo-
cally fill the gaps in the sequence assembly.

In this paper, we will also take this local approach and
examine a problem of discovering variants of a given gene
from the NGS data. Our problem is motivated by large
gene families which arise by repeatedly copying a gene
throughout the evolution. An extant genome may con-
tain several copies of a gene at varying levels of similarity,

Variants of Genes from the NGS Data

45

since each copy will mutate independently. We call such
gene copies variants of a gene.

Variants of a gene, especially those that are very simi-
lar to each other, pose a large problem to NGS assembly
tools. The individual variations are often mistaken for se-
quencing errors, or the copies may appear indistinguish-
able through the short reads, effectively creating an ambi-
guity in the assembly. Consequently, variants of a gene are
often collapsed into a single sequence segment that does
not fit very well into the rest of the assembly. The input
to our method is an unassembled NGS data set and a gene
template. We filter the data set for reads that are similar
to the template and use a new algorithm to organize these
reads into several variants that explain the variability in the
data.

The organization of the paper is as follows. In Section
2, we examine the problem more closely and formulate it
as a simple graph problem. In Section 3, we show that
our formulation is NP-hard. In Section 4, we propose an
integer linear programming (ILP) solution and in Section
5, we provide an algorithm that reduces the size of the ILP.
Finally, we demonstrate that our approach can be applied
to real data and that the ILP solver (CPLEX) can be used
to effectively find the variants of a gene.

2 Problem of Finding Gene Variants

In this section, we formulate the problem of finding gene
variants as a graph problem. The input to the problem is a
sequence of a reference gene (for example, one gene from
a large gene family), and the sequencing reads that align
to this reference sequence. While at most positions, the
bases in the sequencing reads will likely agree with the ref-
erence sequence, there will be some positions where some
of the reads disagree with the reference sequence and with
each other. We will call these positions variable positions
and different bases occurring at a variable position will be
called alternatives.

Definition 1 (Graph of variants). The graph of variants is
a directed acyclic graph with several groups of vertices,
each group corresponding to one variable position. Each
alternative at a variable position is represented by a single
vertex in the graph. There is an edge between two vertices
if and only if there exists a sequencing read that contains
both alternatives corresponding to these two vertices. All
edges are directed from left to right according to the posi-
tion of the corresponding alternative.

Figure 2 shows a simple example of the graph of vari-
ants. The individual reads differ from the reference be-
cause they are sequenced from different copies of that
particular genes. The alternatives represent mutations
and connections between these individual mutations in the
reads will allow us to disentangle original gene copies.

Our approach also works with pair-end read pairs. In the
variant graph construction, we approach such reads in the

TGCTTC
CCTTG
GTTCTT
CCTTGG TCTTCA

(reference sequence)

Variant Graph

Figure 2: Example of a graph of variants

same way as non-paired reads (i.e., we create an edge for
each pair of alternatives covered by a pair of reads). We
will assume that the gap between the paired reads is not
longer than the standard read length. We will also assume
that the sequencing coverage is large; consequently, all
possible connections up to some distance will be present
in the data. (These assumptions indeed hold in typical se-
quencing data sets.) This means that if three vertices u, v,
and w represent alternatives within the same gene variant
such that (u,w) is an edge and (v,w) is an edge, then (u,v)
must also be an edge in the variant graph.

An individual gene variant can be represented as a path
through the graph of variants that passes through corre-
sponding alternatives at variable positions. Now consider
all reads originating from a given gene variant. These
reads induce a set of edges in the graph. Only some of
these edges are included in the path for the variant, others
connect more distant positions along the path. For these
edges, we need a notion of explained edges.

Definition 2 (Explaining edges). Path p explains edge
(u,v) of variant graph G if both u and v lie on path p.

In theory, every edge in the variant graph originates
from some variant of the gene and thus it should be ex-
plained by the path for this variant. Using Occam’s razor,
we seek to explain all edges using a small number of paths.
This leads to the following formulation of the problem of
finding gene variants in the genome sequencing data.

Problem 1 (Finding Gene Variants). Given a graph of
variants G, find the smallest set of paths that explain all
edges in G.

Note that the data may give us only incomplete infor-
mation about variants of genes. If, for example, there is
a long region within the gene without any variable posi-
tions, there will be no connections between alternatives on
the left and the right side of this region. The graph of vari-
ants will be split into connected components and there will

46

M. Kravec, M. Bobék, B. Brejov4, T. Vinaf

be no path going from left to right. Yet, the above problem
is well defined even in such cases, and the resulting set of
paths gives us at least some information on partial vari-
ants of genes. However, the interpretation of such results
is more difficult. In the rest of the paper, we will assume
that the graph of variants is connected.

3 Finding Gene Variants is NP-hard

Unfortunately, the problem of finding gene variants de-
fined in the previous section is NP-hard. We will prove this
by reducing 3-SAT problem to the problem of finding gene
variants. Consider a formula in with clauses cy,...,cy,
where each clause ¢; consists of three literals ¢; 1,; 2, ¢; 3,
and each literal is either a variable from a set of variables
Z ={x1,...,x;}, or its negation.

We will construct a graph representing this formula as
an instance of finding gene variants problem. An example
of this construction is shown in Fig.3.

For each clause ¢; and variable x;, we will have a
gadget of five vertices v;j1,...,v;js. These vertices
are connected by edges forming “a cross gadget” as fol-
lows: (vij1,vij3)s (Vij2,vij3)s (Vij3svija), (Vij3:vijs)-
There will be an additional level of these cross gadgets
that do not correspond to any clause (denote them vy ; ,),
and there will be additional vertices u#; and u; in this ze-
roth level, and vertices wy,...,w, separating the levels for
individual clauses. Finally, there will be one designated
source vertex s and a sink vertex ¢.

Starting vertex s will be connected to the ver-
tices in the leftmost level by edges (s,vo;1) and
(s,v0,j2) for j =1,...,z, and edges (s,u1), (s,u2).
Connections between individual levels go through
the separating vertices w;, i.e. we have edges
(V,'_17j_’4,wi), (v,‘,17j15,w,-), (Wiavi,j,l); (W,‘,V,"j_rz), and at the
zeroth level also (u1,w1), (uz,w;). Finally, gadgets at the
last level connect to the sink vertex: (vy,j4,t), (Vn,j5.1)-
We will call all these edges blue edges.

Green edges will be used to enforce
consistency between the gadgets (see be-
low). These will connect vertices as follows:

(vo,j,15vij1)s (Vo,j2,vij.2)s (Vo,j4, Vi j4), (V0,5 Vi j5)-
Finally, red edges will be used to encode the formula in
the graph. If clause ¢; contains literal x;, there will be
edge (vij1,vi j,5)- If clause ¢; contains literal —x;, we will
have edge (v; j 1,vij4)-

Intuitively, paths in the solution will encode the satis-
fying assignment (if the formula can be satisfied). If the
variable x; is true in the satisfying assignment, then we
will have two paths passing through each gadget concern-
ing Xjt Vij1 't Vij3 > Vijs and Vij2 > Vij3 > Vij4.
We call this a crossing path configuration. On the other
hand, if the variable x; is false, we have two paths: v; ; | —
Vij3 > Vij4 and Vij2 v Vij3 > Vijs. We call this an
avoiding path configuration. Below we will use this intu-
ition to prove that the formula is satisfiable if and only if

the smallest number of paths explaining all edges in the
corresponding graph is 2z + 2.

Lemma 1. [f the 3CNF formula is satisfiable, there ex-
ist 2z + 2 paths explaining all edges in the corresponding
graph.

Proof. Consider a satisfying assignment. For each vari-
able x;, we will have a pair of paths, that will pass through
all cross gadgets corresponding to that variable in crossing
(in case that x; is true) or avoiding configuration (in case
that x; is false). These paths will explain all blue edges
except for those involving vertices u; and u, as well as all
green edges, since a particular path will consistently pass
each cross gadget corresponding to x; in the same way.
Moreover, these 2z paths will also explain at least one of
the three red edges at each level, since each clause must
have at least one satisfied literal. The remaining edges
(those that pass through u; and up, and at most two red
edges at each level corresponding to unsatisfied literals)
are easily explained using two additional paths. Therefore
27+ 2 paths suffice to explain all edges in the graph. [

Lemma 2. Ifthe 3CNF formula is not satisfiable, explain-
ing all edges in the corresponding graph requires at least
274 3 paths.

Proof. Assume that we explain all edges by at most 2742
paths. In order to explain the edges at zeroth level, we
need to have two paths that explain edges of the cross gad-
get corresponding to each variable x; at level 0; the two
additional paths must be used to explain blue edges con-
nected to vertices u; and u; and consequently they cannot
be used to explain any green edges in the graph. Thus, we
only have two paths that are usable for explaining green
edges connecting to all the other cross gadgets correspond-
ing to variable x;. From this it follows that the two paths
must pass through all cross gadgets corresponding to x; in
crossing or avoiding formation, and consequently they can
be interpreted as an assignment of the truth values to the
variables. Since this assignment cannot satisfy the 3CNF
formula, there must be at least one level where all three
red edges remain unexplained. However, we only have
two paths (those passing through u; and u;) that could be
used to explain those three red edges. This leads to a con-
tradiction and proves, that in such a case we require at least
2z+ 3 paths. O

Together, these two lemmas have shown that the edges
of a graph constructed from the 3CNF formula can be ex-
plained by 2z+ 2 paths if and only if the formula is satisfi-
able. In other words, we have shown by a reduction from
3-SAT:

Corollary 1 (NP-hardness). The problem of finding gene
variants is NP-hard.

Variants of Genes from the NGS Data

47

3CNF formula:

(aV —cNV d)N(=bV dV —e) N .. N(—aV bV e)

o

Variables of the formula
7]

¥

Figure 3: Example of a construction of a graph of variants from the 3CNF formula. Blue edges (regular width) form
and connect individual gadgets, while green edges (thin) enforce consistency between individual gadgets, and red edges

(thick) encode the formula.

4 Integer Linear Programming
Formulation

In the previous section, we have shown that Problem 1
is NP-hard. Here, we propose that the problem can be
effectively solved by an integer linear programming (ILP)
solver.

For a given graph of variants G(V, E), denote V; C V set
of vertices without input edges (source vertices) and V; C
V set of vertices without output edges (sink vertices). We
will assume that the minimum number of paths explaining
all edges E is smaller than some number k; this can be set
for example as the number of edges in G, but in practice
much smaller values of k will suffice.

We will have three types of 0-1 variables, each set of
variables replicated for each possible path. For path num-
ber i (1 <i < k), variable x;, = 1 if edge e is included
in the path; variable y; . = 1 if edge e is explained by the
path; variable z; , = 1 if vertex v is included in the path.

Our goal is to minimize the number of paths, which can
be, for example, computed as the number of source ver-
tices used in the solution Y'*_, Y. ev, Ziy- This sum is min-
imized subject to the following conditions:

Vi:YveV-V;: iy = Z Xi,(u,v) (D
(u,v)€E
Vi:YweV -V, iy = Z i (vw) 2)
(v,w)€E
Vi:) ziy <1 3)
vevVy
Vi: Y ziy<1 S
veV;
1
Vi:V(u,v) €E 1Yy < E(Z,;u +2ziy) &)
k
V(u,v) EE: Zy,',(w) >1 (6)
i=1
Vio Y idiziy > Y idyzipry 7
vev veV
Vi:V(u,v) € E 1 x; () €1{0,1} ®)
Vi:V(u,v) € E 1y, €10,1} ©)
Vi:WweV:z,e{0,1} (10)

where id, is a unique identifier of vertex v. Conditions
(1)-(4) ensure consistency between assignments of X and
Z variables and at the same time, they enforce that the ob-
ject represented by the i-th group of variables is indeed a
path. Condition (5) determines explained edges and con-
dition (6) assures that each edge is explained by at least

48

M. Kravec, M. Bobék, B. Brejov4, T. Vinaf

one path. Finally, condition (7) helps to break symme-
tries leading to many equivalent solutions (problems hav-
ing many symmetric solutions may be difficult to solve).

This ILP has O((m + n)k) variables and conditions.
Variables x; . fully determine the solution; the other vari-
ables are auxiliary and can be uniquely determined from
X; . In the next section, we show how to reduce the num-
ber of determining variables which will increase the effi-
ciency of the ILP in practice.

5 Reduced Graph of Variants

In this section, we introduce an algorithm that will reduce
the number of edges in the graph of variants. In particular,
we will only be interested in the subset of edges that are
needed for the optimal solution.

Definition 3 (Reduced graph of variants). Let
{P1,p2,-..,pr} be the optimal set of paths explain-
ing all edges in the graph of variants. Reduced graph of
variants is a union of all edges of paths py, ..., px. In case
of multiple optimal solutions we choose the smallest such
set of edges.

Although computing the optimal set of paths is hard,
union of edges on these paths can be found by a simple
algorithm. A detour for an edge (v;,v;) is a path of length
at least two connecting v; and v;. If an edge e does not have
a detour, it can be explained only by paths contaning e, and
thus it must be included in the reduced graph. Conversely,
if e has a detour, any path in the optimal set can use edges
in the detour instead of e. Any optimal set of paths can be
thus transformed to contain only edges without a detour
and these edges form the reduced graph.

To find the reduced graph, we number the vertices of the
variant graph vy,...v, from left to right. Let M; be the set
of vertices, from which vertex v; is reachable. Algorithm
1 computes sets M; for all vertices v; and simultaneously
selects edges for the reduced graph of variants.

For each vertex v;, we compute set M; by exploring in-
coming edges (v;,v;) in the descending order by v;. If v;
is not already in M;, then we add all vertices from M; to
M;. In addition, there is no detour for (v;,v;), because such
a detour would have to enter v; by and edge (vg,v;) with
k > j. Since set My for such k contains v;, v; would be
already in M; when we encounter edge (v;,v;), which is
a contradiction. Therefore we select edge (v;,v;) for the
reduced graph. On the other hand, if v; is already in M;, it
can be easily seen that a detour must exist for (v;,v;).

The running time of this algorithm is O(n*) due set ma-
nipulation on line 8. Instead of this simple algorithm, we
could also use faster transitive closure computation based
on fast matrix multiplication, but this algorithm is suffi-
cient for our purposes. Example of a reduced graph of
variants can be seen in Figure 4.

Given a reduced graph of variants G,(V,,E,), we can
modify the ILP program by including variables x; (, ,) only

Figure 4: Example graph of variants (left) and reduced
graph of variants (right).

for edges (u,v) € E,, because the remaining edges will not
be used by the optimal set of paths. We will change the
conditions as follows:

Eq. (1) Vi:weV—Viizin= Y X (11)
(u,v)€E,

Eq.2) Vi:WweV-Viizip= Y X (12)
(vw)€E,

Eq. 8) Vi:V(u,v) € E: X, € {0,1} (13)

We also add one more condition stating that each edge
from E, must be used on some path:

k
V(u,v) €Er: Y Xy > 1 (14)
i=1

6 Experiments and Results

We tested our approach on Illumina sequencing data from
yeast species Magnusiomyces magnusii (unpublished).
For out tests, we have selected FDH (formate dehydroge-
nase) gene that exhibits variation in the number of copies
in related species (for example, two copies in S. cere-
visiae, three copies in C. albicans, and ten copies in Y.
lipolytica). The sequence assembly by assembly program
Velvet [Zerbino and Birney, 2008] contained several frag-
ments of FDH-like genes (likely originating from differ-
ent gene copies), but all of them were apparently incom-
plete. We have manually assembled some of these frag-
ments and created a putative 1150 bp long template of
the FDH gene. By a rather complicated process using
blastx [Altschul et al., 1997], blat [Kent, 2002], and Vel-
vet [Zerbino and Birney, 2008], we have selected 74 694
read pairs similar to the FDH template. The average length
of a read is 100.8 bp, and the expected length of the gap
between the paired reads is 60.

The individual reads were then aligned to the FDH tem-
plate by blat. Based on read alignments, we have iden-
tified all variable positions and alternatives. To avoid se-
quencing errors, we have discarded all alternatives that ac-
counted for less than 10% of reads at each variable posi-
tion. The ILP was solved by CPLEX optimization library,
the maximum number of paths was set to 30.

Variants of Genes from the NGS Data

49

Algorithm 1 Algorithm for reducing the variant graph

1: Input: Variant graph G(V,E)
2: selectedEdges = {}
3: fori=1...ndo

4: M; = {v;}

5: fOI‘jZi—l...l;(Vj,V,')GEdO

6: if v; ¢ M; then

7: M; = M,; UMj

8: selectedEdges = selectedEdges U{(v;,v;)}
9: end if

10: end for

11: end for

12: return selectedEdges

> vertices of V are in topological order

D> iterate through incoming edges in descending order

Figure 5 shows the result of our experiment. The num-
ber of edges in the graph of variants can be significantly
reduced, thus speeding up the ILP. The algorithm has dis-
covered six variants of FDH gene in M. magnusii genome.
Our experiments shows that even though, in general, the
problem is NP-hard, it is possible to apply the ILP on the
real data.

7 Conclusion and Future Work

In this paper, we have introduced a problem of recovering
all variants of a given gene from unassembled next gen-
eration sequencing data. We have formulated the problem
as a graph problem, shown that the problem is NP-hard,
and proposed a practical solution with the integer linear
program. We have shown that our solution can indeed be
applied to real data, and we have detected six variants of
the FDH gene in M. magnusii genome.

There are several problems open for future work. In
this work, we have used pair-end reads, i.e. pairs of short
reads that are separated by a short gap (in this work, we
have assumed that the gap between the two paired reads
is shorter than the read length). On the other hand, mate-
pair sequencing produces paired reads that are at a much
longer distance. How do we incorporate such reads into
our framework?

Here, we have considered variants where only a sin-
gle base has changed at a particular position. However,
other variants, such as short insertions or deletions, or even
larger scale changes, do occur in real data and they need
to be accounted for.

One information that we ignored is the number of reads
overlapping each position of the template sequence. This
number is correlated with the number of copies of a par-
ticular segment of the sequence. Such correlations can
be used to help to decide between alternative solutions
(each variant should have the same coverage over its whole
length).

Finally, sequences flanking the template sequence on
each side will also differ between individual copies of a

gene and may help to pinpoint the correct number of vari-
ants.

Acknowledgements. We thank prof. Jozef Nosek for ac-
cess to the unpublished sequencing data and for suggesting
FDH gene as an interesting target for study. This research
was supported by VEGA grant 1/1085/12 and by Come-
nius University young researcher grant UK/425/2013.

References

[Altschul et al., 1997] Altschul, S. F., Madden, T. L., Schaffer,
A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J.
(1997). Gapped BLAST and PSI-BLAST: a new genera-
tion of protein database search programs. Nucleic Acids Res,
25(17):3389-3392.

[Bankevich et al., 2012] Bankevich, A., Nurk, S., Antipov, D.,
Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M.,
Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V.,
Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., and
Pevzner, P. A. (2012). SPAdes: a new genome assembly algo-
rithm and its applications to single-cell sequencing. J Comput
Biol, 19(5):455-457.

[Ferragina and Manzini, 2001] Ferragina, P. and Manzini, G.
(2001). An experimental study of an opportunistic index. In
Proceedings of the Twelfth Annual ACM-SIAM Symposium on
Discrete algorithms (SODA), pages 269-278.

[Kent, 2002] Kent, W. J. (2002). BLAT-the BLAST-like align-
ment tool. Genome Res, 12(4):656—664.

[Langmead et al., 2009] Langmead, B., Trapnell, C., Pop, M.,
and Salzberg, S. L. (2009). Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome.
Genome Biol, 10(3):R25.

[Li et al., 2008a] Li, H., Ruan, J., and Durbin, R. (2008a). Map-
ping short DNA sequencing reads and calling variants using
mapping quality scores. Genome Res, 18(11):1851-1858.

[Liet al., 2008b] Li, R., Li, Y., Kristiansen, K., and Wang, J.
(2008b). SOAP: short oligonucleotide alignment program.
Bioinformatics, 24(5):713-714.

[Lin et al., 2008] Lin, H., Zhang, Z., Zhang, M. Q., Ma, B., and
Li, M. (2008). ZOOM! Zillions of oligos mapped. Bioinfor-
matics, 24(21):2431-2437.

50 M. Kravec, M. Bobak, B. Brejova, T. Vinaf

5076

Ana 105 Ana 573 Ana: 802 AM.IA Rna 7
5016

Figure 5: Variants of FDH gene in M. magnusii genome. (top) The full graph of variants; only alternatives accounting for
more than 10% of aligned genes were included. (middle) Reduced graph of variants significantly reduces the number of
edges. (bottom) Six variants discovered by the ILP; each variant is shown in a different color.

Variants of Genes from the NGS Data

51

[Medvedev et al., 2011] Medvedeyv, P., Pham, S., Chaisson, M.,
Tesler, G., and Pevzner, P. (2011). Paired de bruijn graphs: a
novel approach for incorporating mate pair information into
genome assemblers. J Comput Biol, 18(11):1625-1634.

[Minoche et al., 2011] Minoche, A. E., Dohm, J. C., and Him-
melbauer, H. (2011). Evaluation of genomic high-throughput
sequencing data generated on [llumina HiSeq and genome an-
alyzer systems. Genome Biol, 12(11):R112.

[Nadalin et al., 2012] Nadalin, F., Vezzi, F., and Policriti, A.
(2012). GapFiller: a de novo assembly approach to fill the gap
within paired reads. BMC Bioinformatics, 13 Suppl 14:S8.

[Peterlongo and Chikhi, 2012] Peterlongo, P. and Chikhi, R.
(2012). Mapsembler, targeted and micro assembly of large
NGS datasets on a desktop computer. BMC Bioinformatics,
13:48.

[Pevzner et al., 2001] Pevzner, P. A., Tang, H., and Waterman,
M. S. (2001). An Eulerian path approach to DNA fragment
assembly. Proc Natl Acad Sci U S A, 98(17):9748-9753.

[Pham et al., 2013] Pham, S. K., Antipov, D., Sirotkin, A.,
Tesler, G., Pevzner, P. A., and Alekseyev, M. A. (2013). Path-
set graphs: a novel approach for comprehensive utilization of
paired reads in genome assembly. J Comput Biol, 20(4):359—
361.

[Philippe et al., 2011] Philippe, N., Salson, M., Lecroq, T,
Leonard, M., Commes, T., and Rivals, E. (2011). Querying
large read collections in main memory: a versatile data struc-
ture. BMC Bioinformatics, 12:242.

[Warren and Holt, 2011] Warren, R. L. and Holt, R. A. (2011).
Targeted assembly of short sequence reads. PLoS One,
6(5):e19816.

[Zerbino and Birney, 2008] Zerbino, D. R. and Birney, E.
(2008). Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res, 18(5):821-829.

[Zhai et al., 2012] Zhai, Z., Reinert, G., Song, K., Waterman,
M. S., Luan, Y., and Sun, F. (2012). Normal and compound
poisson approximations for pattern occurrences in NGS reads.
J Comput Biol, 19(6):839-844.

