
Approximate Pattern Matching using Fuzzy Logic ∗

Gabriela Andrejková, Abdulwahed Almarimi and Asmaa Mahmoud

Institute of Computer Science, Faculty of Science
P. J. Šafárik University in Košice, Slovakia

gabriela.andrejkova@upjs.sk

Abstract: Pattern matching problem is still very interest-
ing and important problem. Algorithms for the exact pat-
tern matching search for exact patterns in some texts or
figures. Algorithms for an approximate pattern match-
ing search for exact and similar patterns with some errors.
They use some measures to evaluate a similarity of found
similar patterns. In the area of the pattern matching allow-
ing errors is possible to use fuzzy logic theory. In the paper
we present the algorithm for a fuzzification of a determin-
istic finite state automaton using a similarity function of
characters. The fuzzified automaton will accept exact and
similar words. The second presented algorithm is a fuzzy
modification of Aho-Corasick pattern matching algorithm
which still work in linear time with respect to the length of
the searching text.
Key words: Pattern matching, fuzzy logic, fuzzy automa-
ton.

1 Introduction

The motivation to the Fuzzy Pattern Matching Problem
(FPMP) can be found in Exact Pattern Matching Problem
(EPMP). Words they are very closed to patterns (maybe
words with one error) will not be found in EPMP. A quite
good example is the typing of some text on the keyboard
[2]. The following errors can be done in typing some text:

1. Typing a different character, usually from the neigh-
borhood of the current character on a keyboard.

2. Inserting one or more characters into the source text.

3. Omitting any single character from the text.

4. Transposition of neighbor elements in the source text.

The most frequent error is the following: instead of
the required character is typed a character from the
area on the keyboard adjacent to the required charac-
ter. For example, the neighborhood of the character f
is the set fn = {f,d,g,r, t,c,v}. The set of characters
A = {f,r,o, l, i,c} belongs to the pattern frolic. In this case
of typing errors, let us assign similarity value (f) to each
element of the neighborhood in such way that the charac-
ter itself has f equal to 1 and the characters from the f ’s
neighborhood have f value < 1, because they really repre-
sent some error.

∗Supported by the Slovak Scientific Grant Agency VEGA, Grant No.
1/0479/12.

The similarity values of characters could be prepared
in many ways, for example the closest characters to the
character on keyboard, the similar characters to the given
character because of they have the same shape, and so on.
And it is possible to use similarity values as some fuzzy
values of characters [3]. Several fuzzifications of formal
concept analysis have been proposed in [8]. For example,
for the set fn should be f (f,f) = 1, f (f,d) = 0.4, f (f,r) =
0, f (f,g) = 0.1, f (f,t) = 0.4, f (f,c) = 0.3, f (f,v) = 0.3.
We consider that in the text, it is necessary to find the
words they are very closed to the pattern frolic. We could
consider the sum of f ’s of a given string as a measure of its
similarity of the found string to the pattern frolic [2]. But
we can lose the information if the found word is exact or
not if the pattern is a subsequence of the found word. For
example, if the pattern frolic is found in the text then the
measure of the similarity to the found word frolic is the
length of the word frolic (equal to 6). The word froolic is
very closed to the pattern and the measure of the similar-
ity is 6 too, because the symbol o can be deleted. But the
word froolic is not exact word. The used measure of the
similarity words has some problems in this case. We will
apply measures based on fuzzy logic.

In the string matching problem allowing errors, an in-
put text, maybe containing errors, and a pattern string are
compared in order to find an imperfect pattern in input
text. Very interesting fuzzy measure between strings us-
ing fuzzy automata with ε-moves was given in [4]. Fuzzi-
fied Aho-Corasick (FAC) search automata were described
in [10]. Some examples of an application of a similarity
function to nondeterministic finite automata is described
in [9]. We propose a theoretical description of fuzzy op-
erations in a fuzzy automaton using relations on fuzzy
sets. We developed a modified fuzzy automaton, named
a FAC automaton working in a linear time in the length of
searched texts. In the applied FAC algorithm we did some
restrictions coming from practice: (1) restrictions on sets
of similar symbols, (2) restrictions on the number of mis-
takes in words. The applied FAC automaton was tested on
some small texts with acceptable results.

The paper is organized as follows: Section 2 presents
used notions and concepts needed to understand the prob-
lem, mainly fuzzy logic connectives and fuzzy automata.
In Section 3 we built fuzzy automaton from a deterministic
finite state automaton and a similarity function. In the fol-
lowing sections we present the algorithm for fuzzy pattern
matching and some results of its using.

ITAT 2013 Proceedings, CEUR Workshop Proceedings Vol. 1003, pp. 52–57
http://ceur-ws.org/Vol-1003, Series ISSN 1613-0073, c© 2013 G. Andrejková, A. Almarimi, A. Mahmoud

2 Preliminaries

A fuzzy set A in a referential universal set U is character-
ized by a membership function which associates to each
element x ∈U a real number A(x) ∈ [0,1], [0,1] is the in-
terval of real numbers, {0,1} is the set of two numbers.
The value of the membership function of x ∈U represents
the membership degree of x in A. We use F (U) to de-
note the set of all fuzzy sets on U . As the basic book for
notions in the theory of fuzzy sets and fuzzy logic, we used
Gottwald’s book [5].

In the theory of fuzzy sets, triangular norms have been
used for defining the intersection of fuzzy sets and for
modeling the logical conjunction in fuzzy logic.

Definition 1. A mapping T : [0,1]× [0,1]→ [0,1] is called
a triangular norm, or t-norm, if it satisfies at least ax-
ioms of

• identity element, 1, i. e. T (x,1) = T (1,x) = 1T x =
xT 1 = x for each x ∈ [0,1].

• monotonicity, non-decreasing in each argument,

• commutativity and associativity.

2

t-norms are considered as truth functions of generalized
conjunction operators. s-conorms are considered as truth
functions of generalized disjunction operators.

Remark 1. Well known t-norms:

1. Gödel conjunction: xTG y = TG(x,y) = min(x,y),

2. Lukasiewicz conjunction: xTL y= TL(x,y)=max{x+
y−1,0},

3. Product conjunction: xTP y = TP(x,y) = x∗ y.

Let A be a fuzzy set of set U . A binary fuzzy relation on
A is any fuzzy set of A×A.

Definition 2. For a fuzzy subset V of A and a binary fuzzy
relation R on A, the compositions V •R and R•V are fuzzy
subsets of A defined, for any x ∈ A, by

(V •R)(x) = max
y∈A
{T (V (y),R(y,x))}, (1)

(R•V)(x) = max
y∈A
{T (R(x,y),V (y))} (2)

2

Example 1. Let V = {(a,0.4),(b,0.7),(c,0.5)} be the
fuzzy subset of A. Let A×A be the binary fuzzy relation
defined by the Table 1. The composition of V by A×A can
be done from the left and from the right side. If A×A is
not symmetric relation then we can get different fuzzy sets.

Definition 3. A fuzzy finite state automaton FA is a quin-
tuple (Σ,Q,µ,S, F), where:

A×A (V •R)G (R•V)G
a b c

a 0.3 0.4 0.2 0.3 0.4
b 0.2 0.6 0.3 0.6 0.6
c 0.1 0.9 0.3 0.7 0.3

Table 1: The composition of a fuzzy set and a binary fuzzy
relation (•), index G means using of Gödel conjunction.

• Σ is a non-empty finite set of input characters (input
alphabet),

• Q is a non-empty finite set of states,

• S,S⊆ Q is a fuzzy set of a starting states on Q,

• F,F ⊆ Q is a fuzzy set of final (accepting) states on
Q,

• µ : Q×Q×Σ→ [0,1] is the state transition function,

• µ can be decomposed to |Σ| binary relations, for each
character x ∈ Σ, in the following way:

µx : Q×Q→ [0,1] is a binary fuzzy relation on Q -
fuzzy transition matrix of order |Q|.

• µ can be decomposed to |Q| binary relations, for
each state q ∈ Q, in the following way:

qµ : Q×Σ→ [0,1] is a binary fuzzy relation on Q×Σ
- fuzzy transition matrix of order |Q|× |Σ|.

2

For each x ∈ Σ, µx is binary fuzzy relation on a set of
states Q. It is a fuzzy set of the Cartesian product Q×Q.
µx(p,q) ∈ [0,1] for each pair (p,q) ∈ Q×Q and it can be
explained as the compliance degree of interaction between
states p and q ∈ Q in symbol x ∈ Σ.

µ µa µb µc
Sts q0 q1 q2 q0 q1 q2 q0 q1 q2
q0 .4 0 0 0 .1 0 0 0 0
q1 0 0 .5 0 0 0 0 1 0
q2 0 0 0 0 0 .7 0 0 0

Table 2: Decomposition of the transition function for all
characters of fuzzy automaton FA1 in the Example 2.

Example 2. The fuzzy finite automaton FA1 = (Σ,Q,
µ,S,F),Σ = {a,b,c},Q = {q0,q1,q2},S = {q0},S(q0) =
1,F = {q2},F(q2) = 1, and transition functions for sym-
bols in Σ are in the Table 2, the automaton is drawn in the
Figure 1 . µb(q0,q1) = 0.1 and it can be explained as the
compliance degree of interaction between states q0 and q1
for the symbol b. µa(q0,q0)= 0.4 is the compliance degree
of interaction between states q0 and q0 for the symbol a.

Approximate Pattern Matching Using Fuzzy Logic 53

Figure 1: The graph of transition functions of the fuzzy
finite automaton FA1 in the example 1. The symbols with
membership values 0 are not drawn.

Remark 2. In the following text

1. Σ+ is the set of all non-empty strings over Σ and Σ∗ =
Σ+∪{ε}.

2. The term fuzzy state of an automaton (shortly
fuzzy state) is used to refer to a fuzzy set of states
over Q. Fuzzy state V ∈ F (Q) is some set of
states with membership values. For example, V =
{(q0,1),(q1,0),(q2,0)} is a fuzzy state.

3. The composition of a fuzzy state V ∈ F (Q) and a
binary fuzzy relation µx, x ∈ Σ, on Q×Q is defined,
for each p ∈ Q, by

(V •T µx)(p) = max
q∈Q
{T (V (q),µx(q, p))} (3)

Example 3. The composition of a state V1 =
{(q0,1),(q1,0),(q2,0)} and the binary fuzzy relation
µb from the example 1 using Gödel norm TG gives the new
fuzzy state V2:
(V1 •TG µb)(q0) = maxq∈Q{TG(V1(q),µb(q,q0))} =

V2(q0) = 0,
(V1 •TG µb)(q1) = maxq∈Q{TG(V1(q),µb(q,q1))} =

V2(q1) = 0.1,
(V1 •TG µb)(q2) = maxq∈Q{TG(V1(q),µb(q,q2))} =

V2(q2) = 0,
V2 = {(q0,0),(q1,0.1),(q2,0)}.

Definition 4. Let R1 and R2 be two fuzzy binary relations
on Q×Q, T be some t-norm. The max-T composition
between R1 and R2, denoted R1 ◦T R2, is the fuzzy set on
Q×Q such that for all (p,q) ∈ Q×Q

R1 ◦T R2(p,q) = maxr∈Q{T (R1(p,r),R2(r,q))}. (4)

2

Example 4. Let R1 = µa and R2 = µb be two fuzzy rela-
tions on Q×Q in the Example 2. Let TG be Gödel t-norm.
The max−TG composition between µa and µb, is given in
the Table 3. For example, µa ◦TG µb(q0,q1) can be com-
puted as

µa◦TG µb(q0,q1)=maxr∈Q{TG{µa(q0,r),µb(r,q1)}}= .1,

where
min{µa(q0,q0),µb(q0,q1)}= min{0.4,0.1}= 0.1,
min{µa(q0,q1),µb(q1,q1)}= min{0,0}= 0,
min{µa(q0,q2),µb(q2,q1)}= min{0,0}= 0,
max{0.1,0,0}= 0.1

µ µa µb max-T
Sts q0 q1 q2 q0 q1 q2 q0 q1 q2
q0 .4 0 0 0 .1 0 0 0 0
q1 0 0 .5 0 0 0 0 0 .5
q2 0 0 0 0 0 .7 0 0 0

Table 3: Max− TG composition of relations µa and µb
from Example 2.

The computation of a fuzzy finite state automaton FA
is formally described in terms of strings of input symbols
that are accepted by it.

Definition 5. Let FA=(Σ,Q,µ,S,F) be a fuzzy finite state
automaton.

(i) µ̂ : F (Q)×Σ→F (Q) is the fuzzy state transition
function. Given a fuzzy state V ∈F (Q) and a sym-
bol a ∈ Σ it is µ̂(V,a) =V •T µa, the result is a fuzzy
state.

(ii) µ∗ : F (Q)×Σ∗→F (Q) is the extended transition
function defined as

(a) µ∗(V,ε) = V, for all V ∈F (Q) (the result is a
fuzzy state).

(b) µ∗(V,αx) = µ̂(µ∗(V,α),x) = µ∗(V,α) •T µx,
for all V ∈F (Q),α ∈ Σ∗ and x ∈ Σ.

• The language accepted by FA, denoted L (FA),
is the fuzzy set on Σ∗ such that L (FA)(α) =
maxq∈Q{T (µ∗(S,α)(q),F(q))} for all α ∈ Σ∗.

2

Example 5. The value of the membership function for
some word in L (FA) depends on used t-norm. For exam-
ple, the word α =′ bca′ is accepted by FA1 in the Example
1. The starting fuzzy state is S = {(q0,1),(q1,0),(q2,0)}
and the finite fuzzy state is S = {(q0,0),(q1,0),(q2,1)}.
The membership values are:

• TG: L (FA1)(α) =maxq∈Q{TG(µ∗(S,α)(q),F(q))},
µ∗(S,′ bca′) = µ̂(µ∗(S,′ bc′),a),

µ∗(S,′ bc′) = µ̂(µ∗(S,′ b′),c),
µ∗(S,′ b′) = µ̂(µ∗(S,ε),b) = S •TG µb =
{(q0,0),(q1,0.1),(q2,0)}= S1,

µ∗(S,′ bc′) = µ̂(µ∗(S,′ b′),c) = µ̂(S1,c) =
{(q0,0),(q1,0.1),(q2,0)} = S2,

µ∗(S,′ bca′) = µ̂(µ∗(S,′ bc′),a) = µ̂(S2,a) =
{(q0,0),(q1,0),(q2,0.1)} = S3.

54 G. Andrejková, A. Almarimi, A. Mahmoud

Using the Gödel conjunction the membership value
of the word is 0.1.

• TL: L (FA1)(α) = maxq∈Q{TL(µ∗(S,α)(q),F(q))},
Using the Lukasiewics conjunction the membership
value of the word is 0. It means the word is not ac-
cepted by the automaton.

• TP: L (FA1)(α) = maxq∈Q{TP(µ∗(S,α)(q),F(q))},
Using the Product conjunction the membership value
of the word is 0.02.

3 Fuzzification of DFA using a similarity
function

We will work with some deterministic finite state automa-
ton (DFA) M defined by [6], M = (Σ,Q,δ ,q0,F), where
Σ is non-empty finite set of characters, Q is a non-empty
finite set of states, q0 is the starting state, F is the set of
finite states, and δ : Q×Σ→Q is the state transition func-
tion. δ can be decomposed to binary relations according
to states in Q, δq : Q×Σ→{0,1},q ∈ Q.

Example 6. Let A be a deterministic finite state automa-
ton A = (Σ,Q,δ ,q0,F), Σ = {A,B,C},Q = {q0, . . . ,q7},
F = {q4,q6,q7}, δ is in the Table 6. Some results of the
decomposition of δ according to states is in the Table 5.

Sts A B C
→ q0 q1 q5 −
q1 − q2 −
q2 q3 q5 −
q3 − q4 −
q4→ − q5 −
q5 − q6 q7
q6→ − − −
q7→ − − −

Table 4: Transition function δ of the automaton A .

Definition 6. Let R be a binary fuzzy relation on Q, T be
a t-norm.

• R is t-transitive if for all p,q,r ∈ Q,
T (R(p,r),R(r,q))≤ R(p,q).

• R is reflexive if R(p, p) is defined for each p ∈ Q.

• R is symmetric if R(p,q) = R(q, p) for all p,q ∈ Q.

If R is reflexive, and symmetric then R is called proxim-
ity relation. If R is also t-transitive, then R is called t-
similarity relation.

Definition 7. Let Σ = {a1,a2, . . .an} be some finite al-
phabet of characters used in some text. Each function

f : Σ×Σ→ [0,1] defined by (5) is called similarity func-
tion.

f (ai,a j) = f (a j,ai) =

{
1, if ai = a j,
v, v ∈ [0,1), if ai 6= a j.

(5)

2

δ∗ δq0 δq2 δq5

Sts A B C A B C A B C
q0 0 0 0 0 0 0 0 0 0
q1 1 0 0 0 0 0 0 0 0
q2 0 0 0 0 0 0 0 0 0
q3 0 0 0 1 0 0 0 0 0
q4 0 0 0 0 0 0 0 0 0
q5 0 1 0 0 1 0 0 0 0
q6 0 0 0 0 0 0 0 1 0
q7 0 0 0 0 0 0 0 0 1

Table 5: Examples of the decomposition δ∗ functions.

The similarity function defines similarity level between
each pair of characters in Σ. A value v∈ [0,1] is depending
on the similarity of characters ai and a j. The similarity
function can be used as a proximity relation, it is a binary
symmetric and reflexive fuzzy relation on Σ×Σ.

To the composition of the state transition function δ and
the similarity function it is necessary to choose some ad-
equate fuzzy logic connectives. One of them is a max-T
composition of two binary relations defined by (6).

Definition 8. Let R1 be a fuzzy binary relation on Q×Σ
and R2 be a fuzzy binary relation on Σ×Σ. The max−T
composition between R1 and R2, denoted R1 ◦T R2, is the
fuzzy set on Q×Σ such that for all p ∈ Q and a ∈ Σ

R1 ◦T R2(p,a) = maxx∈Σ{T (R1(p,x),R2(x,a))}. (6)

2

Let δq, for some q ∈ Q, be a binary (fuzzy) relation on
Q×Σ and R2 be a proximity relation representing a sim-
ilarity function f . Using (6) we will get the decomposed
(according to states) fuzzy transition functions of the cor-
responding fuzzy automaton qµ : Q×Σ→ [0,1] for each
q ∈ Q. The fuzzy transition function is µ : Q×Q×Σ→
[0,1].

µ(q, p,a) = qµ(p,a) = (δq ◦T f)(p,a)

= maxx∈Σ{T (δq(p,x), f (x,a))} (7)

Example 7. The application of max−TG (Gödel con-
junction) composition to δq and the similarity function f .

Similarity function:
f (A,A) = f (B,B) = f (C,C) = 1, f (A,B) = f (B,A) = 0,
f (B,C) = f (C,B) = 0, f (C,A) = f (A,C) = 0.3.

Approximate Pattern Matching Using Fuzzy Logic 55

µ µq0 µq2 µq5

Sts A B C A B C A B C
q0 0 0 1 0 0 0 0 0 0
q1 1 0 0 0 0 0 0 0 0
q2 0 0 0 0 0 0 0 0 0
q3 0 0 0 1 0 0.3 0 0 0
q4 0 0 0 0 0 0 0 0 0
q5 0 1 0 0 1 0 0 0 0
q6 0 0 0 0 0 0 0 1 0
q7 0 0 0 0 0 0 0 0 1

Table 6: Examples of a fuzzification of a transition func-
tion.

If we analyze the formula (7), we should see that the
value δq(p,x) represent the transition value in DFA, it
means δq(p,x) ∈ {0,1}. From the property follows that
in the formula (7) should be used arbitrary t-norm T . The
algorithm needs information about DFA and the similar-
ity function. Using nested four cycles to formula (7) we
will get the fuzzy transition function of the new automa-
ton FA = (Σ,Q,µ,{q f

0},F f), where {q f
0},F f) are sets

of fuzzy states. The time complexity is O(|Q|2.|Σ|2) in the
worst case. In the common case, FA can be a nondeter-
ministic finite automaton. Using some special conditions
in DFA or in similarity functions FA can be determinis-
tic.

4 Pattern matching

Aho-Corasick algorithm (ACA) [1] is used to search the
small number of exact key words in some long texts.
AC algorithm constructs the special automaton to accept
key words, the automaton is DFA. The construction is
modified using a similarity function using composition
operation of binary relations described by formula (7).
The similarity function will be prepared according to
errors done by a typing of people on keyboard. We sup-
pose that each set of similar characters has less or equal
two elements and the similarity function is symmetric one.

The three basic functions of Aho-Corasick algorithm are:

• a Goto function based on an automaton DFA, which
maps (state, character) pairs to states and occasion-
ally emits an output,

• a Failure function, which tells the Goto function
which state to jump into when the character it just
read doesn’t match anything,

• an Output function, which maps states to outputs -
sometimes more outputs than one per state.

4.1 Failure function

The construction of failure function f ail depends on some
transitions with fuzzy values greater than 0. The construc-

tion is done in a recursive way using a queue of states they
are waiting for processing.

Method:

1. All states in the automaton for them exists some tran-
sition from state q0 will be put into the queue. The
queue in our Example 7: (: 1,5 :).

The value of the failure function f ail in the state q0
and in all states with possible transition from the state
q0 will be q0, f ail[q0] = q0. f ail[s] = q0 if there exists
some transition from state q0 to s.

2. While the queue is not empty the first element is taken
from the queue to r and transitions from r for all sym-
bols of alphabet are analyzed. If the transition for
symbol i is possible then to t is assigned f ail(r) and
to s the result state of the transition from the state
r through symbol i. While a transition from state t
through symbol i is not possible then t := f ail(t). Af-
ter finding the possible transition from state t through
symbol i to state v, the value of the failure function
in the state s is put to state v. The state s is put in the
end of the queue.

4.2 Fuzzy Aho-Corasick algorithm:

1. To prepare the searched patterns, let P be the length
of all patterns. To build the alphabet of used charac-
ters Σ, |Σ| ≤ P. Σ will be the alphabet of DFA. To pre-
pare the function f of similarity for characters. The
similarity function describes the measure of character
similarities.

2. To process all searched patterns and built the Aho-
Corasick Automaton (ACA) with the transition func-
tion δ . |Q|, |Q| ≤ P is the number of states. To re-
move all transitions from q0 to q0. Let Σq0 be the al-
phabet of characters of possible transitions from state
q0 to the some other state (not to q0). The time com-
plexity is O(|Q|2.|Σ|).

3. To prepare the fuzzification of ACA and to process
the output of each state together with membership
values. To return all removed transitions from q0 to
q0 using the alphabet Σq0 . We get FACA. The time
complexity is O(|Q|2.|Σ|2)=O(P4) in the worst case.

4. To build failure function f ail and modified output of
all states in FACA. The time complexity is O(|Q|2).

5. To use FACA for a searching of patterns in some text
given in the file and to print all founded positions of
the found patterns. The FACA finds the patterns and
their membership values. the text is read is analyzed
in one step, it means, the linear time in the length
of the text. Many texts should be searched by the
prepared automaton and they will be read once only.

56 G. Andrejková, A. Almarimi, A. Mahmoud

5 Results in the application

In the application we used the following restrictions: (a)
one error at most in the word, (b) the set of similar charac-
ters has two characters at most.

Example 8. We construct the fuzzy automaton to the fol-
lowing patterns.
Patterns: "ABAB", "BB", "BC".
Alphabet: Σ = {A,B,C}.
The deterministic finite state automaton is A =
(Σ,Q,δ ,q0,F), Q = {q0, . . . ,q7}, F = {q4,q6,q7}. δ is in
the Table 6.

We will use the similarity function from Example 7.
The fuzzy transition function from a state using a char-

acter to some state. The value −1 means any transition.
Real numbers present membership values. In the out-

put, there are exact and similar words together with their
membership values to the accepted language.

Failure function f ail:

From q0 q1 q2 q3 q4 q5 q6 q7
To state q0 q0 q5 q7 q2 q0 q5 q1

Transition function of the FACA

Sts A B C Output
q0 q1 : 1.0 q5 : 1.0 q1 : 0.3 -
q1 -1 : 0.0 q2 : 1.0 -1 : 0.0 -
q2 q3 : 1.0 -1 : 0.0 q3 : 0.3 -
q3 -1 : 0.0 q4 : 1.0 -1 : 0.0 :BC, 1.00:

:BA, 0.30:
q4 -1 : 0.0 -1 : 0.0 -1 : 0.0 :ABAB, 1.00:

:CBAB, 0.30:
:ABCB, 0.30:

q5 q7 : 0.3 q6 : 1.0 q7 : 1.0 -
q6 -1 : 0.0 -1 : 0.0 -1 : 0.0 :BB, 1.00:
q7 -1 : 0.0 -1 : 0.0 -1 : 0.0 :BC, 1.00:

:BA, 0.30:

Accepting states: 3,4,6,7.

Output:

State # words words
exact and similar

3 2 BC, BA
4 3 ABAB, CBAB, ABCB
6 1 BB
7 2 BC, BA

The application of the constructed automaton to the fol-
lowing text string: ’ABABBCCCBAB’ gives the follow-
ing results:
The number of found words: 5

pattern position fuzzy value
in text

ABAB 1 1.00
BC 2 0.30
BB 4 1.00
BC 5 1.00

ABAB 7 0.30

6 Conclusion

In the paper we give some information about possibility to
use fuzzy logic theory in the area of the pattern matching.
The exact pattern matching will find the exact words only
and do not give any information about words with one er-
ror only. The information that the word is very closed to
the pattern should be very important. It is enough for peo-
ple to analyze this word in next time.

We developed the fuzzy version of Aho-Corrasick algo-
rithm which can find the similar fuzzy words. In the fol-
lowing work we will test some fuzzy aggregate functions
to evaluate a similarity of the words.

References

[1] A. V. Aho, M. J. Corasick: Efficient string matching: an aid
to bibliographic search. Communications of the ACM, Vol.
18, 1975, p. 333 - 340.

[2] G. Andrejková: The set closest common subsequence prob-
lem. In: Proceedings of 4th International Conference on
Applied Informatics9́9, Eger - Noszvaj 1999, p. 8.

[3] G. Andrejková: The similarity of two strings of fuzzy sets.
Kybernetika, vol. 36 (2000), issue 6, pp. 671 - 687

[4] J. J. Astrain, J. R. Gonzalez de Mendivil, J. R. Garitagoitia:
Fuzzy automata with ε–moves compute fuzzy measures be-
tween strings. Fuzzy Sets and Systems 157 (2006) p. 1550
-1559.

[5] S. Gottwald: Fuzzy sets and fuzzy logic. Verlag Vieweg,
Braunschweig, 1993.

[6] J. E. Hopcroft, J. D. Ullman: Introduction to Automata
Theory, Languages and Computation. Addison-Wesley,
Reading, MA, USA, 1979.

[7] Z. Horák, V. Snášel, A. Abraham, A. E. Hassanien: Fuzzi-
fied Aho-Corrasick Search Automata. In Proceedings of
IAS, 2010, p. 338-342.

[8] J. Medina, M. Ojeda-Aciego, J. Ruiz-Calvino: Formal con-
cept analysis via multi-adjoint concept lattices. Fuzzy Sets
and Systems, Volume 160 Issue 2, January, 2009, p. 130-
144.

[9] V. Ramaswamy, H. A. Girijamma: Fuzzy Automata for
String Comparison. International Journal of Computer Ap-
plication, Vol. 37, No. 8, 2012, p. 1 - 4.

[10] V. Snášel, A. Keprt, A. Abraham, and A. E. Hassanien: Ap-
proximate pattern matching using fuzzy automata. In: K.
A. Cyran et (Eds.): Man-Machine Interactions, AISC 59,
Springer-Verlag Berlin Heidelberg 2009, p. 281 - 290.

Approximate Pattern Matching Using Fuzzy Logic 57

