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Abstract: The set intersection problem is one of the main
problems in document retrieval. Query consists of two
keywords, and for each of keyword we have a sorted set
of document IDs containing it. The goal is to retrieve the
set of document IDs containing both keywords. We per-
form an experimental comparison of Galloping search and
a new algorithm by Cohen and Porat (LATIN2010), which
has a better theoretical time complexity. We show that the
new algorithm has often worse performance than the trivial
one on real data. We also propose a variant of the Cohen
and Porat algorithm with a similar complexity but better
empirical performance. Finally, we investigate influence
of document ordering on query time.

1 Introduction

In the set intersection problem, we are given a collection
of sets A1,A2, . . . ,Ad . Our goal is to preprocess them and
then answer queries of the following type: For given i,
j, find the intersection of sets Ai and A j. This problem
appears in various areas. For example, set intersection is
needed in conjuctive queries in relational databases, and
Ng, Amir, Pevzner [7] use set intersection to match mass
spectra against a protein database. However, perhaps the
most important application is in document retrieval, where
the goal is to maintain data structures over a set of doc-
uments. The most typical data structure is the inverted
index, which stores for each word the set of documents
containing that word. Such an index allows us to eas-
ily retrieve documents containing a particular query word.
When we want to retrieve documents which contain two
or more given words, we can do set intersection of corre-
sponding document sets from the inverted index.

Classical algorithms for set intersection are merging and
binary search. Merging identifies common elements by it-
erating through both sorted lists, as in the final phase of
the merge sort algorithm. If we denote the length of the
smaller set as m and the larger set as n, then the time com-
plexity of merging is O(m+ n), which is good when the
lengths of the two sets are almost same. If m is much
smaller than n, it is better to search for each element of the
smaller set in the larger set by binary search, in O(m lgn)
total time.

There is a better algorithm originally introduced by
Bentley and Yao [8], called galloping search with time
complexity O(m lg(n/m)). This algorithm has good time
complexity when the lengths of the sets are similar and

also when the shorter set is much shorter than longer one.
We will describe this algorithm in the next section.

All previous algorithms get the two sorted sets on input
without any additional preprocessing. However in inverted
indexing, sets for all keywords are known in advance, and
perhaps some preprocessing of these sets could speed up
query processing. In particular, the length of the output
can be much smaller than the length of the shorter set, and
it would be desirable to have an algorithm, which would
not depend linearly on m. The first step in this direction is a
recent algorithm by Cohen and Porat [1], which uses linear
memory to store all sets and processes each intersection
query in time O(

√
No+o), where o is the length of output

and N is the sum of the sizes of all sets. We will denote
this algorithm as the fast set intersection algorithm.

However, it is not clear, whether this theoretical im-
provement is really useful in practice. In this article, we
compare the query times of the fast set intersection algo-
rithm and the galloping search on a dataset consisting of
a sample of English Wikipedia articles with a set of two-
words queries from TREC Terabyte 2006 query stream.
We also present a variant of the fast set intersection al-
gorithm with a similar time and memory complexity but
better empirical performance.

Previous experimental comparisons of set intersection
algorithms [5, 6] consider only different variants of gal-
loping search or other algorithms that do not use set pre-
processing. Yan et al. [2] observe that better query times
can be achieved via better document ordering. In our ex-
periments, we also compare query times of random doc-
ument ordering and document ordering based on simple
clustering scheme for all tested algorithms.

2 Algorithms

In this section we descibe the three algorithms, which we
will compare. We will denote the two input sets as A, B,
where |A| = n, |B| = m, m ≤ n. We will denote the total
number of sets as s and the total size of sets as N.

2.1 Galloping search

The Galloping search ([8]) is a simple modification of
the binary search. We try to find each element of B in
A; formally for each B[i] we will find index ki such that
A[ki] ≤ B[i] and A[ki + 1] > B[i]. We will use several im-
provements. First, if j > i, then k j ≥ ki. This means that
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when we are searching for ki+1, we need to search only
in range ki,ki + 1, . . . ,n. Secondly before doing binary
search we will find the smallest p ∈ {1,2,4,8, . . .} such
that A[ki + p] ≥ B[i+ 1]. This limits the range of the bi-
nary search when difference between ki and ki+1 is small.
When using this modifications the algorithm achieves time
complexity O(m lg(n/m)). Pseudocode of this algorithm
is given below:

low:=1

for i := 1 to m:

diff := 1

while low + diff <= n and A[low + diff] < B[i]:

diff *= 2

high := min(n, low + diff)

k = binary_search(A, low, high)

if A[k] == B[i]:

output B[i]

low = k

2.2 The fast set intersection algorithm

We now briefly describe the data structure used by fast set
intersection algorithm [1].

We build tree where each node handles some subsets of
the original sets. The cost of a node is the sum of the sizes
of all the subsets it handles. The root handles all original
sets, so it costs N.

Definition 1. Let d be a node with costs x. A large set in
d is one of the

√
x biggest sets in node d.

Note the the original article defined large set in a slighly
different way. Their large set was a set with at least

√
x el-

ements. It is clear, that every set with at least
√

x elements
is a large set by our definition.

A set intersection matrix is a matrix that stores for each
pair of sets a bit indicating whether their intersection is
non-empty. For x sets this matrix needs O(x2) bits of space
and therefore node with cost c needs O(c) bits of memory.
For each node of tree we will construct a set intersection
matrix for all the large sets in that node.

Now we need to describe how to build the tree. We will
use a top-down approach. We will start with root node and
in each node we will divide the sets and propagate them
to its children. Only large sets are propagated down to the
node children. We will call this sets a propagated group.
Let d be a node with cost x and G its propagated group.
The G costs at most x. Let E be the set of all elements in
the sets of G. We will try to split E into two disjoint sets
E1,E2. For a given set S ∈ G the child will handle S∩E1
and the right child will handle S∩E2. We want the each
child to cost at most x/2. This is sometimes impossible
to achieve. We will fix this by keeping one element of E
in d. We add elements to E1 until adding another element
would make the left child cost more than x/2. The next
element will be kept in d. All other elements will go to E2
and the right child will cost at most x/2.

This tree will have at most O(lgN) levels. At each level,
we need O(N) bits for intersection matrices. This means
we need O(N lgN) bits, which is O(N) in term of words.

During query answering we will start traversing the tree
starting in the root node. In each node we will check
whether both sets are large. If not, we will answer query
using the galloping search. If both sets are large, we will
look into intersection matrix. If sets do not have intersec-
tion in this node, we stop the traversal in this node. Oth-
erwise, we will propagate the query to the children of that
node. We also need to check whether the element kept in
the node belongs to the intersection.

It can be shown that the time complexity of a set inter-
section query is at most O((

√
No+o) lgn). It can be also

shown that it is never worse than time complexity of the
galloping search [1].

Note that the original article used hash tables instead of
the galloping search.

2.3 Our set intersection

The set intersection matrix usually contains many ones and
only few zeroes. We can use the space better by instead
storing intervals in with intersection of two sets is empty.
We take

√
N biggest sets and call them large sets. We will

call other sets as small sets. Note that the size of a small
set is at most

√
N.

Now we will do a preprocessing for intersections of the
large sets.

Definition 2. Let A,B be two large sets, where |B| ≤ |A|.
The empty interval is a sequence B[i],B[i+ 1], . . . ,B[ j] of
elements of set B such that:

• For each k such that i≤ k ≤ j: B[k] /∈ A.

• i = 1 or B[i−1] ∈ A.

• j = n or B[ j+1] ∈ A.

The size of this interval is j− i+1.

Now we will find and store k largest empty intervals
from all intersections of large sets (note that we can store
zero, one or more than one intervals for some pairs of sets).
Note that if k > N, then the smallest stored empty interval
has size at most

√
N.

We will answer set a intersection query as follows. If
any of the sets is small, we will use the galloping search.
This gives us query time O(m lg(n/m)), but since m≤

√
N,

the query time can be written as O(
√

N lg(n/m)). If both
sets are large, then we will again use the galloping search,
but we will ignore empty intervals found for the given in-
tersection.

We will show two things about time complexity of the
query in our algorithm.

First, if k = N, then the query time complexity is
bounded by O(o

√
N). The memory complexity in this case

is O(N). Secondly, if we put k = N lgN, the average query
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time complexity of this approach is not worse than the time
complexity of the fast set intersection. This is because the
number of empty intervals is the same as the number of
bits in the set intersection matrices of the fast set intersec-
tion algorithm and our empty intervals allows us to skip
search for more elements than the zeroes in the set inter-
section matrices. Thus average query time complexity of
our approach is O((

√
No+o) lgn). The memory complex-

ity is O(N lgN), which is little bit higher.
The complexity of our algorithm does not look as

promising as complexity of the fast set intersection algo-
rithm, but this algorithm allows time-memory tradeoff. We
can store any number of empty intervals as we want. In our
experiements we set this number to achieve same memory
consumption as fast set intersection algorithm.

3 Document ordering

In the document retrieval we can choose arbitrary IDs for
individual documents, and thus influence the ordering of
elements in the input sets. There are several proposed
heuristics for document ordering; most of them try to order
documents for achieving better index compression ([3],
[4]). But good document ordering improves query time
[2]. This happens because similar document are closer to-
gether in the sets and during the galloping search we will
make smaller jumps. In our work, we will use the k-scan
algorithm [3]. To describe this algorithm, we first need to
define similarity of documents.

Definition 3. The Jaccard similarity of two sets A,B is
given by:

J(A,B) =
|A∩B|
|A∪B|

The document is a set of terms. For calculating distance
we will only consider

√
N terms occuring in the largest

number of documents (the large sets from the previous
sections). The similarity of two documents is the Jaccard
similarity of their sets.

The k-scan algorithm tries to find an ordering of docu-
ments by partioning them into k clusters. Let d be the num-
ber of documents. This algorithm has k iterations. In each
iteration, it first picks a cluster center and then chooses
among the unassigned documents the d/k− 1 ones most
similar to the cluster center. Also it picks the cluster cen-
ter for the next iteration, which is the d/k-th most simi-
lar document. The cluster center for the first iteration is
picked randomly. If we assume that document similarity
can be computed in time s, then time complexity of this
algorithm is O(kds). In our experiments we use k = 1000.

4 Experimental setup

We implemented all algorithms in C++ and run our exper-
iment on a computer with Intel i7 920 CPU, 12 GB RAM
and Ubuntu Linux. We compiled our code with g++ 4.7.3
using -O3 optimizations.
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Figure 1: Comparison of query times for galloping search
(x-axis) and fast set intersection (y-axis) with random doc-
ument ordering

4.1 Documents

We took all articles from the English Wikipedia [9] and
divided each article into paragraphs. We have used para-
graphs instead of documents, because otherwise we would
only have a few big documents and the difference between
algorithms would be hard to measure. Then we sampled
6.5 millions of paragraphs and took them as documents.
The total size of index N (the sum of size of all sets) was
313 millions word-document pairs.

4.2 Queries

We have used query log from TREC Terabyte 2006 query
stream [10]. We only consider two word queries from the
log. This gives us approximately 14000 queries. We ran
each query 100 times and measured the average time in
seconds.

5 Experimental results

5.1 Galloping search vs. fast set interserction vs. our
algorithm

We will first show comparision between all algorithms us-
ing random document order. Results are shown in Figures
1, 2.

As we can see the fast set intersection algorithm intro-
duces significant overhead in query processing time for
large queries. Our hypothesis is that this is because this
algorithm does not use the caching in an optimal way. On
the other hand our set intersection algorithm introduces a
small improvement in query processing time. The average
improvement is around 14%.
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Figure 2: Comparison of query times for galloping search
(x-axis) and ours set intersection (y-axis) with random
document ordering

We also explored individual algorithm using more de-
tailed statistics. The set intersection matrices of fast set
intersection algorithms contained 15% of zeroes. There
are 5400 (39%) queries where both sets are large in root
node. Only in 709 of these queries we found zero in the set
intersection matrices. We have also measured how many
elements of the smaller set we can skip due to zeroes in set
intersection matrices. As we can see from the histogram
in Figure 3, there are some queries where the output size
is zero and all elements are skipped. But overall there are
only few queries where we skipped more than half of the
smaller set. Most of the time we skip only few percent of
the smaller set.

In our algorithm, there are 825 queries where we en-
counter an empty interval stored for the two sets. Again we
measured fraction of skipped elements due to empty inter-
vals with respect to the size of the smaller set and plotted
histogram of this fractions (see Figure 4). We see that this
histogram looks quite better than the previous one.

5.2 Document ordering effects

The overall effect of document ordering on the query time
is shown in Figures 5, 6, 7.

The average improvement of query time for galloping
search is 18%, for fast set intersection 27% and for our set
intersection 22%.

It is worth noting that the set intersections matrices con-
tain 25% zeroes when using document ordering based on
k-scans, compared to 15% with random document order.
We had 2100 queries which encoutered zero in some set
intersection matrix in the fast set intersection algorithm.
This approximatelly three times more than when we used
random document ordering. Histogram of the fraction of
skipped elements is in Figure 8. In this histogram we see
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Figure 3: Histogram of fraction of skipped elements from
the smaller set in queries for fast intersection algorithm
with random document ordering. Zero is ommited due to
its big size (12780 queries).
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Figure 4: Histogram of fraction of skipped elements from
the smaller set in queries for our intersection algorithm
with random document ordering. Zero is ommited due to
its big size (12400 queries).

the same problems as in random document ordering – the
number of queries with 80− 90 percent fraction is zero.
On the other hand, we gained a lot of queries where we
eliminated around 10% of work.

In our algorithm, there are 1500 queries where we en-
counter an empty interval. Histogram of the fraction of
skipped elements is in Figure 9. Its shape is similar to his-
togram when using random document ordering.

Finally, in Figures 10, 11 we see a comparision of run-
ning times of algorithms when using document ordering
based on k-scans. We still see significant slowdown for
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Figure 5: Comparison of query times for galloping search
using random document order(x-axis) and document order
based on k-scan algorithm (y-axis)
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Figure 6: Comparison of query times for fast set intersec-
tion using random document order(x-axis) and document
order based on k-scan algorithm (y-axis)

fast set intersection. The speedup for our set intersection
was 19% which is similar to speedup for random docu-
ment ordering. Finally, in Figure 12 we see a compari-
son of galloping search using random document ordering
and our algorithm using better document ordering. Com-
bination of these two factors leads to average improvement
around 35%.

5.3 Preprocessing time and memory consumption

We now briefly sumarize proprocessing time and memory
consumption of our algorithms. Using only inverted index
and galloping search took 2 GB of memory and needed 4
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Figure 7: Comparison of query times for our set intersec-
tion using random document order(x-axis) and document
order based on k-scan algorithm (y-axis)
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Figure 8: Histogram of fraction of skipped elements from
the smaller set in queries for fast intersection algorithm
with k-scan document ordering. Zero is ommited due to
its big size (12390 queries).

minutes for preprocessing. The fast set intersection algo-
rithm required 7 GB of memory and 90 minutes of prepro-
cessing. Our algorithm required 7 GB of memory and 2.5
hours of preprocessing.

6 Conclusion

We examined three different algorithms for set intersec-
tion. The experimental result can be summarized as fol-
lows:

• Fast set intersection algorithm does not lead to better
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Figure 9: Histogram of fraction of skipped elements from
the smaller set in queries for our intersection algorithm
with k-scan document ordering. Zero is ommited due to
its big size (12200 queries).
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Figure 10: Comparison of query times for galloping search
(x-axis) and fast set intersection (y-axis) with document
ordering based on k-scans

empirical performance on real data.

• We can achieve some speedup using our algorithm
but this speed up is not big.

• Our algorithm is slighly better at eliminating useless
work than fast set intersection. Fast set intersection
algorithm in most cases eliminates less then 10% of
work.

It is interesting question whether more careful imple-
mentation of fast set intersection algorithm can lead to bet-
ter query times.
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Figure 11: Comparison of query times for galloping search
(x-axis) and ours set intersection (y-axis) with document
ordering based on k-scans
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Figure 12: Comparison of query times for galloping search
with random document ordering (x-axis) and ours set in-
tersection with document ordering based on k-scans (y-
axis)

We also investigated effect of document ordering on
query times. We showed that better document ordering
leads to greater improvement than using a different algo-
rithm.
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