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Abstract. Parallel and high-performance code is usually
created as imperative code in FORTRAN, C, C++ with the
help of parallel environments like OpenMP or Intel TBB.
However, learning these languages is quite difficult com-
pared to C# or Java. Although these modern languages
have numerous parallel features, they lack the automatic
parallelization or load distribution features known from spe-
cialized parallel environments. Due to the referential nature
of C# and Java, the principles of parallel environments
like OpenMP cannot be directly transferred to these lan-
guages. We investigated the idea of using C# as a pro-
gramming language for a parallel system based on non-
linear pipelines. In this paper, we propose the architecture
of such system and describe some key steps that we have
already taken towards the future goal of extracting both the
pipeline structure and the code of the nodes from the C#
source code.

1 Introduction

Parallel programs are usually designed within the frame-
work of a specific paradigm like thread-based, task-
based, or pipeline paralelism. Such a framework is ei-
ther explicitly used by the programmer in the form of a
library like Intel TBB, or it is hidden inside a compiler
capable of automatic parallelization like C++/OpenMP.

Pipeline parallelism is a paradigm which receives
increasing attention due to its relation to stream pro-
cessing; in its generalized, branched pipeline form it
is also sufficient for data-processing applications in-
cluding relational or RDF databases [6]. The explicit
specification of data flow in a pipeline also helps in
NUMA or distributed applications where the cost of
data movement is important [3].

Unfortunately, pipeline parallelism was not studied
as thoroughly as other forms of parallelism – while au-
tomatic parallelization within a thread-based or task-
based framework has been implemented in many sys-
tems including FORTRAN, C, and C++ compilers,
extracting pipeline structure from program code is still
in the stage of experiments [11].

Bobox [3] is a parallel execution enviroment based
on generalized branched pipelines which connect a set
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of execution units called boxes. A Bobox application
is composed of two components: the model which de-
scribes how boxes are interconnected and the box code,
i.e. the implementation of all boxes used in the model.
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Fig. 1. The basic architecture of Bobox

As shown in Fig. 1, the code of individual boxes
is compiled from their C++ source code and linked
together with Bobox system code at run time. The
run-time representation of the model, called instanti-
ated model, is created by the model instantiator from
the text-based model description and the binary box
code. After instantiation, the model is assigned to a
set of CPUs and executed.

When created by humans, Bobox models are usu-
ally written in Bobolang [3], a declarative language
whose purpose and principles are similar to netlist lan-
guages like SPICE [9]. Bobox models may also be gen-
erated from a query language using a language front-
end, e.g. the SPARQL front-end [6].

Nowadays, Bobox boxes are programmed in C++
within tight restrictions imposed by the framework in-
terface. Although simpler than within explicit thread-
based or message-based parallelism, programming in
Bobox is still a tedious and error-prone task.

In this paper, we propose a Bobox front-end which
transforms the box code from C# to C++. During the
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transformation, code is added to control pipelines and
synchronization.

In the advanced version of the architecture, the
front-end also extracts the model from a C# program,
approaching the goal of automatic parallelization in
the Bobox environment.

While the advanced version is a future goal, we
have already taken the critical steps towards the ba-
sic version. We have studied and implemented the key
analytical part of the proposed system, the CIL ana-
lyzer ; in particular, we thoroughly studied the aspects
of C# which made the problem different from known
compiler algorithms for C++ or FORTRAN code.

The rest of the paper is organized as follows: In Sec-
tion 2, we describe the motivation for our project and
the goals that resulted from the motivation. Section
3 describes the architecture of the proposed solution
as well as the justification for the use of C#. We will
also compare our approach to related work through-
out this section. In Section 4, we will discuss technical
details associated with the choice of C# and the key
components of our system. In the Conclusion, we will
describe the current status and the future development
of the project.

2 Motivation

The principles of Bobox, developed in accordance with
the general pipeline parallelism paradigm, determine
the means that a developer in Bobox possess. As we
will show in the following paragraphs, the stress on
maximum performance causes that programming in
Bobox is not as straightforward as the pipeline ap-
proach promises.

2.1 Parallelism in Bobox

Bobox design principles impose some crucial restric-
tions upon the behavior of individual boxes. In partic-
ular, a box shall always execute purely serially, thus,
any parallel execution occurs only among boxes at
the plan level. This approach corresponds to inter-
operator parallelism in databases.

In order to improve the degree of parallelism, most
Bobox models require replication of boxes and intro-
duction of data splitters and mergers as described in
[6]. The replication is done by model parallelizer at
compile time, using the knowledge of crucial param-
eters of the run-time environment like the number of
cores.

The architecture of the compile-time part of the
improved Bobox system is shown at Fig. 2; the run-
time part remains the same as in Fig. 1.

For correct and meaningful transformation, the model
parallelizer must know essential properties of the boxes,
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Fig. 2. Improving parallelism of Bobox models

like statelessness or order sensitivity, as well as es-
timates of their quantitative behavior (e.g. input-to-
output data size ratio). These properties are described
in box metadata.

Currently, there is no mechanism to check whether
the implementation of a box really satisfies the prop-
erties declared in its metadata. For database-like ap-
plications, this fact is negligible because the effect of
individual boxes corresponds to physical algebra op-
erators whose properties are well understood.

On the other hand, when Bobox is used as a paral-
lel engine for general computing, the individual boxes
correspond to routines, tasks, or similar elements of a
parallel algorithm whose behavior is not always clearly
defined. An error in box metadata may cause troubles
similar to errors known from parallel programming like
race conditions. Detecting and correcting these errors
may be as demanding as checking race conditions. This
fact undermines the Bobox aspiration to be a simpler
programming environment than general parallel pro-
gramming systems.

2.2 Programming in Bobox

Furthermore, coding the individual boxes is not as
simple as it may seem with respect to the simple prin-
ciples of Bobox.

Most algorithms are described naturally using loops
taking input data elements one by one. However, for
performance reasons, the data in Bobox are transmit-
ted and received in blocks called envelopes. Conse-
quently, the code of a box must explicitly handle en-
velope receiving and sending and, thus, deviate from
the simple one-by-one arrangement. Explicit envelope
handling may be quite painful, especially in cases where
the inputs and/or outputs are not synchronous (e.g. in
the ordered merge algorithm).

In addition, the original Bobox principles required
that the code of a box should never enter a block-
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ing call. This required restructuring the code so that
envelope handling is done outside of the main box
routine. Although this principle corresponds to event-
driven programming which has been successfully used
for years, it is unnatural in the context of most nu-
merical and many data-processing algorithms.

The problem of blocking calls was solved in later
versions of Bobox by the use of fibers, i.e. lightweight
threads allowing to suspend execution of a box code
anywhere. However, this solution comes at the cost of
stack switching and, thus, slightly worse performance
mainly due to larger number of cache misses.

2.3 Goals

As demonstrated in the previous paragraphs, using
the pipeline paradigm under ultimate performance re-
quirements lead to several problematic arrangements
in Bobox. It became obvious that implementing boxes
directly is quite difficult task and that returning back
to natural implementation of algorithms would require
a substantial change to the programming environment.

A natural programming environment for Bobox shall
unload the burden of communication and envelope
handling from the programmer. For performance rea-
sons, the envelope handling shall not be hidden in run-
time libraries – it is necessary to transform the code
from natural one-by-one loops into event-driven code.

In addition, the programming environment shall
also maintain the coherence between box code and box
metadata, either by checking whether the box code
satisfies the box properties given in advance or by gen-
erating the box metadata from the box implementa-
tion.

Furthermore, the programming environment may
assist with fine-grained parallelism: If the box as a
whole satisfies the conditions necessary for coarse-grained
parallelism achieved by pipelining or partitioning, then
it likely satisfies similar conditions for applying vector
instructions.

3 Approach

The goals defined in the previous section naturally
lead to the concept of code transformation and/or
translation from a user-friendly programming environ-
ment to the C++ box code.

3.1 Language

The use of C++ at the output stage is dictated by
the implementation language of the Bobox core and
the unmatched performance of the code generated by
C++ compilers.

On the other hand, the language at the input side is
a subject of discussion. Given the output language, the
use of C++ would be natural; however, analyzing and
transforming C++ code is extremely difficult because
of its complex syntax and permissive pointer seman-
tics. Furthermore, the formerly widespread knowledge
of C++ has nowadays retracted to devoted program-
ming professionals – in e-science environment, they are
not always available.

Since Bobox is targeted at scientific and data-intensive
computation beyond the borders of numerical com-
putation, languages like FORTRAN or Mathematica
were disqualified due to their poor ability to handle
sophisticated data structures.

There were many attempts to introduce a non-
imperative programming language for parallel program-
ming like Lustre, F#, or PigLatin. None of the new
languages attracted sufficient attention of program-
mers, rendering them useless for a general-programming
environment.

Given the observations mentioned above, our choice
narrowed to modern, widely-accepted strongly-typed
general-programming languages – Java and C#. Al-
though they are only the least bad choice among our
options, there are at least two important advantages
of these languages:

First, there are many programmers fluent in these
languages.

Second, both languages compile via standardized
bytecodes – thus, our implementation may, hopefully,
use the bytecode produced by standard compilers, by-
passing the tedious implementation of specialized lan-
guage front-end.

For our system, we finally decided to use C#, al-
though the preference over Java was somewhat arbi-
trary.

3.2 Architecture

The architecture of the proposed system is shown in
Fig. 3. The boxes are implemented in C# and com-
piled by a third-party C# compiler (Microsoft Visual
Studio or Mono). The compiler produces an interme-
diate representation called CIL and standardized by
ECMA/ISO/IEC [1]. The CIL code is then analyzed
and box metadata are created. The analyzed interme-
diate code is then passed to the box generator which
generates C++ source code of the boxes. The rest of
the process is the same as in Fig. 2 – the code is com-
piled by a third-party C++ compiler (Microsoft Visual
Studio or GNU C++) while the box metadata is used
by the model parallelizer.

In the proposed system, an application consists of
model description and box code just like in the plain
system from Fig. 1 with the visible difference that the
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Fig. 3. C#-to-C++ box code generator

code of the boxes is implemented in C# instead of
C++. Nevertheless, the new system offers the follow-
ing advantages:

The envelope handling is added to the code au-
tomatically, allowing the programmer to focus on the
nature of the algorithm. The box metadata, required
for the application of model parallelizer as in Fig. 2,
are extracted automatically from the source code, en-
suring their coherence.

3.3 Advanced architecture

Figure 4 shows an advanced version of the proposed
architecture. Here, the source code consists of C# code
of the complete application. This is compiled into CIL
as in the previous case. The advanced analyzer breaks
the application code into boxes and extracts the model
automatically from the global structure of the code.
The following phases are the same as before.

The advanced version is far more ambitious than
the basic architecture, it essentially consists of auto-
matic coarse-grained parallelization of C# code. Such
level of program transformation is long known for FOR-
TRAN [7], it was succesfully implemented for C [12]
and similar goal was achieved with the help of pro-
filing information in [11]. Among languages with ref-
erential semantics, coarse-grained parallelization was
attempted in Java [10]. However, no such attempt was
described for C# yet.

3.4 The effect of referential semantics

Of source, C# and Java differ from the target C++
language by their reliance on referential semantics –

C# compiler

compile time

run time

C++ compiler

Fig. 4. C#-to-Bobox compiler architecture

to compile from C# or Java to C++, one must either
simulate the referential semantics in C++, or restrain
the input code from using the referential semantics.

When used on local variables or stand-alone classes,
the reference nature may be stripped off by object in-
lining as shown in [5]. However, this technique does
not work on link-based data structures including many
standard containers. It means that the standard con-
tainer library must be replaced by a different set of
containers that will discourage the use of references.
This fact may certainly confuse programmers used to
standard containers; nevertheless, learning a new set
of containers is certainly easier than switching to an-
other language (C++) completely.

4 The analyzer

The structure of the CIL analyzer closely follows the
series of transformations and analyses used to prepare
the code for parallelization. The optimization steps
and their order are as follows:

– Preliminary transformations
– Preliminary code analysis
– Dependence testing

The following paragraphs briefly discuss the most
important steps; details may be found in [4].

4.1 Preliminary transformations

This step includes procedure integration and code ver-
ification. Procedure integration (also called inlining)
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replaces calls to procedures with their bodies – of course,
such a transformation leads to code expansion and is
impossible in the case of recursion. However, given our
motivation and architecture, it is applicable and it is
easier than inter-procedural analysis that is usually
necessary before automatic parallelization.

The main purpose of procedure integration in our
system is to remove unnecessary dependencies caused
by parameter passing in the referential semantics of
C#. Even though the procedures bound by a call could
be analyzed independently, the integration allows the
flow of data be accurately analyzed.

Code verification is a process designed to check if
the code follows the restrictions required for transla-
tion to box code. It is performed after procedure inte-
gration and it must make sure that the final code does
not contain any unsafe code, forbidden instructions or
constructs, including prohibited library elements.

4.2 Preliminary code analysis

This step gathers information about the control-flow
constructs and then creates a list of all variables used
in the method. Both types of information are later
used during dependence detection, since a dependence
may be based on data or control-flow. This step does
not contain any transformations or optimizations and
the code is not modified here.

This analysis recognizes five different types of con-
structs: loops, if/else branches, switch statements, pro-
tected blocks and return statements.

Variable recognition is not a simple task since the
fields of an object shall be considered separate vari-
ables whenever possible; however, a fall-back to con-
sidering the object as a whole must be available when
necessary.

In addition, there are special temporary variables
created on the stack as a result of some operation and
later consumed by some other instruction. These vari-
ables are recognized by a stack simulator and they
represent the relationship between instructions that
constitute separate commands.

4.3 Aliasing

Aliasing is the name for the fact that multiple sym-
bols (may) represent the same memory location. If the
analyzer is not able to determine what pointers or ref-
erences reference the same memory then it must con-
servatively assume that they can reference the same
memory.

Aliasing in .NET is simplified by two important
facts. There are no pointers and the references are
controlled by the type system which forbids certain

references to address the same object. Another impor-
tant fact is that the reference must always address a
valid object; it cannot be assigned some random ad-
dress.

In addition, procedure integration used in this work
can remove parameter aliasing because the formal pa-
rameters are removed in the process.

Regardless of these factors, exact analysis of alias-
ing is an algorithmically unsolvable problem so the an-
alyzer always uses a heuristic-based conservative ap-
proximation.

4.4 Dependence testing

Dependence testing is the most difficult part of this
project. The CIL code is transformed to a structure
that can be analyzed by well-known algorithms of de-
pendence testing [2]. Note that the procedure integra-
tion done previously allows to bypass inter-procedural
version of dependence testing.

There are two important facts that help depen-
dence testing in our case. First, there are no point-
ers allowed and there are no arbitrary addresses, be-
cause everything must represent valid, allocated ob-
jects. Second, local variables are completely private
and they cannot be modified anywhere outside the
method, with the only exception of reference parame-
ters and it is possible to check if a local variable have
been passed by reference or not.

Parameters and local variables represent indepen-
dent memory locations that can be accessed only by
the method itself because passing parameters by ref-
erence was ruled out by procedure integration. There-
fore, all reads and writes to different local variables
or arguments are independent operations that do not
collide with each other. However, there may be colli-
sions when a field is accessed using two local variables
referring to a single object.

Stack variables represent values added and removed
from the stack and every variable is written and read
just once. Every stack variable simply represents a sin-
gle true dependence with a source in the instruction
that created the variable and the sink is in the instruc-
tion that consumes it.

Two field variables can access the same memory,
only when they access the same field in the same ob-
ject, otherwise they are independent. To prove inde-
pendence between fields, it is necessary to keep track
of the object they belong to and all possible depen-
dences must be considered when this object cannot be
properly monitored.

Arrays represent the best opportunity for paral-
lelization, but their analysis is the most difficult. The
subscript analysis is a complex problem which can be

86 M. Brabec, D. Bednárek



handled in several degrees of conservative approxima-
tion, presented for instance in [2].

Induction variables are defined by loop iterations
and they are essential to understand the behavior of
a loop. Given the syntax of loops in C#, it is more
reliable to analyze the behavior of individual variables
regardless of their presence in the loop heading.

Before the core dependence testing, the loops and
their induction variables have been identified and ar-
ray subscripts have been reconstructed, along with
multidimensional arrays. The analysis of aliasing should
provide some help for the testing and all the variables
which have not been separated may be treated as a
single variable for the purposes of this analysis.

With all this information at hand, dependence test-
ing is a matter of applying appropriate algorithms pre-
sented in [8].

5 Conclusion and future work

We have successfully implemented key parts of the CIL
analyzer as described in the previous section. This im-
plementation answered the main open problems asso-
ciated to the proposed architecture, namely it allowed
us to state that:

The reference nature of C# does not create signifi-
cant additional obstacles in the code analysis required
for parallelization. In particular, most aliases and false
dependences generated by references may be removed
by procedure integration. The intermediate language
(CIL) used by C# compilers does contain enough in-
formation to perform the required analysis. In partic-
ular, we developed the stack simulator to accurately
analyse the data flow in a CIL procedure.

Note however, that these observations are valid
when assuming C# code that serves the motivation
described in Sec. 2.

It is doubtful whether our observations may ap-
ply for arbitrary C# code – at least, the use of pro-
cedure integration disqualifies recursive code. Never-
theless, some phases of analysis may be usable also
outside our constraints.

To complete our goals, the box generator has to be
implemented. We believe that all the evil was hidden
in the details of the analyzer, so there is hopefully
no algorithmically difficult part in the generator. On
the other hand, the quality of the code produced by
the generator strongly affects the performance of the
system; thus, it requires extreme care when designing
the generator.

Last but not least, although the system may be
essentially usable as is, any real-life use of our system
will require a set of containers to replace the prohibited
reference-based standard containers.

In the advanced version of the architecture, the
model generator must transform the dependence graph
of the analyzed code into a Bobox model. Although it
is essentially possible to do it in one-to-one manner,
such a model will contain boxes so small that the ex-
ecution will suffer from communication overhead and
cache misses. To create effective models, careful cache
aware decomposition strategy will be required – this
is the most intricate item in our future work.
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