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Abstract: We prove that the automaton presented by
Maslov [Soviet Math. Doklady 11, 1373–1375 (1970)]
meets the upper bound 3/4 · 2n on the state complexity
of Kleene closure. This fixes a small error in this paper
that claimed the upper bound 3/4 · 2n − 1. Our main re-
sult shows that the upper bounds 2n−1 + 2n−1−k on the
state complexity of Kleene closure of a language accepted
by ann-state DFA withk final states are tight for every
k in the binary case. We also present some results of
our calculations. We consider not only the worst case,
but we study all possible values that can be obtained as
the state complexity of Kleene closure of a regular lan-
guage accepted by a minimaln-state DFA. Using the lists
of pairwise non-isomorphic binary automata of 2,3,4, and
5 states, we compute the frequencies of the resulting com-
plexities for Kleene closure, and show that every value in
the range from 1 to 3/4·2n occurs at least ones. In the case
of n= 6,7,8, we change the strategy, and consider binary
automata, in which the first symbol is a circular shift of
the states, and the second symbol is generated randomly.
We show that all values from 1 to 3/4 · 2n are attainable,
that is, for everymwith 1≤ m≤ 3/4·2n, there exists ann-
state binary DFAA such that the state complexity ofL(A)∗

is exactlym.

1 Introduction

Kleene closure is a basic operation on formal languages
which is defined as

L∗ = {w | w= v1v2 · · ·vk,k ≥ 0,vi ∈ L for all i}.

It is known that ifL is recognized by ann-state determinis-
tic finite automaton (DFA), then the languageL∗ is recog-
nized by a DFA of at most 3/4 ·2n states [8, 13]. The first
worst-case example meeting this upper bound was pre-
sented already by Maslov in 1970 [8]. However, he did
a small error and did not give any proof in his paper.

Later, Yu, Zhuang, and Salomaa [13] proved that the
size of the minimal DFA for Kleene closure depends on
the number of final states of a given DFA, and that the
upper bound is 2n−1+ 2n−1−k, wherek is the number of
final and non-initial states.

∗Research supported by grants VEGA 2/0183/11, APVV-0035-10.
†Research supported by grants VEGA 2/0183/11, APVV-0035-10.

In this paper we give a proof of Maslov’s result and we
fix an error in his paper [8] by proving that Maslov’s au-
tomaton meets the upper bound 3/4 · 2n. Then we show
that the upper bounds 2n−1+2n−1−k are tight for everyn
andk with 1 ≤ k ≤ n− 1. This is the main result of our
paper. The witness automata are defined over a binary al-
phabet. The size of the alphabet is optimal since the state
complexity of Kleene closure over a unary alphabet is only
(n−1)2+1.

In the second part of our paper we consider not only
the worst case, but rather study all possible values that can
be obtained as the number of states of the minimal DFA
recognizing the Kleene closure of a regular language rep-
resented by a minimaln-state DFA. The problem is known
as "the magic number problem" in the literature, and so
called "magic numbers" are exactly the "holes" in the hi-
erarchy that cannot be obtained in such a way.

The problem was first stated for NFA to DFA conversion
by Iwama, Kambayashi, and Takaki in [5]. It is known
that in the ternary case, no magic numbers exist, that is,
each value fromn to 2n may be obtained as the size of the
minimal DFA equivalent to a given minimaln-state NFA
[7]. On the other hand, it is known that in the unary case,
magic numbers exist [3], but we do not know which values
are magic. The binary case is still open.

For Kleene closure, the possible resulting vales are in
the range from 1 to 3/4 · 2n, for an alphabet of at least
two symbols, and in the range from 1 to(n−1)2+1 for a
unary alphabet, and it is known that for a growing alphabet
of size 2n, no magic numbers exist [6].

Here we study the binary case. Using the lists of pair-
wise non-isomorphic automata of 2,3,4, and 5 states, we
compute the frequencies of the resulting complexities for
Kleene closure, and show that every value in the range
from 1 to 3/4 · 2n occurs at least ones. We display our
results in graphs, and compute the average complexity.

In the case ofn = 6,7,8, we change the strategy, and
consider binary automata, in which the first symbol is a
circular shift of the states, and the second symbol is gen-
erated randomly. We consider an arbitrary number of final
states. We show that all values from 1 to 3/4·2n are attain-
able, and we show that for everym with 1 ≤ m≤ 3/4 ·2n,
there exists ann-state binary DFAA such that the state
complexity ofL(A)∗ is exactlym.
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Thus our calculations show, that in the binary case, up
to n= 8, no magic numbers exists. Moreover, for everyn,
the numbers 1,n, and 2n−1+2n−1−k with 1≤ k≤ n−1 are
attainable by the complexity of Kleene closure. The situa-
tion is completely different in the case of a unary alphabet,
where two holes of lengthn exist for everyn [2].

2 Preliminaries

Let Σ be a finite alphabet andΣ∗ the set of all strings over
Σ. The empty string is denoted byε. The length of a string
w is |w|. A languageis any subset ofΣ∗. We denote the
size of a setA by |A|, and its power-set by 2A.

A deterministic finite state automatonis a quintuple
A= (Q,Σ,δ ,s,F), whereQ is a finite set of states;Σ is a
finite set of input symbols;δ is the transition function that
takes as arguments a state and an input symbol and returns
a state;s is an element ofQ called the initial state;F is
the set of final states (or accepting states),F ⊆ Q. The
language accepted or recognized by the DFAA is defined
as the setL(A) = {w ∈ Σ∗ | δ (s,w) ∈ F}.

A nondeterministic finite automatonis a quintupleA=
(Q,Σ,δ ,s,F), whereQ,Σ,s, andF are the same as for a
DFA, andδ is the transition function that takes a state inQ
and an input symbol inΣ as arguments and returns a subset
of Q. The language accepted or recognized by the NFAA
is defined as the setL(A) = {w ∈ Σ∗ | δ (s,w)∩F 6= /0}.

Two automata areequivalentif they recognize the same
language.

A DFA A is minimal if every equivalent DFA has at
least as many states asA. It is known that every regular
language has a unique, up to isomorphism, minimal DFA,
and that a DFAA= (Q,Σ,δ ,s,F) is minimal if an only if

(i) all its states are reachable, that is, for every stateq in
Q, where exists a stringw in Σ∗ such thatδ (s,w) = q;
and

(ii) no two distinct states are equivalent; two statesp and
q are equivalent if for every stringw in Σ∗, δ (p,w) ∈
F if and only if δ (q,w) ∈ F.

Thestate complexityof a regular languageL, denoted by
sc(L), is number of states in the minimal DFA accepting
the languageL.

Every NFA can be converted to an equivalent DFA
by the subset construction [10] as follows. LetA =
(Q,Σ,δ ,s,F) be an NFA. Construct the DFAA′ =

(2Q,Σ,δ ′
,{s},F ′), whereF ′ = {R⊆ Q | R∩ F 6= /0}, and

δ ′
(R,a) =

⋃
r∈Rδ (r,a) for eachR in 2Q and eacha in Σ.

The DFAA′ is called thesubset automatonof the NFAA.
The subset automaton need not be minimal since some of
its states may be unreachable or equivalent.

To prove that states of a DFA are not equivalent, we will
use the following observation.

Proposition 1. Let N be an NFA. Let for every state q of
the NFA N, there exists a string wq such that wq is accepted

by N only from the state q. Then the subset automaton cor-
responding to the NFA N does not have equivalent states.

Proof. Let S,T be subsets of states ofN, whereS 6= T.
Without loss of generality, there exists a stateq such that
q ∈ Sandq /∈ T. Then the stringwq is accepted fromSbut
wq is not fromT. HenceSandT are not equivalent.

For languagesK andL theconcatenation K·L is defined
asK ·L = {uv | u ∈ K,v ∈ L}. The languageLk with k ≥ 0
is defined inductively byL0 = {ε}, L1 = L, Li+1 = Li ·L.

Definition 1. TheKleene closureof a language L is the
language L∗ defined as

L∗ =
⋃

i≥0

Li .

3 NFA for Kleene Closure

In this section we describe the construction of a nonde-
terministic automaton recognizing the Kleene closure of a
given language reprezented by DFA.

Let A = (Q,Σ,δ ,s,F) be the minimal DFA accepting
a languageL. Construct an NFAA∗ for the languageL∗

from DFA A as follows:

• For each stateq in Q and each symbol a inΣ such that
δ (q,a) ∈ F, add the transition ona from q to s.

• If s /∈ F , then add a new start stateq0 to Q and make
this state accepting. For each symbola in Σ add the
transition ona

from q0 to δ (s,a) if δ (s,a) /∈ F , and

fromq0 to δ (s,a) and fromq0 to s if δ (s,a)∈ F.

We illustrate this construction in the following example.

Example 1. Consider the DFAA shown in Fig. 1. In
Fig. 2, we add the following transitions: the transition
from s to the stateson the letterb becauseA has the transi-
tion froms to thefinal state2; the transition from 1 toson
a becauseA has the transition from 1 to thefinal state2;
the transition from 2 tosonb becauseA has the transition
from 2 to thefinal state2.

Sinces is non-final, we add the new initial stateq0,
make this state final, and we add transitions fromq0 as
follows Since there is a transition from the old initial state
s to state 1 on the lettera in A, and 1 is non-final, we add
the new transition from the stateq0 to 1 ona, and since
there is transition froms to the state 2, which is final inA,
we add the new transition from stateq0 to 2 and transition
from q0 to son the letterb.
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Figure 1: A 3-state DFAA.
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Figure 2: The NFA for the languageL(A)∗, whereA is
shown in Fig. 1.

4 State Complexity of Kleene Closure

The state complexity of Kleene closure is defined as the
minimal number of states that are sufficient and necessary
in the worst case for a DFA to accept the Kleene closure
of a regular language represented by ann-state DFA. The
following upper bound is from [13]. For, the sake of com-
pleteness we give a simplified proof here.

Lemma 1 (Upper Bound [13]). Let A= (Q,Σ,δ ,s,F) be
an n-state DFA such that|F \ {s}| = k. Then the minimal
DFA for the language L(A)∗ has at most2n−1 + 2n−1−k

states.

Proof. Construct the NFAN for the languageL(A)∗ as de-
scribed above. Consider the subset automaton of the NFA
N. Let Sbe a reachable subset of automaton. Notice that
if a final state ofN is in S, than the states is also inS. It
follows that only the following subsets can be reachable in
the subset automaton:

1. {q0};

2. S⊆ Q with s∈ S,

3. S⊆ Q\ (F ∪ {s}) andS 6= /0.

This gives at most 1+2n−1+2n−1−k−1 reachable sets,
which gives the desired upper bound.

Notice that the number 2n−1 + 2n−1−k is maximal if
k= 1. Fork= 1, we have 2n−1+2n−1−k = 2n−1+2n−2 =
3/4 ·2n. Thus we get the following upper bound.

Corollary 1. Let L a language accepted by an n-state
DFA. Then the minimal DFA for the language L∗ has at
most3/4 ·2n states.

Yu, Zhuang, and Salomaa [13] presented the witness
language accepted by DFA shown in Fig. 3, and they
proved that it meets the upper bound 3/4 ·2n.

0 1 2 n−3 n−2 n−1
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a,b

a,b a,b a,b a,b a,b

 ...

a

    

  

Figure 3: YZS’94 automaton meeting the bound 3/4 · 2n

for Kleene closure.

The first witness language was presented already by
Maslov [8] in 1970. Maslov claimed, without any proof,
the upper bound for Kleene closure is 3/4·2n−1 and that
the DFA from Fig. 4 meets this bound. However, Maslov’s
automaton, in fact, meets the bound 3/4 ·2n.

Here we fix this error and provide a proof.
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Figure 4: The Maslov’s DFAA.

First, construct an NFAN for the languageL(A)∗ by
adding the transition ona from n−2 to 0, by adding a new
initial and final stateq0, and by adding the transition ona
from q0 to 1 and the transition onb from q0 to 0. The NFA
N is shown in Fig. 5.
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Figure 5: An NFAN for L(A)∗.

The next two lemmata show that the subset automaton
of the NFA N has 3/4 · 2n reachable and pairwise distin-
guishable states.

Lemma 2. The subset automaton of the NFA N shown in
Fig. 5 has3/4 ·2n reachable states.

Proof. By induction on|S|, we prove that every subsetS
of {0,1, . . . ,n− 1}, such thatn− 1 ∈ S implies 0∈ S, is
reachable. The base is|S| = 1. The set{q0} is reachable
since it is the initial state of the subset automaton. The
set{i}, where 0≤ i ≤ n− 2, is reached from{q0} by the

stringbai since we have{q0} b−→ {0} ai

−→ {i}.
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Assume that every setS with |S| = k, where 1≤ k ≤
n−1, is reachable. LetS= {i1, i2, i3, . . . , ik, ik+1}, where
0 ≤ i1 < i2 < · · · < ik < ik+1 ≤ n−1, be set of sizek+1.
Consider three cases:

(i) i1 = 0 andik+1 = n−1.

Take S′ = {i2 − 1, i3 − 1, . . . , ik − 1,n − 2}. Then
|S′|= k and thereforeS′ is reachable by the induction
hypothesis. SinceS′ a−→ {0, i2, i3, . . . , ik,n− 1} = S,
the setS is reachable.

(ii ) i1 = 0 andik+1 < n−1.

Take S′ = {0, i2 + x, i3 + x, . . . , ik + x,n− 1}, where
x = n − 1 − ik+1. Then |S′| = k+ 1 and S′ con-
tains states 0 andn − 1. Therefore, the setS′

is reachable as shown in case(i). Since S
′ bx

−→
{0, i2, i3, . . . , ik, ik+1} = S, the setS is reachable.

(iii ) i1 > 0 andik+1 < n−1.

Take S
′
= {0, i2 − i1, i3 − i1, . . . , ik − i1, ik+1 − i1}.

Then|S′| = k+ 1 andS′ contains state 0. Therefore
the setS′ is reachable as shown in cases(i) and(ii).

Since we have|S′| ai1−→ {i1, i2, i3, . . . , ik, ik+1} = S, the
set S is reachable.

We have shown that the subset automaton has 3/4.2n

reachable states.

Lemma 3. All the reachable states of the subset automa-
ton corresponding to the NFA N shown in Fig. 5 are pair-
wise distinguishable.

Proof. Notice that the stringan−1−i is accepted by the
NFA N only from the statei. By Proposition 1, no two
distinct subsets of{0,1, . . . ,n−1} are equivalent.

Next, we need to show that{q0} and some final subset
S are distinguishable. IfS is a final subset, thenn− 1 ∈
S. Consider the stringan. The set{q0} goes onan to
{0,1}, which is non-final set sincen ≥ 3. However, the
staten− 1 goes onan to n− 1 in the NFA. It follows that
an is accepted by the subset automaton fromS. This the
stringan distinguishes{q0} andS.

Hence all reachable states of the subset automaton ofN
are pairwise distinguishable.

As a corollary of the two lemmata above, we get the
following result.

Theorem 1. Let L be the language accepted by the
Maslov’s automaton shown in Fig. 4. Then the minimal
DFA for the language L∗ has3/4 ·2n states.

Proof. Let N be the NFA for the languageL∗ shown in
Fig. 5. By Lemma 2, the subset automaton ofN has
3/4 · 2n reachable states. By Lemma 3, these states are
distinguishable. It follows that the minimal DFA forL∗

has 3/4 ·2n states, which meets the upper bound given by
Corollary 1.

Notice that the upper bound given by Lemma 2 depends
on the number of final states in a given DFA. Now, in the
main result of our paper, we present automata withk final
states that meet the upper bound 2n−1+2n−1−k.

To this aim, consider ann-state DFAA= (Q,Σ,δ ,s,F),
where

• Q= {0,1, . . . ,n−1};

• Σ = {a,b};

• s= 0;

• F = {n− k,n− k+1,n−k+2, . . .,n−1};

• δ (i,a) = (i +1) modn,
δ (0,b) = 0,
δ (i,b) = i +1 if 1 ≤ i ≤ n−3,
δ (n−2,b) = 0,
δ (n−1,b) = n−1.

The DFAA with k = 3 is shown in Fig. 6. Notice that
this automaton is obtained by a modification of YZS’94
automaton in Fig. 3 presented in [13]. These two automata
differ only in transitions onb in the statesn−2 andn−1.

Construct an NFAN for the languageL(A)∗ as de-
scribed in Section 3. Fork = 3, the NFA N shown in
Fig. 7. Consider the subset automaton ofN, and let as
show that this subset automaton has 2n−1+2n−1−k reach-
able and pairwise distinguishable states.
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Figure 6: Modified YZS’94 automaton;k= 3.

a,b

0 1 2

b a,b a,b a,b

 ...

a

n−3 n−2

a,b

n−1

a
b

 

n−4   

q0

b

  

 
a,b

b,a

   

a,b

a

a,b

Figure 7: The NFAN for modified YZS’94 automaton;
k= 3.

Lemma 4. The subset automaton of the NFA N has2n−1+
2n−1−k reachable state.

Proof. Notice that if a reachable set contains a final state
of N, then it must contain also the state 0.

The set{q0} is reachable since it is the initial state of
subset automaton. The set{0} is reached from{q0} by
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b, and since we have{0} ai

−→ {i} if 1 ≤ i ≤ n− k− 1, all
subsetsSwith |S| = 1 are reachable.

Next we have
{n− k−1} a−→ {0,n− k} b−→ ·· · b−→ {0,n−2},
{0,n−2} a−→ {0,1,n−1} bn−3

−−→ {0,n−2,n−1} b−→ {0,n−1},
{0,n−1} a−→ {0,1} bi−1

−−→ {0, i} if 1 ≤ i ≤ n− k−1.
Finally, if 1 ≤ i < j ≤ n− k− 1 then{i, j} is reached

from {0, j − i} by ai . Thus allSwith |S|= 2 are reachable.
Assume that every setS with |S| = t, where 2≤ t ≤

n−1, is reachable. LetS= {i1, i2, . . . , it , it+1}, where 0≤
i1 < i2 < · · · < it < it+1 ≤ n−1, be set of sizet +1.

Consider three cases:

(i) i1 = 0 andit+1 = n−1.

Let S
′
= {0, i3 − i2, i4 − i2, . . . , it − i2,n− 2}. Then

S′ is of sizet, thus it is reachable by the induction
hypothesis. Since we have

S′ a−→ {0,1, i3 − i2+ 1, . . . , it − i2+ 1,n− 1} bi2−1
−−−→ S,

the setS is reachable.

(ii ) i1 = 0 andit+1 < n−1.

Let S
′
= {0, i3 − i2, . . . , it+1 − i2,n−1}. ThenS′ is of

sizet+1 and contains 0 andn−1, thusS′ is reachable
by (i). Since we have
S′ a−→ {0,1, i3− i2+1, . . . , it − i2+1, it+1 − i2+1}

bi2−1

−−−→ S,

the setS is reachable.

(iii ) i1 > 0 andit+1 < n− k.

Take S
′
= {0, i2 − i1, i3 − i1, . . . , it − i1, it+1 − i1}.

Then |S′| = t +1 andS′ contains state 0. Therefore
the setS′ is reachable as shown in cases(i) and(ii).

Since we haveS′ ai1−→ {i1, i2, i3, . . . , it , it+1} = S, the
set S is reachable.

This proves the reachability of 2n−1+2n−1−k states.

Lemma 5. All reachable states of the subset automaton of
the NFA N are pairwise distinguishable.

Proof. Notice that in the NFAN, the stringan−1−ibn is
accepted only from the statei. By Proposition 1 this proves
the distinguishability of subsets of{0,1, . . . ,n− 1}. Now
we need to show that{q0} is not equivalent to any final
subsetS of {0,1, . . . ,n− 1}. If S is final, then there is
a final statei ≥ n− k such thati ∈ S. Thenan−1−ibn is
accepted by the subset automaton fromSand rejected from
{q0}. This concludes the proof.

Now, we can state our main result.

Theorem 2. Let n≥ 3 and 1 ≤ k ≤ n− 1. There exists
an n-state DFA A with k final states such that the minimal
DFA for the language L(A)∗ has2n−1+2n−1−k states.

We conclude this section with two observations showing
that the a numbers 1 andn can be attained by the complex-
ity of Kleene closure.

Proposition 2. For every n, there exists a binary language
L accepted by a minimal n-state DFA such that the lan-
guage L∗ has state complexity 1.

Proof. Let L = {a,b}∪ {w | |w| ≥ n− 1}. The minimal
DFA for L hasn states. Sincea ∈ L,b ∈ L, we haveL∗ =
{a,b}, and therefore the state complexity ofL∗ is 1.

Proposition 3. For every n, there exists a binary language
L accepted by a minimal n-state DFA such that the lan-
guage L∗ has state complexity n.

Proof. Let L = ((a+ b)n)∗. The minimal DFA forL has
n states. Next, we haveL = L∗ and therefore the state
complexity ofL∗ is n.

5 Two to Five-State Automata: Freqency of
Possible Complexities for Kleene Closure

In this section, we consider not only the worst case, but
rather study all possible values that can be obtained as
the number of states of the minimal DFA recognizing the
Kleene closure of a regular language represented by a min-
imal n-state DFA.

For Kleene closure, the possible resulting vales are in
the range from 1 to 3/4 · 2n, and it is known that for a
growing alphabet of size 2n, no gaps in the hierarchy of
possible complexities exist [6].

Here we study the binary case. Using the lists of
pairwise non-isomorphic minimal deterministic finite au-
tomata of 2,3,4, and 5 states, we computed the frequen-
cies of the resulting complexities for Kleene closure, and
showed that every value in the range from 1 to 3/4 · 2n

occurs at least ones.

5.1 Results for Two to Five-State Automata with
Average Value of Complexity for Kleene Closure

Our results forn = 2,3,4,5 concerning the frequency of
the resulting complexities, including the average complex-
ity, are displayed in the four graphs shown in Figures 8-11
on the next page.

Notice that forn= 4,5 the complexity one has the high-
est frequency. On the other hand, there are only a four
DFA’s whose Kleene closure has complexity 2. Starting
with complexity 5, the frequency has a decreasing ten-
dency. The average values approximatelyn, which core-
sponds to the fact that the high complexities occur very
rarely.

Although, in the worst case, the Kleene closure is a
hard operation with an exponential complexity, its aver-
age complexity is onlyn, which allows the operation to be
effectively used in practical applications.
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Figure 8: The frequency of complexities of Kleene closure
for 2-state DFAs; average = 1.929

Figure 9: The frequency of complexities of Kleene closure
for 3-state DFAs; average = 2.893

Figure 10: The frequency of complexities of Kleene clo-
sure for 4-state DFAs; average = 4.102

Figure 11: The frequency of complexities of Kleene clo-
sure for 5-state DFAs; average = 5.656

6 Randomly Generated Automata and
Complexities of Kleene Closure

This subsection is different from the previous one. For
n ≥ 6 we do not have input text files. We change the strat-
egy, and consider binary automata, in which the first sym-
bol is a circular shift of the states, and the second symbol
is generated randomly. We consider an arbitrary number
of final states. We run our application on such randomly
generated automaton. We consider an arbitrary number of
final states. We show that all values from 1 to 3/4 · 2n

are attainable, and for everym with 1 ≤ m≤ 3/4 · 2n, we
provide ann-state binary DFAA such that the state com-
plexity of L(A)∗ is exactlym. The lists of these automata
for n= 6,7,8 follow.

Thus our computations show, that in the binary case,
up to n = 8, no holes in the state complexity of Kleene
closure exist. Moreover, for everyn, the numbers 1,n,
and 2n−1+2n−1−k with 1 ≤ k ≤ n−1 are attainable by the
complexity of Kleene closure.

7 Conclusions

We studied the complexity of languages that results from
the Kleene closure operation on regular languages. First,
we proved that then-state automata presented by Maslov
in his 1970 paper meets the upper bound 3/4 · 2n on the
state complexity of Kleene closure. We fixed a small error
in the Maslov’s paper [8], which claimed the upper bound
3/4 ·2n−1.

Then, in the main result of our paper, we provided then-
state binary automata withk final states, that meet the up-
per bound 2n−1+2n−1−k on the state complexity of Kleene
closure.

In the second part of the paper, we considered all pos-
sible values of the complexity of Kleene closure in the bi-
nary case. Using our application and the lists of pairwise
non-isomorphic minimal automata of 2,3,4, and 5 states,
we computed the frequency of the resulting complexities
of Kleene closure and the average complexity of Kleene
closure. We showed that each possible complexity occurs
at least once.

For n = 6,7,8, we considered automata, in which the
first symbol is a circular shift of the states, the second sym-
bol is generated randomly, and the number of final states
is arbitrary. For every possible valuem in the range from 1
to 3/4 · 2n, we found ann-state DFA accepted a language
such that the minimal DFA for the Kleene closure of this
language has exactlym states.

Thus for n ≤ 8, every value in the range from 1 to
3/4 ·2n is attainable by the complexity of the Kleene clo-
sure in the binary case. Whether this is true for larger val-
ues ofn remains open. Also getting the whole range of
complexities from 1 to 3/4 · 2n for any fixed alphabet, or
at least for an alphabet that grows at most linearly withn,
is of great interest to us.

Kleene Closure and State Complexity 99



References

[1] Brzozowski, J., Leiss, E.: On equations for regular lan-
guages, finite automata, and sequential networks, Theoret.
Comput. Sci. 10, 19–35 (1980)
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