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Abstract: We prove that the automaton presented by In this paper we give a proof of Maslov’s result and we
Maslov [Soviet Math. Doklady 11, 1373-1375 (1970)] fix an error in his paper [8] by proving that Maslov’s au-
meets the upper bound/8- 2" on the state complexity tomaton meets the upper boun@432". Then we show

of Kleene closure. This fixes a small error in this paperthat the upper bounds$'2! + 2"-1-¥ are tight for everyn

that claimed the upper bound8-2" — 1. Our main re- andk with 1 <k < n— 1. This is the main result of our
sult shows that the upper bound$ 2+ 2"—1-k on the  paper. The witness automata are defined over a binary al-
state complexity of Kleene closure of a language acceptegbhabet. The size of the alphabet is optimal since the state
by ann-state DFA withk final states are tight for every complexity of Kleene closure over a unary alphabet is only
k in the binary case. We also present some results ofn—1)2+ 1.

our calculations. We consider not only the worst case, In the second part of our paper we consider not only
but we study all possible values that can be obtained ashe worst case, but rather study all possible values that can
the state complexity of Kleene closure of a regular lan-be obtained as the number of states of the minimal DFA
guage accepted by a minimaikstate DFA. Using the lists  recognizing the Kleene closure of a regular language rep-
of pairwise non-isomorphic binary automata of 2,3,4, andresented by a minimai-state DFA. The problem is known

5 states, we compute the frequencies of the resulting comas "the magic number problem” in the literature, and so
plexities for Kleene closure, and show that every value incalled "magic humbers" are exactly the "holes" in the hi-
the range from 1 to B4- 2" occurs at least ones. In the case erarchy that cannot be obtained in such a way.

of n=6,7,8, we change the strategy, and consider binary The problem was first stated for NFA to DFA conversion
automata, in which the first symbol is a circular shift of by Iwama, Kambayashi, and Takaki in [5]. It is known
the states, and the second symbol is generated randomlthat in the ternary case, no magic numbers exist, that is,
We show that all values from 1 to/8- 2" are attainable, each value fronm to 2" may be obtained as the size of the

that is, for everynwith 1 <m< 3/4-2", there exists an- minimal DFA equivalent to a given minimakstate NFA
state binary DFAA such that the state complexity bfA)* [7]. On the other hand, it is known that in the unary case,
is exactlym. magic numbers exist [3], but we do not know which values

are magic. The binary case is still open.

For Kleene closure, the possible resulting vales are in
the range from 1 to B 2", for an alphabet of at least
two symbols, and in the range from 1({oo— 1)?+ 1 for a
?Jnary alphabet, and it is known that for a growing alphabet
of size 2, no magic numbers exist [6].

L* = {w|w=vivo---vi,k > 0,vi € L for all i}. Here we study the binary case. Using the lists of pair-
wise non-isomorphic automata of 2,3,4, and 5 states, we
It is known that ifL is recognized by an-state determinis- compute the frequencies of the resulting complexities for
tic finite automaton (DFA), then the langualgeis recog-  Kleene closure, and show that every value in the range
nized by a DFA of at most 8- 2" states [8, 13]. The first from 1 to 3/4-2" occurs at least ones. We display our
worst-case example meeting this upper bound was preresults in graphs, and compute the average complexity.
sented already by Maslov in 1970 [8]. However, he did In the case oh = 6,7,8, we change the strategy, and
a small error and did not give any proof in his paper. consider binary automata, in which the first symbol is a

Later, Yu, Zhuang, and Salomaa [13] proved that thecircular shift of the states, and the second symbol is gen-
size of the minimal DFA for Kleene closure depends on erated randomly. We consider an arbitrary number of final
the number of final states of a given DFA, and that the states. We show that all values from 1 {6432" are attain-
upper bound is 21 4 2"-1-kK ‘wherek is the number of  able, and we show that for evemywith 1 <m< 3/4.2",
final and non-initial states. there exists am-state binary DFAA such that the state
complexity ofL(A)* is exactlym.

1 Introduction

Kleene closure is a basic operation on formal language
which is defined as
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Thus our calculations show, that in the binary case, upby N only from the state q. Then the subset automaton cor-
to n =8, no magic numbers exists. Moreover, for every responding to the NFA N does not have equivalent states.
the numbers In, and 2-1 4+ 2"-1-kpith1 < k<n-—1are
attainable by the complexity of Kleene closure. The situa-Proof. Let ST be subsets of states df, whereS# T.
tion is completely different in the case of a unary alphabet,Without loss of generality, there exists a stgtsuch that
where two holes of length exist for everyn [2]. g€ Sandq¢ T. Then the stringvy is accepted fron$ but

Wq is not fromT. HenceSandT are not equivalent. [

2 Preliminaries
For languageK andL theconcatenation KL is defined

Let 2 be a finite alphabet ard' the set of all strings over asK.-L = {uv|ueK,vel}. The Ianguagdz" with k >0
>. The empty string is denoted Iy The length of a string s defined inductively byo ={¢}, L=, U=
wis |w|. A languageis any subset oE*. We denote the
size of a seA by |A|, and its power-set by"2 Definition 1. TheKleene closuref a language L is the

A deterministic finite state automatas a quintuple  |Janguage I defined as
A=(Q,%,9,sF), whereQ s a finite set of stateg, is a
finite set of input symbols) is the transition function that L = Li
takes as arguments a state and an input symbol and returns i>0
a state;sis an element of) called the initial stateF is
the set of final states (or accepting statés): Q. The
language accepted or recognized by the D& defined 3 NFA for Kleene Closure
asthe seL(A) ={we X" | d(sw) € F}.

A nondeterministic finite automatas a quintupleA =
(Q,,5,sF), whereQ,s.s, andF are the same as for a In this section we describe the construction of a nonde-
DFA, andd is the transition function that takes a stat&€in  terministic automaton recognizing the Kleene closure of a
and an input symbol il as arguments and returns a subsetdiven language reprezented by DFA.
of Q. The language accepted or recognized by the MFA  Let A= (Q,Z,5,s,F) be the minimal DFA accepting

is defined as the s&{A) = {we =* | 5(s,w) NF # 0}. a languagéd.. Construct an NFAA* for the language.*

Two automata arequivalentf they recognize the same from DFA A as follows:
language.

A DFA A is minimal if every equivalent DFA has at e Foreach statgin Q and each symbol a ib such that
least as many states As It is known that every regular 0(g,a) € F, add the transition oafromqtos.
language has a unique, up to isomorphism, minimal DFA,
and thata DFAA = (Q, X, d,s,F) is minimal if an only if e If s¢ F, then add a new start stadg to Q and make

this state accepting. For each symhoh Z add the

(i) all its states are reachable, that is, for every sfate "
transition ona

Q, where exists a string in >* such thad(s,w) = g

and fromqgpto d(s,a) if d(s,a) ¢ F, and

(i) no two distinct states are equivalent; two stgtesd fromgpto d(s,a) and fromqop to sif &(s,a) €F.
g are equivalent if for every string in Z*, 6(p,w) €
F if and only if 5(q,w) € F. We illustrate this construction in the following example.

Thestate complexitgf a regular languagde, denoted by
sc(L), is number of states in the minimal DFA accepting
the languagé.

Every NFA can be converted to an equivalent DFA
by the subset construction [10] as follows. L&t=
(Q,%,0,s,F) be an NFA. Construct the DFAN =
(2,%,5,{s},F’), whereF’ = {RC Q| RNF # 0}, and
5 (Ra) = U,.rd(r,a) for eachRin 22 and eacha in Z. - - " A
The DFAA' is called thesubset automatoof the NFAA. Sinces is non-final, we add the new initial statp,

Th bset aut ¢ dnot b inimal si O;pake this state final, and we add transitions frggras
. € subset automaton need not be ”?'”'ma SINCE SOME Qi) 5\vs Since there is a transition from the old initial stat
its states may be unreachable or equivalent.

. . sto state 1 on the lettexin A, and 1 is non-final, we add
To prove th"flt states ofa_DFA are notequivalent, we will the new transition from the statg to 1 ona, and since
use the following observation. there is transition frons to the state 2, which is final iA,
Proposition 1. Let N be an NFA. Let for every state q of We add the new transition from stajgto 2 and transition
the NFA N, there exists a stringsuch that w is accepted ~ from go to son the letteib.

Example 1. Consider the DFAA shown in Fig. 1. In
Fig. 2, we add the following transitions: the transition
from sto the stateson the letteb becausé has the transi-
tion fromsto thefinal state2; the transition from 1 tgson

a because has the transition from 1 to tHeal state2;
the transition from 2 t@ on b becausé\ has the transition
from 2 to thefinal state2.
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Figure 2: The NFA for the languadegA)*, whereA is

shown in Fig. 1.

4 State Complexity of Kleene Closure

Yu, Zhuang, and Salomaa [13] presented the witness
language accepted by DFA shown in Fig. 3, and they
proved that it meets the upper boun32".

ORCROREC ARG
v

a,b

Figure 3: YZS'94 automaton meeting the bouryd32"
for Kleene closure.

The first witness language was presented already by
Maslov [8] in 1970. Maslov claimed, without any proof,
the upper bound for Kleene closure i#32" — 1 and that
the DFA from Fig. 4 meets this bound. However, Maslov’s
automaton, in fact, meets the boun32".

Here we fix this error and provide a proof.

f\)\/@\,

The state complexity of Kleene closure is defined as the S
minimal number of states that are sufficient and necessary

in the worst case for a DFA to accept the Kleene closure

of a regular language represented bynestate DFA. The
following upper bound is from [13]. For, the sake of com-
pleteness we give a simplified proof here.

Lemma 1 (Upper Bound [13]) Let A= (Q,Z,0,s,F) be
an n-state DFA such thdF \ {s}| = k. Then the minimal
DFA for the language (A)* has at mose™! 4 2n-1-k
states.

Proof. Construct the NFAN for the languagé (A)* as de-

scribed above. Consider the subset automaton of the NFA
N. Let Sbe a reachable subset of automaton. Notice that b

if a final state ofN is in S, than the statsis also inS. It

Figure 4: The Maslov’'s DFAA.

First, construct an NFAN for the languagd (A)* by
adding the transition cafromn— 2 to 0, by adding a new
initial and final statayy, and by adding the transition @n
from qp to 1 and the transition dmfrom gp to 0. The NFA
N is shown in Fig. 5.

a

%)v@v J

follows that only the following subsets can be reachable i a
the subset automaton:

1. {Qo};
2. SCQwithse S
3. SCQ\(FU {s}) andS+# 0.

1 reachable sets,
O

This gives at most 4 214 2n-1-k _
which gives the desired upper bound.

Notice that the number™2?! 4+ 2"-1-K is maximal if
k= 1. Fork=1, we have 214 2n-1-k_pn-1 on-2_
3/4-2". Thus we get the following upper bound.

Corollary 1. Let L a language accepted by an n-state

DFA. Then the minimal DFA for the languagé has at
most3/4- 2" states.

Figure 5: An NFAN for L(A)*.

The next two lemmata show that the subset automaton
of the NFAN has 342" reachable and pairwise distin-
guishable states.

Lemma 2. The subset automaton of the NFA N shown in
Fig. 5 has3/4- 2" reachable states.

Proof. By induction on|S, we prove that every subsst

of {0,1,...,n—1}, such thah— 1 € Simplies 0€ S, is
reachable. The base S| = 1. The set{qp} is reachable
since it is the initial state of the subset automaton. The
set{i}, where 0<i < n-2, is reached fror{qp} by the

stringbd since we havégo} > {0} & {i}.
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Assume that every s& with |S = k, where 1< k < Notice that the upper bound given by Lemma 2 depends
n—1, is reachable. Leb= {i1,ip,i3,...,ik ik+1}, Wwhere  on the number of final states in a given DFA. Now, in the
0<ii<ipg < - <ig <ikr1 <n—1 be set of siz&k+ 1. main result of our paper, we present automata witimal

Consider three cases: states that meet the upper bourid 24 271K,
. ) To this aim, consider an-state DFAA = (Q,Z,d,s,F),
(i) iy =0andig,1 =n—-1. where

Take S = {i, — 1ji3—1,...,ik—1,n—2}. Then
S| = kand therefor& is reachable by the induction ~ ® Q= {0,1,...,n—1}
hypothesis. Sinc& 2 {0,iz,is,....i,N—1} =S, .« 5= {ab);

the setSis reachable. T

(i) i1 = 0 andig,1 < n— 1. *s=0;

TakeS = {0,i2+ X,iz+X,...,ik+x,n— 1}, where e F={n—-kn-k+1n-k+2,...,n-1}
X=n—1—ixi. Then|S|=k+1 andS con-

tains states 0 anth— 1. Therefore, the seS * g('dég __((i)+ 1) modn,
is reachable as shown in cagd. SinceS LA (. ) ):. Y
o o ; o(i,b)=i+1if1<i<n-3,

{0,ig,iz,...,ik,ikr1} = S the setSis reachable. 5(n—2,b) =0,

(iii) i1 > 0andig, <n—1. d(n—1,b)=n-1
Take S = {0,iz — i,iz — i1, 0k = i1 lkps — e} The DFAA with k = 3 is shown in Fig. 6. Notice that
Then|S| = k+ 1 andS contains state 0. Therefore this automaton is obtained by a modification of YZS'94
the setS is reachable as shown in caggsand(ii).  automaton in Fig. 3 presented in [13]. These two automata
Since we hav¢S| LEN {i1,io,i3,...,ik i1} = S the  differonlyin transitions orb in the states — 2 andn — 1.
set S is reachable. Construct an NFAN for the languagd_(A)* as de-

scribed in Section 3. Fok = 3, the NFAN shown in
We have shown that the subset automaton ha&23  Fig. 7. Consider the subset automatonNgfand let as
reachable states. O show that this subset automaton has2+ 2"-1-k reach-

able and pairwise distinguishable states.
Lemma 3. All the reachable states of the subset automa-

ton corresponding to the NFA N shown in Fig. 5 are pair-
wise distinguishable.

Proof. Notice that the stringa™ 1~ is accepted by the
NFA N only from the staté. By Proposition 1, no two
distinct subsets 0f0,1,...,n— 1} are equivalent.

Next, we need to show thdtp} and some final subset
S are distinguishable. I§is a final subset, then—1 €
S. Consider the strin@". The set{qo} goes ona" to
{0,1}, which is non-final set since > 3. However, the
staten— 1 goes ora" to n— 1 in the NFA. It follows that
a" is accepted by the subset automaton fi®nirhis the
stringa" distinguisheqqo} andS.

Hence all reachable states of the subset automathin of
are pairwise distinguishable. O y

Figure 6: Modified YZS'94 automatok;= 3.

As a corollary of the two lemmata above, we get the @
following result.

Figure 7: The NFAN for modified YZS'94 automaton;
Theorem 1. Let L be the language accepted by the | — 5

Maslov’s automaton shown in Fig. 4. Then the minimal
DFA for the language L has3/4- 2" states.

Lemma 4. The subset automaton of the NFA N Bas! +
Proof. Let N be the NFA for the languagke® shown in  on-1-k (agchable state.

Fig. 5. By Lemma 2, the subset automatonMfhas

3/4- 2" reachable states. By Lemma 3, these states ar@roof. Notice that if a reachable set contains a final state
distinguishable. It follows that the minimal DFA far* of N, then it must contain also the state 0.

has 342" states, which meets the upper bound given by The set{qo} is reachable since it is the initial state of
Corollary 1. O subset automaton. The s@} is reached from{qp} by
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b, and since we havé0} & {i}if 1 <i<n—k—1, all
subsetsSwith |S = 1 are reachable.

Next we have
(n—k—1} 3 {O,n—k} > .- 2 fo,n—2},

on-2y301,n-1 > fon-2,n-1} % {o.n—1},

(on-1} 3 (0,1} 25 {0,i1ifL <i<n—k—1.

Finally, if 1 <i < j <n—k-—1then{i,j} is reached
from {0, j —i} bya'. Thus allSwith |S = 2 are reachable.
Assume that every s& with |S] =t, where 2<t <
n—1 is reachable. LeS= {iy,io,...,it,ity+1}, where 0<

i1 <ip<--- <t <ity1 <n—1, be set of sizé + 1.
Consider three cases:

(i) i =0andi;;1 =n—1.
Let S = {0,iz —ip,ig —iz,...,Iit —iz,n—2}. Then
S is of sizet, thus it is reachable by the induction
hypothesis. Since we have
ir—1
S 3 (0, Lis—ir+1...ii—ir+1n—1} 2255
the setSis reachable.
(i) i1 =0andig; 1 <n—1.
LetS ={0,i3—iy,...,its1 —iz,n—1}. ThenS is of
sizet +1 and contains 0 amu- 1, thusS is reachable
by (i). Since we have
S 5 {0,1,iz3—ip+1,... it —izg+1Liy1 —ip+1}
bi271

the setSis reachable.

(iii) i1 > 0andii 1 <n—k

Take S = {0,ip — i1 iz — i1,...,it — i1,ity1 — i1}
Then|S|=t+ 1 andS contains state 0. Therefore
the setS is reachable as shown in cagesand(ii).

i
Since we haves 25 {iy,iz,is,...,it i1} = S the
set S is reachable.

This proves the reachability of' 2! + 2" 1k states. [

We conclude this section with two observations showing
that the a numbers 1 amctan be attained by the complex-
ity of Kleene closure.

Proposition 2. For every n, there exists a binary language
L accepted by a minimal n-state DFA such that the lan-
guage Lt has state complexity 1.

Proof. Let L = {a,b} U{w| |w| > n—1}. The minimal
DFA for L hasn states. Sinca e L,b € L, we havelL*
{a,b}, and therefore the state complexityldfis 1.

O

Proposition 3. For every n, there exists a binary language
L accepted by a minimal n-state DFA such that the lan-
guage I* has state complexity n.

Proof. Let L = ((a+b)")*. The minimal DFA forL has
n states. Next, we have = L* and therefore the state
complexity ofL* is n. O

5 Two to Five-State Automata: Fregency of
Possible Complexities for Kleene Closure

In this section, we consider not only the worst case, but
rather study all possible values that can be obtained as
the number of states of the minimal DFA recognizing the
Kleene closure of a regular language represented by a min-
imal n-state DFA.

For Kleene closure, the possible resulting vales are in
the range from 1 to #-2", and it is known that for a
growing alphabet of size"™2 no gaps in the hierarchy of
possible complexities exist [6].

Here we study the binary case. Using the lists of
pairwise non-isomorphic minimal deterministic finite au-
tomata of 2,3,4, and 5 states, we computed the frequen-
cies of the resulting complexities for Kleene closure, and
showed that every value in the range from 1 {61 32"
occurs at least ones.

5.1 Results for Two to Five-State Automata with
Average Value of Complexity for Kleene Closure

Our results fom = 2,3,4,5 concerning the frequency of

Lemma 5. All reachable states of the subset automaton ofthe resulting complexities, including the average complex

the NFA N are pairwise distinguishable.

Proof. Notice that in the NFAN, the stringa™1-'b" is
accepted only from the staiteBy Proposition 1 this proves
the distinguishability of subsets ¢0,1,...,n—1}. Now
we need to show thatqe} is not equivalent to any final
subsetS of {0,1,...,n—1}. If Sis final, then there is
a final statei > n—k such that € S. Thena™ 1 'b" is
accepted by the subset automaton fi®amd rejected from
{qo}. This concludes the proof. O

Now, we can state our main result.

Theorem 2. Let n>3 and1 < k< n-1. There exists

an n-state DFA A with k final states such that the minimal

DFA for the language (A)* has2"~1 42" 1k states. [

ity, are displayed in the four graphs shown in Figures 8-11
on the next page.

Notice that fom = 4,5 the complexity one has the high-
est frequency. On the other hand, there are only a four
DFA's whose Kleene closure has complexity 2. Starting
with complexity 5, the frequency has a decreasing ten-
dency. The average values approximatglyvhich core-
sponds to the fact that the high complexities occur very
rarely.

Although, in the worst case, the Kleene closure is a
hard operation with an exponential complexity, its aver-
age complexity is only, which allows the operation to be
effectively used in practical applications.
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6 Randomly Generated Automata and
Complexities of Kleene Closure

This subsection is different from the previous one. For
n > 6 we do not have input text files. We change the strat-
egy, and consider binary automata, in which the first sym-
bol is a circular shift of the states, and the second symbol
is generated randomly. We consider an arbitrary number
of final states. We run our application on such randomly

Figure 8: The frequency of complexities of Kleene closure generated automaton. We consider an arbitrary number of

for 2-state DFAs; average = 1.929

Graph of DFA - 3 states
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final states. We show that all values from 1 tp432"
are attainable, and for evergwith 1 < m< 3/4-2", we
provide ann-state binary DFAA such that the state com-
plexity of L(A)* is exactlym. The lists of these automata
forn=6,7,8 follow.

Thus our computations show, that in the binary case,
up ton = 8, no holes in the state complexity of Kleene
closure exist. Moreover, for everny, the numbers 1n,
and 2-14 2" 1-Kwith 1 < k < n— 1 are attainable by the
complexity of Kleene closure.

7 Conclusions

Figure 9: The frequency of complexities of Kleene closure We studied the complexity of languages that results from

for 3-state DFAs; average = 2.893

Graph of DFA - 4 states
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Figure 10: The frequency of complexities of Kleene clo-
sure for 4-state DFAs; average = 4.102
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Figure 11: The frequency of complexities of Kleene clo-
sure for 5-state DFAs; average = 5.656

the Kleene closure operation on regular languages. First,
we proved that the-state automata presented by Maslov
in his 1970 paper meets the upper bourid 2" on the
state complexity of Kleene closure. We fixed a small error
in the Maslov’s paper [8], which claimed the upper bound
3/4-2"—1.

Then, in the main result of our paper, we providedrihe
state binary automata withfinal states, that meet the up-
per bound 214 2"-1-K on the state complexity of Kleene
closure.

In the second part of the paper, we considered all pos-
sible values of the complexity of Kleene closure in the bi-
nary case. Using our application and the lists of pairwise
non-isomorphic minimal automata of 2,3,4, and 5 states,
we computed the frequency of the resulting complexities
of Kleene closure and the average complexity of Kleene
closure. We showed that each possible complexity occurs
at least once.

Forn=6,7,8, we considered automata, in which the
first symbolis a circular shift of the states, the second sym-
bol is generated randomly, and the number of final states
is arbitrary. For every possible valugin the range from 1
to 3/4-2", we found am-state DFA accepted a language
such that the minimal DFA for the Kleene closure of this
language has exactiy states.

Thus forn < 8, every value in the range from 1 to
3/4-2" is attainable by the complexity of the Kleene clo-
sure in the binary case. Whether this is true for larger val-
ues ofn remains open. Also getting the whole range of
complexities from 1 to 34 - 2" for any fixed alphabet, or
at least for an alphabet that grows at most linearly wijth
is of great interest to us.
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