
Process Representation Using Transaction Logic

Reza Basseda

Stony Brook University, Stony Brook, NY, 11794, USA

Abstract. Representing and answering the queries about the dynamic
behavior of processes in knowledge base systems has become a challeng-
ing research area in the field of logic programming and knowledge repre-
sentation systems. In this report, we are going to show how transaction
logic can be used to efficiently represent dynamic behavior embedded
in different domains. The ability of properly representing state changes
in transaction logic enables us to express dynamic behavior of processes
in different domains. The use of transaction logic to represent dynamic
behavior decreases the size of knowledge bases and the query response
time in comparison with other existing approaches. The efficiency of our
method along with other features of transaction logic and its theoretical
basis makes it an appropriate approach to represent dynamic behavior
of processes in various domains.

Keywords: Process Representation, Transaction Logic

1 Introduction

In many real world applications of knowledge representations systems, effec-
tive representation of processes embedded in the domain knowledge enables the
knowledge base system to answer a wide range of queries about those processes.
For example, in the medical domain, physiology explains different processes by
showing how different organs and parts of a human body interacts with each
other while anatomy discusses the structure of the human body and its organs.
A medical knowledge base system needs to represent both of the physiologi-
cal and anatomical knowledge in order to be able to answer the queries about
diseases and medical experiments.

Let us illustrate this concept via an example. Consider the process of my-
ocardial infarction (MI) or acute myocardial infarction (AMI) in medical science,
which is commonly known as a heart attack. Basically, myocardial infarction re-
sults from the interruption of blood supply to a part of the heart, causing heart
cells to die. This is most commonly due to occlusion (blockage) of a coronary
artery following the rupture of a vulnerable atherosclerotic plaque, which is an
unstable collection of lipids (cholesterol and fatty acids) and white blood cells
(especially macrophages) in the wall of an artery. The resulting ischemia (re-
striction in bloood supply) and ensuing oxygen shortage, if left untreated for a
sufficient period of time, can cause damage or death (infarction) of heart muscle
tissue (myocardium) [?]. The process starts with the step of increasing choles-
terol and other lipids in the blood. This step is followed by the step of lipid



2 Reza Basseda et al.

dysregulation. After the step of lipid dysregulatoin, the formation of atheroscle-
rotic plaque happens. The formation of atherosclerotic plaque causes narrowing
of the coronary arteries and narrow coronary arteries leads to have to have in-
sufficient blood supply for myocardial muscles. Finally, insufficient blood supply
for myocardial muscles results in myocardial infarction. Representation of such
process in a knowledge base system needs various features to exist in the system.
The system needs to represent a process in terms of different steps. Each of those
steps can be defined as an abstract process as well. Each process defines a set of
potential dynamic changes in the system over the set of knowledge base facts.
The execution of each step also depends on the various logical formulas evalu-
ated at the different states of the knowledge base which are created during the
course of the execution. It is apparent that those dynamic and static definitions
of changes and terms are tightly connected to each other.

This example shows that we need to explicitly represent processes in the
knowledge base systems as they are associated with some features which may
be involved in query answering. For example, time duration of execution of a
process or the name of a process may be queried. However, explicit represen-
tation of processes may raise other issues. For example, treating processes as
first class entities of a knowledge base system may require us to express different
relationships between those entities.

There are several logic programming frameworks which can be used to ad-
dress the process representation problem in knowledge base systems. Situation
calculus [1] provides a representation for state changes in logic. The basic con-
cepts in the situation calculus are situations, actions, and fluents. To describe
a dynamic domain in the situation calculus, one specifies a set of actions de-
scribing what changes the situations. A set of fluents is also required to describe
the changing situations. Like the situation calculus, the event calculus [2] has
actions, which are called events. It also has changing properties or fluents. But
unlike the standard situation calculus in which an exact sequence of hypothetical
actions is represented, the event calculus is based on possibly incomplete speci-
fication of a set of actual event occurrences. Different event calculus extensions
addressed the frame problem in different ways [3].

A class of action languages has been developed that is independent of a spe-
cific axiomatization [4] [5] [6]. These languages try to provide high expressiveness,
natural-language-like syntax, and clear formal semantics, which are important in
procedural knowledge representation. [7] uses a modular action language, ALM
in order to represent procedural knowledge. It was used to formalize of biologi-
cal processes, including cell division, in ALM. [8] also uses an action modeling
scripting language to represent and reason about signaling networks. [9] is also
an variation of action language A[10] to represent procedural knowledge in bio-
logical networks. [11] also can be used to represent dynamic behavior in domain
knowledge base systems.

Both of the above mentioned approaches are facing difficulties when it comes
to process representation. Since situation calculus is using monotonic reasoning
and scientific knowledge representation which usually involves non-monotonic



Process Representation Using Transaction Logic 3

reasoning, situation calculus is not suitable for process representation in sci-
entific domain. Process representation in event calculus has several problems.
This formalization of events is intended as a formal analysis of the concepts
rather than as a program or even as a program specification [2]. As updates in
event calculus are additive and do not delete information about events, execu-
tion of a large number of process steps may be impractical. Explicit declaration
of relation between processes also requires a large number of auxiliary predi-
cates and rules. For example, to represent a containment relation between two
processes, several rules and facts may be required. Although action modeling
languages can represent processes in terms of action execution sequences, they
are not scalable knowledge representation languages. Since they don’t support
features required for efficient knowledge representation such as object orienta-
tion and higher orderness, scientific knowledge representation using this type of
languages is harder and less reusable. Action and process definition syntax in
action modeling languages is usually different than regular logic programming
syntax. That difference makes the integration of dynamic behavior and static
specification of domain knowledge difficult using action modeling languages.

Transaction Logic is an extension of classical predicate logic that accounts
in a clean and declarative fashion for the phenomenon of state changes in logic
programs and databases [12]. Our case study shows that T R eases the expres-
sion of dynamic behavior of the processes embedded in different domains. The
logic of state changes provided by T R facilitates the inference about processes
represented in T R. That representation of state changes within the logic for-
mulas provides non-monotonic reasoning for procedural knowledge in scientific
domains. Since T R is a declarative formalism for specifying and executing pro-
cedures that update a logical theory, it can naturally express both the static
knowledge and the dynamic behaviors in different scientific domains. We can
also combine T R with other logical formalism such as F-logic and HiLog in or-
der to have object oriented and higher order formalisms. Those logical formalisms
simplify the representation between processes. As dynamic behavior representa-
tion in T R does not need to have any axiomatization in order to address the
frame problem, the process representation in T R is more scalable in comparison
with other logical formulations of processes.

T R includes a Horn-like fragment which supports logic programming. This
logic programming framework simplifies the integration of dynamic behavior
with other components of knowledge base systems. Specification of processes
in the language used for specification of logical terms and rules makes the ex-
pressiveness of logical formulas and terms available for process representation.
This logic programming framework also helps us to easily express a wide range
of queries about the dynamic behavior of processes. T R is also implemented in
Flora [13], which is a perfect system for knowledge representation and reasoning.

Our process representation approach using T R shows that other features
of T R can also help to have a very expressive and robust process specification
in a knowledge base systems. For example, we took advantage of hypothetical
queries to represent the concept of fault tolerant processes in the knowledge



4 Reza Basseda et al.

base systems. Incremental tabling and other developments in our implementation
framework also may help us to improve query answering time.

We will explain our process representation technique in the next section.
Section 3 will describe our case study experiments. We will also have a brief
analysis of our results in section 3, and section 4 will conclude our study.

2 Methodology

The over all representation of processes in T R is simple and natural. We classify
processes into two groups: complex processes and primitive processes. A complex
process is a sequence of complex or primitive processes and a primitive process is
a single step of execution. The relationships between processes can be represented
by simple logical predicates. For example, suppose process p1 is a sequence of
processes p1, p2, p3. We use complex process/1 and primitive process/1 to in-
dicate the type of process. first step(p, p1) says that process p1 is the first step
of process p. next step(p, p1, p2) and next step(p, p2, p3) show that p1 in p is
followed by p2 and p2 in p is followed by p3. We do not provide the formal
explanation of these concepts due to space limit.

To keep track of the execution of complex processes, we need a structure
maintaining the execution status of the complex process. The current step of
a process, current step(P, SP ), is an example of such a structure. A primitive
process does not have internal structure.

Sequential execution of subprocesses can be defined recursively as shown
below.

execute(P )←−complex process(P ) ∧ current step(P,CS)⊗
execute(CS)⊗ advance(P,CS)⊗ execute(P ). (1)

A complex process will be successfully executed if all of its subprocesses
successfully complete their execution.

execute(P )←−complex process(P )∧
current step(P,CS)∧ ∼ next step(P,CS, ). (2)

advance(P,CS) in (1) above refers to changing the execution status of pro-
cess P . For example, it can represent the current step change as follows. Note
that elementary transactions of insert and delete are defined in our transition
oracle as shown in [12].

1 In this section, capital letters denote logical variable and lower case is used to denote
constant and predicate symbols



Process Representation Using Transaction Logic 5

advance(P,CS)←−complex process(P ) ∧ current step(P,CS)

∧ next step(P,CS,NS)

⊗ current step.delete(P,CS)⊗ current step.insert(P,NS).
(3)

Execution of primitive processes can be defined in terms of elementary trans-
actions insert and delete. We also can extend the transition oracle and define
a specific primitive process execution as a elementary transaction. For example,
assume the transaction doit(P ) executes the elementary transaction associated
to the primitive process P . We can show the successful and failed execution of
P as in (4) and (5). Note that no matter doit(P ) finishes successfully or not,
execute(P ) will finish successfully. However the value of result(P,R) in the final
state of knowledge base will depend on the execution of doit(P ).

execute(P )←−primitive process(P )⊗ doit(P )⊗
result.insert(P, success). (4)

execute(P )←−primitive process(P )⊗ ∼ doit(P )⊗
result.insert(P, failure). (5)

Execution of primitive process may also include some conditional statements.
We can use such precondition and postcondition statements to guard the exe-
cution of a primitive process. precondition(P ) and postcondition(P ) predicates
can simply express those postcondition and precondition statements for a prim-
itive process P . Now, we can show the successful and failed execution of P as
in (6) and (7). In this formulation of execute(P ), the evaluation of this pred-
icate will depend on the evaluation of precondition(P ) and postcondition(P ).
For example, assume that the execution of process p3 is guarded with the con-
junction of g and the successful execution of process p1 and it does not have any
postcondition. This can be represented as (8) and (9).

execute(P )←−primitive process(P ) ∧ precondition(P )⊗ doit(P )⊗
result.insert(P, success) ∧ postcondition(P ). (6)

execute(P )←−primitive process(P ) ∧ precondition(P )⊗ ∼ doit(P )⊗
result.insert(P, failure) ∧ postcondition(P ). (7)

precondition(p3)←− g ∧ result(p1, success). (8)



6 Reza Basseda et al.

postcondition(p3)←− true. (9)

Serial conjunctions used in our formulas allow sequential execution of subpro-
cesses. Note that in (1), if transaction execute(CS) fails and returns false, the
transaction execute(P ) also fails and returns false. One can use hypothetical rea-
soning to have more fault-tolerant processes. For example, (10) redefines (1) such
that if execute(CS) fails, failed(CS) will be executed instead and execute(P )
will be completed and return true. ∼ in (10) denotes default negation and term
∼ �execute(CS) draws if the hypothetical execution of execute(CS) fails. Simi-
larly we can redefine (5) as (11). This kind of reasoning can be useful in exception
handling.

execute(P )←−complex process(P ) ∧ current step(P,CS)⊗
∼ �execute(CS)⊗ failed(CS)⊗
advance(P,CS)⊗ execute(P ). (10)

execute(P )←−primitive process(P )⊗ ∼ �doit(P )⊗
result.insert(P, failure). (11)

A sample implementation of this approach is available in our demo.

3 Example: A cell mitosis division process

Through a simple implementation of mitosis cell division process, we compared
our T R process representation technique with action modeling languages. We
used Flora-2 [13], an object oriented knowledge base reasoning system, to develop
an abstract biological knowledge base including mitosis cell division process. We
compared our T R-based system with those obtained by a manual translation of
the same knowledge base to the ALd action modeling language [7]. We also com-
pared our implementation with an implementation based on the event calculus
concepts in Flora-2.

As shown in Figure 1, the comparison of systems in terms of lines of code
shows that T R provides a more succinct representation by far. Generating aux-
iliary rules for inertia axioms, completeness of states, and execution possiblity,
complicates ALd programs. We should also mention that the ALd program is
including just one test query but T R and the event calculus based solutions
responds to 7 queries. This means that for the equal test conditions, the size of
ALd program would be much more than 707 lines.

As shown in Figures 2 and 3, via a set of sample queries, we considered
the response time of above mentioned implementations. The execution time also
shows that, T R is much faster than ALd. Moving to T R from event calculus,



Process Representation Using Transaction Logic 7

Method Lines of Code

event calculus 1196

ALd 707

T R 490

Fig. 1. Length of sample knowledge base system implemented using different methods

the overhead of transactional updates leads to decrease in the response time to
test queries, which we are yet to understand. Our solution in T R also suffered
from a bug in XSB which prevented us from taking advantages of incremental
tabling. Because of that we had to refresh several tables after each transactional
update. Fixing that bug will improve T R’s response time.

Fig. 2. Comparison of response time in event calculus and T R for different test cases

This example apparently shows that T R is promising candidate for repre-
senting processes in knowledge base systems.

There are other features in Flora-2, which we used in our development. Object
orientated syntax and higher order rules are examples of these features. As those
features are beyond the scope of this report, we do not consider them here.

4 Conclusion

In this paper, we discussed several methods for representing processes, which are
included in knowledge representation systems as part of domain knowledge. As
mentioned before, dynamic domain languages require a large number of auxil-
iary rules and axioms, which complicates knowledge representation. They also
lack many features that facilitate knowledge representation and process specifi-
cation such as higher order rules and object orientation. T R allows definitions
of processes as first class entities. Through an experiment, we showed that, it
also simplifies programs and makes them more extensible and reusable. It also
apparently improves the response time in comparison with methods based on
action modeling languages.



8 Reza Basseda et al.

Fig. 3. Comparison of response time in different methods

We are planning to investigate T R’s scalability in terms of size and complex-
ity of process descriptions. Expansion of elementary updates to domain specific
updates are useful. In addition, we are planning to consider other capabilities
of T R as a process representation tool. For example, we can study how T R
can represent concurrent behaviors. In this way, we should consider how T R
can encode other process specification conventions such as process algebra. For
example, encoding process algebra’s concepts and operational structural seman-
tics in T R would enable it to act as a a theorem prover engine in the process
algebra’s domain.

References

1. Mccarthy, J., Hayes, P.J.: Some Philosophical Problems from the Standpoint of
Artificial Intelligence. In: Machine Intelligence. Volume 4. (1969) 463–502

2. Kowalski, R., Sergot, M.J.: A logic-based calculus of events. New Gen. Comput.
4 (January 1986) 67–95

3. F. van Harmelen, V.L., Porter, B.: Event Calculus. In: Handbook of Knowledge
Representation. Elsevier (2007)

4. Baral, C., Gelfond, M. In: Reasoning agents in dynamic domains. Kluwer Academic
Publishers, Norwell, MA, USA (2000) 257–279

5. Lin, F.: Embracing causality in specifying the indirect effects of actions. In:
Proceedings of the 14th international joint conference on Artificial intelligence -
Volume 2. IJCAI’95, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc.
(1995) 1985–1991

6. Gelfond, M., Inclezan, D.: Yet Another Modular Action Language. In: Proceedings
of SEA-09, University of Bath Opus: Online Publications Store (2009) 64–78

7. Inclezan, D., Gelfond, M.: Representing Biological Processes in Modular Action
Language ALM. In: Proceedings of the 2011 AAAI Spring Symposium on Formal-
izing Commonsense, AAAI Press (2011) 49–55

8. Baral, C., Chancellor, K., Tran, N., Tran, N., Joy, A., Berens, M.: A knowledge
based approach for representing and reasoning about signaling networks. Bioinfor-
matics 20(1) (January 2004) 15–22



Process Representation Using Transaction Logic 9

9. Tran, N., Baral, C.: Reasoning about non-immediate triggers in biological net-
works. Annals of Mathematics and Artificial Intelligence 51(2-4) (December 2007)
267–293

10. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs.
Journal of Logic Programming 17 (1993) 301–322

11. Lesprance, Y., Kelley, T.G., Mylopoulos, J., Yu, E.S.K.: Modeling dynamic do-
mains with congolog. In: In Proceedings of the Eleventh Conference on Advanced
Information Systems Engineering (CAiSE99) (Lecture Notes in Computer Science,
Springer (1999)

12. Bonner, A.J., Kifer, M.: An overview of transaction logic. Theoretical Computer
Science 133 (1994)

13. : Flora-2 : Users Manual


