
RETRATOS: Requirement Traceability Tool Support

Gilberto Cysneiros Filho1, Maria Lencastre2, Adriana Rodrigues2, Carla

Schuenemann3

1 Universidade Federal Rural de Pernambuco, Recife, Brazil

g.cysneiros@gmail.com
2Universidade de Pernambuco, Recife, Brazil

mlpm@ecomp.poli.br, adriana.rodrigues@hotmail.com
3Universidade Federal de Pernambuco, Recife, Brazil

carlotcha@gmail.com

Abstract. Software traceability is the ability to relate artefacts created during
the development life cycle of software system. Traceability is essential in the
software development process and it has been used to support several activities

such as impact analysis, software maintenance and evolution, component reuse,
verification and validation. Moreover, the importance of traceability in the
software development process has been endorsed by several standards for
quality management and process improvement such as ISO 9001:2000 and
CMMI. Despite the importance of software quality, current support for
traceability is inadequate. In this paper, we present a tool that tackle different
aspects and issues of the traceability problem. In particular, the tool support a
rule based approach to capture traceability relations between software models.

The rules can be created to capture traceability relations of different types of
software models.

Keywords: Software traceability, rule-based approach, traceability
visualization.

1 Introduction

Software traceability has been defined as “the ability to describe and follow the life of

a requirement, in both a forward and backward direction (i.e. from its origins, through

its development and specification, to its subsequent deployment and use, and through

periods of ongoing refinement and iteration in any of these phases)” [1].

Traceability relations can guarantee and improve software quality and can help

with several tasks such as the evolution of software systems, reuse of parts of the

system, validation that a system meets its requirements, understanding of the rationale

for certain design decisions, identification of common aspects of the system, and
analysis of implications of changes in the system.

Traceability has been studied for many years and several approaches have been

proposed to tackle its different aspects and issues. Pohl [2] states that a traceability

approach should provide answers to the following questions:

mailto:g.cysneiros@gmail.com
mailto:mlpm@ecomp.poli.br
mailto:adriana.rodrigues@hotmail.com
mailto:carlotcha@gmail.com

 What traceability information should be captured?

 How traceability information should be captured?

 How traceability information should be stored?

Sherba adds in [3] that a traceability approach should also to answer the following

question:

 How traceability relations are going to be viewed and queried?
Although several approaches have been proposed in the literature, in general they

only address one aspect of the traceability problem. This makes more difficult to take
advantage of the benefit to use a traceability tool in an industrial setting.

This paper presents a work in progress on a tool that address all the four questions
above presented. In particular, the tool supports automatic generation of traceability
relations, consistency and completeness checking in models created during the
development life cycle of software systems. The tool is based on a rule-based
approach that allows capturing traceability relations between different types of
models (e.g. BPMN, UML, Java code) created during the development of software
systems. Rules can be created to define what and how the traceability information
should be captured. A visual editor to create rules and a visualization tool to support
different forms of visualization is been developed.

2 Objectives

The goal to develop RETRATOS tool is to extend and tackle some weak points of
the traceability approach of one the authors presented in [4,5,6]. The approach was
developed to support (i) automatic generation of traceability relations between
heterogeneous software models created during the development of multi-agent
systems, and (ii) identification of missing elements in these various software models
created during the development of multi-agent systems (completeness checking).

The figure 1 presents an overview of our framework. As shown in the figure,
initially, the models of our concern represented in their native format are generated
using proprietary tools (e.g. TAOME4E, Astah, or any diagram editor tool). These
models are translated into XML format by using a Model Translator component based
on XML Schemas proposed for the models, whenever the tools used to create the
models do not generate them directly in XML.

 The XML based models and rules are used as inputs to the Traceability Generator
and Consistency Checker component to generate traceability relations between the
models and to identify missing elements based on the rules. The engine also uses
WordNet to support the identification of synonyms between the names of elements in
the models. The WordNet is important component because in general naming
conventions can change from high-level models (e.g. i*) to low-level representations
(e.g. Java code).

The traceability relations and identified missing elements are represented in an
XML document. The use of a separated document to represent the traceability
relations and missing elements is important to preserve the original models, to allow
the use of these models by other applications and tools, and to allow the generated

relations to be used to support the identification of other traceability relations that
depend on the existence of previously identified relations.

Figure 1- Cysneiros´s Approach

3 Our Approach

The Cysneiros´s approach only address the problem of identifying traceability

relations. The figure 2 shows that two components are added to the original approach:

a traceability visualization tool and a rule editor tool.

Our experience has shown that a large number of traceability relations can be

generated for the various models. Therefore visualization support is fundamental to: i)

allow the user to browse the traceability relations through various types of user

interactions; ii) allow the user to add, remove, and modify properties of existing
traceability relations and their related artefacts; iii) integrate with tools used to

develop, test and maintain the system; iv) capture and maintain browsing history for

traceability relations; v) support user querying and filtering of the traceability

relations; vi) offer flexible and user customizable view of the traceability data; vii)

provide tools to analyse and summarize the data on the traceability process and

relations.

Figure 2 - RETRATOS overview

Currently, the approach support matrix, tree and Sunburst visualization techniques

and generation of reports in HTML (see Figure 3).

Figure 3 – Visualization Tools

HTML reports (see Figure 4) show the total number of traceability relations identified

by the tool and to each relation created shows: (i) id of the rule used (e.g. rule1), (ii)

type of the relation (e.g. overlaps), (iii) name of the elements (e.g. Allocate Runway

Slot) and (iv) element´s type (e.g. SD goal). A more comprehensive and
customizable reporting tool is been built.

Traceability Visualisation

Tree View Matrix View

Sunburst View

HTML Reports

Figure 4 - HTML Report

 Sunburst is a graph (see Figure 5), which nodes are arranged in a radial layout. Nodes

are drawn on adjacent rings representing a tree structure. Each child of a node with

depth n is represented in the ring n + 1 on the same radian space as its parent(s).
Sunburst visualization performs better on large amounts of nodes than traditional tree

view representation. Tree view representations grow rapidly in the vertical direction if

many branches are expanded while using Sunburst the nodes are distributed uniformly

in all directions.

Figure 5 – Sunburst visualization

The Cysneiros´s approach relies on the use of traceability and completeness

checking rules specified in an extension of XQuery. The creation of these rules is not

a straightforward activity and requires knowledge of XQuery. To address this

problem we are developing a visual rule editor that allows to create rules using a drag

and drop approach. The editor also provides a graphical interface that allows selecting

only the rules that are applicable to a specific software project or domain.

4 Conclusion and Future works

In this paper, we described a traceability tool that extends a rule-based approach to

identify automatically traceability links and missing information between artifacts

created during the development of software systems. The traceability tool adds

support to traceability visualization and visual creation of rules.
One of the challenges to build a traceability tool is to provide support to the vast

number of methodologies, platforms, tools, and languages available to develop

software. Currently, the tool supports models created to the development of multi

agent systems when using i* framework, Prometheus methodology, and JACK code.

Our goal is to use and evaluate the approach in the other programming paradigms

such as web services and object oriented programming.
As future work, we also intend to extend the tool to other types of visualization

techniques and evaluate these techniques in terms of usability.

References

1. Gotel O. and Finkelstein A.: An Analysis of the Requirements Traceability Problem.
International Conference on Requirements Engineering. - Colorado, USA: IEEE Computer
Society. (1994) 94-101

2. Pohl k. Process-Centered Requirements Engineering. John Wiley & Sons, Inc., New York,

NY, USA (1996)
3. Sherba S. and Anderson K.: A Framework for Managing Traceability Relationships between

Requirements and Architectures. Second International Workshop from Software
Requirements to Architecture (2003)

4. Cysneiros G. and Zisman A.: Traceability and Completeness Checking for Agent-Oriented
Systems. 23rd Annual ACM Symposium on Applied Computing (2008)

5. Cysneiros G. and Zisman A.: Traceability for Agent-Oriented Design Models and Code.
TEFSE/GCT’07. - Lexington, KY, USA (2007)

6. Cysneiros G. and Zisman A.: Tracing Agent-Oriented Systmes. The Nineteenth International
Conference on Software Engineering and Knowledge Engineering (2007)

