
Requirements and Architectures for Adaptive
Systems

João Pimentel1,2, Jaelson Castro1, Emanuel Santos1, Monique Soares1, Jessyka
Vilela1, and Gabriela Guedes1

1 Centro de Informática, Univ. Federal de Pernambuco (UFPE), Recife, Brazil
{jhcp,jbc,ebs,mcs4,jffv,ggs}@cin.ufpe.br

2 Department of Information Eng. and Computer Science, University of Trento, Italy

Abstract. The growing interest in developing adaptive systems has led
to numerous proposals for approaches aimed at supporting the develop-
ment of such systems. Some approaches define adaptation mechanisms
in terms of architectural designs, consisting of concepts such as compo-
nents, connectors and states. Other approaches are requirements-based,
thus concerned with goals, tasks, contexts and preferences as concepts in
terms of which adaptation is defined. By considering only a partial view
of software systems (either the problem space or the solution space), such
proposals are limited in specifying the adaptive behavior of a software
system. In this paper we present ongoing work towards deriving archi-
tectural models in order to support the design and runtime execution of
software adaptation both at a requirements and architectural level.

Keywords: adaptive systems, architectural design, adaptation control
mechanisms, requirements

1 Introduction

In [1] the authors, by conducting a comparative study, concluded that require-
ment and architecture based approaches for software adaptation share common
elements, such as the use of feedback loops and of external control mechanisms.
However, there are differences that reveal complementary advantages and dis-
advantages of the two approaches.

On the one hand the requirement-based approaches capture and model the
objectives of the system, but they lack awareness about the capabilities and the
limitations of the proposed solution. On the other hand, architectural models
provide guidance for the deployment of the monitoring mechanisms and the
effectors that apply the adaptation process on the target system. The objectives
of the system, however, are not modeled making it difficult to handle changes at
the requirements level.

A third dimension to this combination of models is related to the system
behavior. It is often the case that a system fails because the execution plan of
its tasks was not appropriate for the holding conditions. Therefore, we propose
the derivation of statecharts from goal models, completing this variability puzzle
that captures all the aspects of the software system.



2 Pimentel, Castro, Santos, Soares, Vilela, Guedes

2 Objectives of the research

2.1 Baseline

The baseline for this ongoing work is the Zanshin approach for the design and
development of adaptive systems [2–4] which, in its turn, is based on Goal-
Oriented Requirements Engineering (GORE) [5]. Focussed on the feedback loop
for adaptation, Zanshin augments goal models with the requirements for the
monitor and adapt phases of such loops.

To illustrate Zanshin, Fig. 1 shows a goal model specifying the requirements
for an adaptive Meeting Scheduler system. Traditional i? elements (goals, soft-
goals, tasks) appear alongside domain assumptions (rectangles) and quality con-
straints (round-cornered rectangles), which are necessary for our adaptation pur-
poses. Also, lines connecting different elements represent refinement/operationali-
zation relations, following obvious AND/OR Boolean semantics for goal satis-
faction. Finally, small circles and diamonds are elements introduced by Zanshin,
namely Awareness Requirements (AwReqs) and Control Variables.

Fig. 1. Goal-based requirements specification for a Meeting Scheduler.

In the first step of the approach, AwReqs are elicited as requirements for
the monitoring component of the feedback loop. AwReqs talk about the states
assumed by other requirements—such as their success or failure—at runtime [2],
representing, thus, situations in which the stakeholders would like the system to
adapt. For example, AR1 states that task Characterize meeting should never fail,
whereas AR2 indicates that the quality constraint that operationalizes softgoal
Low cost should succeed 75% of the time.



Requirements and Architectures for Adaptive Systems 3

The second step is called System Identification [3] and aims at identifying sys-
tem parameters that can be changed at runtime and representing, in a qualitative
way, how such changes can affect indicators of requirements convergence. We use
AwReqs as indicators and consider two kinds of parameters: OR-refinements are
called Variation Points (e.g., how to Collect timetables in VP1 ), whereas Con-
trol Variables abstract OR-refinements which are impossible or infeasible to be
represented in the model (FhM, from how many people to collect timetables).
The relation between parameters and indicators is represented by differential
relations, e.g., ∆ (AR3/FhM) < 0, which reads “increasing (resp. decreasing)
FhM contributes negatively (resp. positively) to AwReq AR3 ”.

The third and last step concerns the requirements for the adaptation compo-
nent of the feedback loop, represented by Evolution Requirements (EvoReqs) [4].
EvoReqs specify what the system should do to adapt in one of two ways: stake-
holders can either give specific instructions or they can choose to ask the system
to analyze the different parameters which have an impact on the failing indi-
cator and change one (or more) of them accordingly. A framework1, also called
Zanshin, implements the generic features of a feedback loop in order to provide
adaptation to base systems according to their requirements models. See, e.g., [6].

2.2 Objectives

Our research interest is to take further the baseline that we described above
by combining requirement models with the software architecture. Towards this
direction we propose a guiding methodology to derive architectural models from
requirements. This effort would result in a more suitable specification for an
adaptive software system, since the entire spectrum of its operational variability
would be represented. Therefore, the system would have the maximum variety of
alternatives when it has to deal with failures or with environmental changes. The
last part of this work would be to advance the adaptation process implemented
by Zanshin by making it quantitative, in order to acquire higher precision. More-
over, the framework will be extended to be able to deal with multiple failures,
exploiting techniques inspired from Control Theory.

3 Scientific contributions

3.1 Architectural derivation

Architectural derivation is concerned with the generation of architectural mod-
els, which can include: components & connectors models for describing the sys-
tem structure; statecharts for describing the system behavior; feature model for
expressing the variability of the system; and so on. These different models are
complementary, each one capturing a particular view of the system being de-
signed. Thus, different approaches are required in order to derive these different
models.

1 See https://github.com/sefms-disi-unitn/Zanshin/wiki.



4 Pimentel, Castro, Santos, Soares, Vilela, Guedes

In previous work [7] [8], we proposed a set of methods to derive the afore-
mentioned models from goal models. The key of that proposal was to derive the
models in such a way as to preserve the variability expressed in the input model.
However, when considering architectural derivation and its design decisions for
the particular case of adaptive systems, there are three new concerns that arise:

a. Additional variability — there may be different alternatives to accomplish
a given task. For instance, different algorithms can be used to schedule a
meeting automaticallly, each with its different benefits and drawbacks. The
alternatives identified during architectural derivation will expand the space
of adaptation possibilities.

b. Additional control elements — besides referring to requirements concepts,
Zanshin elements (such as AwReqs and Control Variables) may also refer
to and influence architectural concerns. For instance, the time interval for a
timed transitition could be defined as a Control Variable, rather than as a
pre-defined, static interval.

c. Additional features to support adaptation — the support of self-adaptation
may require the inclusion of new features in the system. This is the case, for
instance, when the system requires some kind of instrumentation in order to
monitor the satisfaction of AwReqs.

In [9] we handled the identification of additional features, considering the
monitoring capabilities required to monitor the context. There, we were con-
cerned with the derivation of components & connectors models. An approach
for eliciting future requirements, which can be used to identify additional vari-
ability (both at requirements and architectural level) was presented in [10]. In
[11] [12] we explore additional variability derived from different web services that
are available.

Currently, we are working on including additional variability and additional
control elements, while supporting the derivation of statecharts.

3.2 Derivation of statecharts

The process for deriving statecharts from goal models comprises 6 steps, de-
picted in Fig. 2. The first step, Delegate tasks, consists of assigning the tasks
that will not be performed nor supported by the system proper – e.g., tasks that
will be performed by an external actor (human or otherwise). Since these tasks
are not carried out by the software system itself, they are not considered during
the remainder of the process. In the next step, Define basic flow, the architect
analyzes all refinements of the goal model and defines a flow expression for each.
These flow expressions will be used in the next step, Generate base statechart, to
create a skeleton of the statechart. Since these expressions are not as expressive
as statecharts (although rich enough for defining the basic flow), and can be in-
cluded as annotations in a goal model, they are a useful intermediate abstraction
between goal models and statecharts.



Requirements and Architectures for Adaptive Systems 5

Fig. 2. Process for statechart derivation.

In the remaining steps the statechart will be refined, as follows. First, dur-
ing Specify transitions the architect defines events and conditions of the derived
transitions. Then, the statechart is enriched to describe the system’s adaptivity
behavior, including the interaction with an external component that provides
adaptation-related functionality. This takes place during Specify adaptive behav-
ior. As a last step, Perform further refinements allows the architect to expand
the model in order to include technical details and other concerns that may not
have been handled earlier, by exploiting the concept of sub-states.

4 Conclusions and Future Work

In this paper we present ongoing work towards improving the support for the
development of adaptive software systems. The combination of requirements and
architectural models will provide a richer space of adaptation specification. The
proposed derivation methodologies will facilitate the creation of adaptive systems
making use of the Zanshin framework.

A prototype tool for the derivation of statecharts, as presented in Section
3.1, is currently under development2.

Acknowledgments. This work has been supported by the ERC advanced grant
267856 “Lucretius: Foundations for Software Evolution” and by Brazilian insti-
tutions CAPES and CNPq.

2 Available at https://github.com/jhcp/GoalArch.



6 Pimentel, Castro, Santos, Soares, Vilela, Guedes

References

1. Angelopoulos, K., Souza, V.E.S., Pimentel, J.: Requirements and Architectural
Approaches to Adaptive Software Systems: A Comparative Study. In: Proc. of
the 8th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (to appear). (2013)

2. Souza, V.E.S., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness Re-
quirements. In Lemos, R., Giese, H., Müller, H.A., Shaw, M., eds.: Software Engi-
neering for Self-Adaptive Systems II. Volume 7475 of Lecture Notes in Computer
Science. Springer (2013) 133–161

3. Souza, V.E.S., Lapouchnian, A., Mylopoulos, J.: System Identification for Adap-
tive Software Systems: A Requirements Engineering Perspective. In: Conceptual
Modeling ER 2011. (2011) 346–361

4. Souza, V.E.S., Lapouchnian, A., Angelopoulos, K., Mylopoulos, J.: Requirements-
driven software evolution. Computer Science - Research and Development (2012)
1–19

5. Mylopoulos, J., Chung, L., Yu, E.S.K.: From Object-Oriented to Goal-Oriented
Requirements Analysis. Communications of the ACM 42(1) (1999) 31–37

6. Tallabaci, G., Souza, V.E.S.: Engineering Adaptation with Zanshin: an Experience
Report. In: Proc. of the 8th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (to appear). (2013)

7. Yu, Y., do Prado Leite, J.C.S., Lapouchnian, A., Mylopoulos, J.: Configuring
features with stakeholder goals. In: Proceedings of the 2008 ACM symposium on
Applied computing - SAC ’08, ACM Press (2008) 645–649

8. Yu, Y., Lapouchnian, A., Liaskos, S., Mylopoulos, J., Leite, J.C.S.P.: From Goals to
High-Variability Software Design. In: Foundations of Intelligent Systems. Volume
4994/2008. (2008) 1–16

9. Pimentel, J., Lucena, M., Castro, J., Silva, C., Santos, E., Alencar, F.: Deriving
software architectural models from requirements models for adaptive systems: the
STREAM-A approach. Requirements Engineering 17(4) (June 2012) 259–281

10. Pimentel, J., Castro, J., Perrelli, H., Santos, E., Franch, X.: Towards anticipating
requirements changes through studies of the future. In: 5th International Confer-
ence on Research Challenges in Information Science, IEEE (May 2011) 1–11

11. Pimentel, J., Castro, J., Santos, E., Finkelstein, A.: Towards Requirements and
Architecture Co-evolution. In: Advanced Information Systems Engineering Work-
shops. (2012) 159–170

12. Franch, X., Grunbacher, P., Oriol, M., Burgstaller, B., Dhungana, D., Lopez, L.,
Marco, J., Pimentel, J.: Goal-Driven Adaptation of Service-Based Systems from
Runtime Monitoring Data. In: 2011 IEEE 35th Annual Computer Software and
Applications Conference Workshops, IEEE (July 2011) 458–463


