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Abstract: Logic is to natural language what knot theory is to natural, everyday knots. Logic is concerned with  

some cognitive performances; in particular, some natural language inferences are captured by various types of  

calculi  (propositional,  predicate,  modal,  deontic,  quantum,  probabilistic,  etc.),  which  in  turn  may generate  

inferences that are arguably beyond natural logic abilities, or non-well synchronized therewith (eg. ex falso  

quodlibet, material implication). Mathematical knot theory accounts for some abilities - such as recognizing  

sameness or differences of some knots, and in turn generates a formalism for distinctions that common sense is  

blind to. Logic has proven useful in linguistics and in accounting for some aspects of reasoning, but which  

knotting  performaces  are  there,  over  and  beyond  some  intuitive  discriminating  abilities,  that  may  require 

extensions or restrictions of the normative calculus of knots? Are they amenable to mathematical treatment?  

And what role is played in the game by mental representations? I shall draw from a corpus of techniques and 

practices to show to what extent compositionality, lexical and normative elements are present in natural knots,  

with the prospect of formally exploring an area of human competence that interfaces thought, perception and  

action in a complex fabric. 

Fig 1. Some of the items we are going to discuss in this paper, listed here to assist the reader.
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The  shoelace  knot  is  the  most  common  mildly 

complex knot everyone learns to tie. Most of us can 

tie it  with closed eyes; our fingers somewhat know 

what to do. 

I discovered recently that it can be tied in at least 

two more ways, over and above what I thought to be 

the canonical way. My youngest daughter was taught 

in school that one can tie a Plain Knot on two bights 

(“bunny ears”), and I found a number of tutorials on 

the web showing how to create half loops on your 

fingers to tie the knot in a single, swift movement – 

something  I  learned  to  do  myself  with  huge 

intellectual pleasure.

I also decided as of late that I was able to analyse 

the shoelace knot. It is, actually, a composed knot: a 

Plain Knot  followed by a  running Half Hitch  on a 

bight. These are semitechnical notions that I learned 

from  sailing  practice.  More  technically,  bordering 

topological notions, thus cautiously, we can say that 

the shoelace knot decomposes into here a sequence 

of a “genuine” knot and an “unknot”. 

Knowing  how  it  decomposes  made  me  a  bit 

ambitious. Can the shoelace knot be improved upon? 

I somewhat succeeded in getting rid of the Plain Knot 

(which  I  dislike,  like  many  sailors)  and  ensuring 

some stability by tiying two Half Hitches on the bight 

(the latter  one is  once more a  running Half  Hitch, 

which provides easy unfastening). 

The  improvement  is  intellectually  pleasant. 

Although  we  should  handle  matemathical  notions 

with care, I'd say that I managed to replace a hybrid 

of  a  knot  plus  an  unknot  with  something  that  is 

purely an unknot. 

I think most of us appreciate that there are at least 

two  action  atoms in  tying  shoelaces.  One  could 

produce  the  Plain  Knot  without  tying  the  running 

Half  Hitch,  and  conversely.  One  may  even 

understand something more – even if, I surmise, very 

few have ever tried this: tying first the Half Hitch, 

then the Plain Knot; i.e., execute the two steps of the 

shoelace knot  in  reverse order.  Now, I  predict  that 

you will be surprised by the outcome: pulling the two 

ends, you end up with the Plain Knot! Exactly as it 

would  happen when you  pull  the  two ends  of  the 

shoe's knot. In both cases, the unknot disappears, and 

the knot stays.

The lesson from this simple example is that even if 

you have some understanding of  the compositional 

structure of an action such as tying the shoe knot, you 

do not thereby have an access to the end result of just 

any knotting procedure that involves the elements of 

the  composition.  The  consequences  of  the  atomic 

actions you perform are not easy to predict; not even 

for experts. 

My  purpose  here  is  to  trace  the  perimeter  of  a 

small  research  program.  There  are  many  knotting 

performances that one might want to explain. People 

tie knots, even complex ones, learn to tie knots, talk 

about knots,  draw them, understand knot diagrams, 

teach  knots,  at  various  levels  of  expertise  and 

conscious  understanding.  There  is  a  rich  set  of 

explananda.  Moreover,  the  examples above suggest 

that some decomposition, some structure is available 

to knotters and guides their action. The main research 

question  is  thus:  what  is  the  structure  of  the 

underlying  competence  that  accounts  for  these 

performances? 

Knots in topology

As  we  search  for  structure,  we  note  that  the 

theoretical  landscape  is  not  empty.  Knots  are 

topologically interesting objects and a mathematical 

theory of knots has developed, providing descriptive 

and inferential tools to solve a number of problems. 

For our purposes, the main aspects of the topological 

account  of  knots  are  the  distinction  between knots 

and  the  unknot  (Fig.  2),  and  the  study  of  knot 

equivalencies. A further aspect of less concern is the 

peculiar  classification of  knots  that  is  delivered  by 

topology.  

Fig. 2. Topological knot and topological unknot. 

What use can be made of topological knot theory? 

Does  it  provide  the  appropriate  framework  for 

capturing the structure of competence? In topology, a 

knot is an equivalence class of knot representations, 

which  are  the  planar  projections  (the  shadows)  of 

closed  loops.  The  same  knot  can  have  countless 

representations;  even  when  one  reduces  drastically 
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the complexity of the representation (e.g. by limiting 

to a small integer <10 the number of crossings in the 

representation),  the  problem  of  identifying  the 

members  of  each  class  has  proven difficult  and  to 

date there is no algorithm that delivers a satisfactory 

classification [19]. 

Camps  and  Uriagereka  [6]  and  Balari  [3]  have 

linked the complexity in knotting to that of syntax. 

They  suggested  that  evidence  about  early  human 

knotting  practices  are  indirect  evidence  for  early 

language use, thus proposing a link between knotting 

and  linguistic  performance.  If  the  same 

computational  power  is  assumed  to  underlie  both 

knotting abilities and natural language, then evidence 

about knotting practice in the archeological record is 

evidence  for  at  least  the  presence  of  the 

computational  power  for  natural  language  in  the 

brains of those who left that record. A crucial point in 

the  argument  is  the  recourse  to  topological  knot 

theory  to  sustain  the  claim  that  knotting  abilities 

require  the  computational  power  necessary  for 

grammars, or that they share computational resources 

with language.  We may suspend our judgement on 

the goal of using evidence about knotting as evidence 

about  language  (see  the  critiques  by  Lobina  [15]; 

discussion in Balari et al [4], replies in Lobina and 

Brenchley  [16]).  At  the  same  time  we  are  still 

interested  in  explaining  knotting  competence.  I 

would  just  be  methodologically  flexible  as  to  the 

theoretical  instrument  we  should  employ.  Indeed, 

there  is  no  clear  reason  for  thinking  that  the 

underlying  competence  is  best  captured  by 

topological knot theory. There are both a generic and 

a specific reason for skepticism. The generic reason 

is  purely  cautionary:  We  have  a  long  list  of 

formalisms  that  somewhat  mimick  cognitive 

performances  but  in  the  end  turn  out  to  be  quite 

independent  from  the  latter  and  not  good  models 

thereof.  Logical  systems  are  both  under  and 

overshooting relative to people's inferential abilities. 

Queue theory models ideal queueing and not people's 

behaviour. Real-life buyers and sellers are not very 

well framed by rational choice theory. Coming to the 

point, topological classifications are misaligned with 

commonsense classifications [7]. 

Even closer to the point, the specific reason is that 

topological  knot  theory  is  concerned  with  knot 

equivalencies,  where  knots  are  defined  over  close 

loops  in  3d-space.  Ecological  knots,  on  the  other 

hand, are the result of transformations that take you 

from  a  situation  in  which  there  is  no  knot,  to  a 

situation  in  which  there  is  a  knot.  You  do  not  tie 

topological knots, because you cannot. 

An  intuitive  demonstration  of  the  gap  between 

ecological  knots  and  topological  knots  is  at  hand. 

You can take a close loop and tie a Plain Knot on it 

(Fig. 3)

Fig. 3. A closed loop, and a knot tied on it. Not a knot for 

topology.

Even  more  dramatic  are  examples  from  real 

practice, for instance the cases of the Half Hitch and 

of the Clove Hitch. These are two most used knots. 

The Half Hitch, the quickest  way to fix a piece of 

rope around  an object, is fundamental in tapestry and 

knitting.1 The Clove Hitch is a basic knot in sailing 

and  farming.  The  fact  is,  neither  is,  topologically 

speaking,  a  knot.2 If  we  resort  to  the  graphical 

convention of topology, we can represent them (Fig. 

4) as trivial twists in a closed loop.

Fig. 4. Half Hitch (left) and Clove Hitch (middle, right) are 

invisible to topology. 

The  Clove  Hitch's  advantage  is  precisely  in  the 

fact that it is not a topological knot. This means that 

you can tie it in the middle of a piece of rope, without 

having to manipulate the ends of the rope (Fig. 5). 

1 Tutorial received on Sep 18, 2011, at the Gobelins Tapestries 

in Paris.

2 A word of caution. If you tie a Half Hitch at the end of a loop, 

you end up with a Plain Knot ( a trefoil knot, which is different 

from  an  unknot).  Textbooks  of  knotting  practice  tend  not  to 

distinguish between “pure” Half Hitches and Plain Knots. But this 

is a terminological issue. The important thing is that a Half Hitch 

is part of a Plain Knot.
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Fig. 5. Tying a Clove Hitch on a pole.

Two further aspects are that you cannot use hitches  

as  stop  knots  and  that  you  need  an  object  around 

which  tying  them.  As  we  shall  see,  there  is  an 

important notion of dependency at work here. 

Our problem is thus pretty straightforward. If we 

find a sense  for  the  claim that  the  drawing on the 

right hand side of Fig. 5 represents a knot, and if we 

accept that this knot is invisible to topology, then we 

need to find an alternative,  non topological (or not 

only topological) account for our intution that a knot 

is represented here. 

The  point  of  contact  between  topological  and 

ecological  knots  concerns  a  small  subset  of 

explananda  that  have  to  do  with  recognition  and 

categorization. A very specific ecological task is that 

of checking if a certain knot is the correct one (did 

the shipboy execute the Bowline correctly?) In this 

case  one  categorizes  and  assesses  an  equivalence, 

much  in  the  same  way  in  which  topologists 

categorize  and  assess  equivalences  of  topological 

knots. But, as I mentioned, this is but one of the tasks 

to be explained.

The Camps and Uriagereka paper [2006] makes an 

interesting,  not  uncommon  assumption  about  the 

performance. It describes the execution of the Plain 

Knot in a way that mimicks the way the knot diagram 

is drawn, not the way the knot is normally tied. What 

is  the  difference?  The  “drawing”  style  consists  in 

taking the working end of the rope and make it travel 

about as if it was the engine of a moving train. In real 

life, on the other hand, one creates a small bight, and 

retrieves  the  working  end.  This  should  interest  us. 

What descriptions of knotting practice are to be used 

as  good  explananda?  I  concede  that  in  the  initial 

phases  of  learning  one  may  use  the  moving  train 

metaphor. But after a while some other gestures take 

over. 

To  sum  up,  the  central  set  of  problems  is  thus 

twofold:

What is the performance we want to explain?

What  is  the  structure  of  the  underlying 

competence?

The first part of what follows will be devoted to 

looking for interesting cases of performance, such as 

the understanding of knot equivalencies, description 

of  knotting  practice,  etc.  This  is  an  uncharted 

territory.1 The second part  of  the paper  proposes  a 

framework  for  dealing  with  the  explanation  of  the 

performances.  Having  rejected  mathematical 

topology as a model of competence, I shall draw on 

the  theory  of  Graphic  Schemes  [18]  in  order  to 

propose a two-step approach to knowledge of knots 

in  sensori-motor  terms,  and  plead  for  a  type  of 

mental  topological  representations that  are process-

sensitive.  Knots  are  living  memories  of  processes, 

and we need some concepts to explore their structure 

and  constituents.  We  are  after  mid-level 

conceptualizations:  close enough to common sense, 

to  ecological  knotting,  but  such  as  to  allow  for 

formalization. If we want to look beyond the formal 

toolkit of topology we do not have much of a choice. 

We  need  to  start  from  some  semi-intuitive,  semi-

technical  ideas.  Knots  from topological  theory will 

henceforth  be  called  'topological  knots'.  Ecological 

knots will be just knots. 

But  what  are  knots?  Let's  proceed  stepwise. 

Metaphysically,  we  consider  knots  as  physical 

configurations  of  rope  (be  they  construed  as 

individuals,  “disturbances”  [14]  or  properties).  Not 

all  configurations  of  rope  are  knots,  of  course. 

Besides, we take knots as configurations for which a 

certain relation to space is essential (if you travel in a 

tunnel, it does not matter for you if it is knotted or 

not), at least insofar as it allows for movement of the 

knot along the rope. Knots are stable configurations 

of rope that are gounded on friction, but not all such 

stable configurations of rope are knots. For instance, 

rope that is wrapped around a pole may be stable and 

grounded on friction, but it dies not constitute a knot. 

Some  stabilized crossing of rope must occur,  under 

contextual tension. On the opposite end, a large rope 

jam may not count as  knot for natural language: it is 

just a large jam. Finally, knots are what we may call 

active  shapes,  shapes  that  trap  some  energy.  The 

1 For this reason, I am a bit skeptical about the conclusions one may 

draw about cognition of knots from the results of experiments that measure 

certain responses of people to the perception of knots. We do not know yet 

what aspects of the performance are to be explained. Cf. [22 ,10]
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mental representation of knots would thus be that of 

shapes  that store an action.  We shall rely on some 

intuitive understanding of the notion in what follows, 

within the limits set by these examples.

  

What are the explananda?

We start from the explananda. The following is a 

mix of  platitudes,  personal reports,  and established 

evidence.

(1)  People  tie  knots.  This  is  our  starting  point. 

Knots  are  extremely  useful  artifacts.  They  have 

various  functions  that  rely  on  a  basic  principle, 

preventing  rope from slipping by exerting pressure 

on different parts of the rope and, if they involve an 

object,  of  the object  they may be tied on. Crowell 

[11] provides an informal digest of some of the few 

papers in knots physics up to 2011, in particular the 

seminal work of Bayman on hitches [5]. In order to 

work, knots must be tied in such a way as to create 

nips,  friction  points  between  parts  of  rope.  Some 

parts of rope should be made to pass in loops or over 

other  parts  so  that  nips  are  formed.  Typically  the 

standing  end  of  a  piece  of  rope  supports  a  load, 

which may serve the function of assuring a tension 

(this is the case with hitches). The working end of a 

piece of rope is in general used for tying the knot. 

(2)  People  can  untie  knots  –  and  know when a 

knot  is  so  jammed,  it  cannot  be  untied,  as  did 

Alexander the Great when, according to legend, he 

decided it was better to cut the Gordian Knot than to 

try and untie it. Some simple rules for untying are: 

Running knots are untied by pulling the working end. 

Non-running knots are tied by pulling a bight. 

Knowledge  about  knotting and knowledge about 

unknotting are not necessarily aligned. It looks as if 

one  will  be  able  to  untie  any  knot,  whereas  tying 

specific knots requires a certain amount of training. 

There is, of course, an asymmetry here, related to the 

complexity  of  the  task.  What  one  is  normally 

requested to create is a specific knot (say a Bowline, 

or  a  Cleat  Hitch,  or  a  Sheet  Bend).  One  is  not 

requested to create an unorganized knotted structure 

(which one may easily do by simply piling a number 

of  simple  knots  and  pulling  the  working  end 

randomly  through  whichever  loops  are  formed). 

Knotting and unknotting appear to require different 

algorithms.  However,  tying knowledge is  useful  in 

untying a knot. I remember that I can easily untie a 

Bowline;  I  know (but  we  shall  see  that  this  is  no 

trivial knowledge) that a Bend Sheet is a Bowline. I 

immediately find a way to untie a Bend sheet.

(3) We have normative intuitions about knots. In 

Ashley's apt words, “A knot is never 'nearly right'; it 

is either exactly right or it is hopelessly wrong, one 

or the other; there is nothing in between” [2, p.18].

(4)  There  is  an  understanding  of  the  distinction 

between permanent and transitory knots. In ordinary 

life many knots are  not permanent  (shoelace knots, 

mooring knots, knots for climbing) and must be so 

designed and executed that one be able to easily untie 

it. Other knots, such as knots for parcels, for tapistry, 

for  fisher  nets  and  weaving  are  designed  to  be 

permanent. Most natural knots that one must quickly 

dispose  of  are  unknots  (the  Clove  Hitch).  Most 

natural  knots  that  one  should  not  dispose  of  (stop 

knots)  are  topological  knots.  There  is  an 

understanding  of  what  kind  of  knot  is  suitable  for 

different  purposes,  and  thus  of  the  functional 

properties of each knot.

(5) People show clear degrees of expertise in tying 

knots.  This  point  is  less  trivial,  but  no less  true.  I 

acquired a certain expertise;  before  that,  I  admired 

other people's expertise. Expertise manifests itself in 

speed  and  accuracy  of  the  performance,  in 

recognitional/parsing abilities, in assessment of other 

people's performances,  in style of execution, in the 

ability of generalizing, in “parsing” knots one has not 

seen before.

(5.1) People with a limited knot repertoire face a 

number of knotting problems that they routinely fail 

to  solve.  A classical  example  is  the  tying  up  of  a 

parcel. Without  knowledge of appropriate knots and 

techniques one will  inevitably end up with a loose 

rope. Another example, concerning the understanding 

of rope properties, is the systematic kinking of water 

hoses when coiling them.

(5.2)  The  standard  knot  repertoire  of  the  large 

majority of adults who do not have a professional or 

leisurable interest in knots is very small, of two-three 

knots,  including  the  Plain  Knot  and  the  shoelace 

knot. (Personal poll, >20 individuals.) It appears that 

those who learn more knots are either professionals 

(sheperds, sailors) or people with a hobbystic interest 

(e.g. fishermen).

In general, knotters take pragmatic shortcuts. They 

ask, What is a knot good for?  In a real life scenario, 

instead of connecting two pieces of ropes through the 

Sheet  Bend,  that  handbooks  suggest  as  the 
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appropriate solution to this problem, people link two 

Bowlines. This is because one seldom connects two 

ropes, one knows how to tie a Bowline, one does not 

remember the Sheet Bend, and one needs to solve a 

problem on the spot. 

(5.3)  The  algorithm for  tying  difficult,  complex 

knots  may  be  forgotten  after  a  while.  (Personal 

observation of practice.)

(5.4) Knots appear to be cross cultural. There is a 

large record of knotting practices for many different 

purposes  over  and  above  tying  objects.  Knots  are 

used as marks for measuring on ropes (whence the 

measuring  unit  'knot').  The  archeological  record 

shows  probable  braids  in  the  hair  of  Cro-Magnon 

ivory  heads  (upper  Paleolithic,  -25000).  Knotted 

carpets date back to -3000. The Inca used since -4500 

and until +650 a positional number system (Quipu or 

Khipu, meaning 'knot'  in Quechua)  based on ropes 

and knots [23]. Different knots had different syntactic 

roles. Basically (but there are complications) a knot 

denotes  a  unit;  series  of  knots  represent  a  number 

between zero (no knot) to nine (nine knots). The end 

of a numeral was denoted by a Figure-of-Eight Knot. 

The value of a Many-Turn Long Knot was given by 

the number of turns. What matters for our purposes is 

the use of  different knots,  two of which  are pretty 

standard  (the  Plain  Knot  and  the  Figure  of  Eight 

Knot).  The  fact  that  the  same  knots  are  used  in 

different  and  distant  cultures  can  be  the  result  of 

cultural transmission, but more simply can be just a 

consequence  of  the  fact  that  the  space  of  possible 

solutions is not much populated at the “easy” end.

(5.5) Animals do not appear to be able to tie knots, 

with  the  remarkable  exception  of  great  apes  in 

captivity [13]. There is some reason to suppose that 

this  cultural  habit  is  imported  from  humans. 

“Takanoshi Kano, a bonobo specialist, notes: ‘‘. . . I 

wonder wild apes may meet need to make a knot, and 

also you should notice that knot-like objects for apes 

to untie do not exist in wild situations” (p. 626-627). 

Herzfeld and Lestel studied the behavior of Wattana, 

an  orangutan  at  the  Paris  Ménagerie  of  Jardin  des 

Plantes.  Using hands,  feet  and mouth Wattana  tied 

half-Hitches, simple knots and even shoelace knots, 

and created some assemblages.  “Her knots were not  

restricted to single ones; she also made double and  

triple knots. Some of them were even more complex,  

for she passed the ends back and forth through the  

loops already formed. She also sometimes wrapped a  

string around another string held between her two  

feet, passing the string back and forth, making loops  

and then passing one end of the string through one  

or another of the loops already made before pulling  

it taut. One might call this a sort of ‘‘interlacing’’, a  

form  of  weaving”  (p.  631)  Two  facts  are  worth 

mentioning. First, Wattana used knots as projectiles 

(they  increase  locally  the  mass  of  rope).  This 

indicates  that  there  are  practical,  noncognitive 

attractors in knot tying that may not be part of any 

planning. Arguably, Wattana has made, and made use 

of, an interesting discovery in naïve physics. Second, 

Tübo, a fellow young male, untied some of Wattana's 

knots (p. 643). Knotting acquired social relevance. 

(6) Children start  tying knots at age 3-4, have a 

long  learning  phase,  and  a  slow  performance  for 

some years (informal poll of kindergarten teachers). 

Strohecker [20] is a study of instruction of children in 

an experimental setting. 

(7)  Language.  People  teach  knots  by  showing 

them but also by accompanying the ostension with a 

description of the algorithm that  generates the knot 

(playing  at  the  interface  between  action  and  the 

conceptual system.) It is also possible to describe the 

knot,  i.e.  the  configuration  of  tied  up  rope,  the 

structure of the knot – both in a view-dependent and 

in  a  view-independent  way.  Incidentally,  when  a 

manual explains a knot, it  normally talks about the 

movement of the rope, not about the hand movement.

(8)  People  can  see  some  knot 

equivalencies/differences by just  visually inspecting 

knots. Topologists for that matter, are skilled at that. 

Expertise plays an important role here. In learning to 

solve graphical knot equivalencies, topologists make 

use of the Reidemeister moves (Fig. 6).

Fig. 6. The three Reidemeister moves. 

The configurations linked by double arrows in Fig. 

6  are  local  moves  that  do  not  change  the 

corresponding  topological  knot  and  can  be 
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interchanged in a graphic  representation  of  a  knot. 

Slightly more formally, the three Reidemeister moves 

are  sufficient  to  connect  any  two  diagrams  that 

represent the same type of knot (they are “shadows” 

of  3D movements  in  the  knots).  The  Reidemeister 

Theorem states that “If one knot can be transformed 

into  another  knot  by  continuous  manipulation  in 

space,  the  same  result  can  be  obtained  by  a 

manipulation whose projection consists uniquely of 

Reidemeister moves and trivial manipulations of the 

diagram  in  the  plane”  [19,  p.  41].  One  simple 

hypothesis is that after a learning phase topologists 

interiorize the Reidemeister  moves (a discussion of 

topological  knots  in  cognition  in  De  Toffoli  and 

Giardino [12]).

(9)  People  may  be  blind  to  some  knot 

equivalencies. I want to offer two cases concerning 

ecological knots. 

Fig. 7. The equivalence of Cleat Hitch and Clove Hitch.

The Cleat Hitch and the Clove Hitch are the same 

unknot (Fig. 7). The difference is in the fact that the 

Cleat Hitch takes advantage of the geometry of the 

cleat.   

Fig. 8.  The equivalence of Bowline and sheet  bend. (Left 

figure from Asher [1], who uses two different colors for the 

two ends of the rope in order to point the similarity).

The Bowline and the sheet bend are the same knot 

(Fig. 8).  The only difference is that  the Bowline is 

tied on a single piece of rope, whereas the sheet bend 

is used for tying together two disconnected pieces of 

rope. 

Although the knots involved are relatively simple, 

and  although  the  equivalences  have  been  noted  in 

some  texts  ([2],  [1]),  knotters  and  many  knot 

handbooks  are  largely  unfamiliar  with  these 

equivalencies. I was instructed by one of my knotting 

teachers  about  the  Cleat  Hitch/Clove  Hitch 

equivalence,  and  still  find  it  a  bit  surprising.  The 

Cleat/Clove Hitch equivalence is in a sense a purely 

topological equivalence; we all sense that the shape 

of the object has something to do with the difference. 

More about this later.

Some dimensions for measure could be tentatively 

introduced  here,  in  reference  to  the  population  of 

experienced  topologists.  Knots  can  be  graded 

according  to  intrinsic  complexity.  But  they  can  be 

graded  according  to  the  subjective  difficulty  in 

parsing  them  as  well.  Thus,  even  the  unknot  (by 

definition,  the  simplest  case)  can  be  presented  in 

ways that make it hard to parse (Fig. 9).

Fig. 9. Left, the unknot, under a difficult presentation. Right, 

two easy-to parse representations of the unknot.

Sossinsky [19] reports that only advanced algebraic 

techniques  made  it  possible  to  show  that  two 

particular knot representations, that were considered 

for more than a century to belong to different knots, 

turned out to be in the same equivalence class. 

Looking  beyond  knots,  people  have  some  sub-

personal  and  personal  access  to  topological 

equivalences presented visually [9]  (some caveats in 

[8]).  But  people  do  not  have  access  –  neither 

personal,  nor  subpersonal  –  to  relatively  simple 

topological  equivalences.  Casati  and  Varzi  [7] 

presented  a  number  of  cases  of  topologically 
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equivalent  objects  that  are  seen  as  having  quite 

different  holes  in  it,  even  pretty  simple  ones  (Fig. 

10).

Fig. 10. The two cubic items are topologically equivalent, 

but  they  do  not  appear  to  be  deformable  into  each other 

without cutting or gluing.

Topologists  must  train  themselves  to  assess 

topological equivalencies (in particular in the case of 

knots,  but  not  limited  to  that  case)  and  the 

Reidemeister  moves are meant to be an aid to pen 

and  pencil  reasoning.  They  so  do  by  providing  a 

framework to decompose any intuitive move and thus 

treat it mathematically.

(10)  As  a  particular  case  of  the  previous  point, 

expertise  can  be  context-bound.  Draftsmen  who 

specialize  on  faces  may  be  poor  at  drawing  trees 

[18]. Skilled knot topologists may overlook mistakes 

in  representations  of  sailors's  knots.  Fig  P1.e  of 

Sossinsky [19] wrongly represents a sheet bend – the 

“knot” will definitely untie if pulled (Fig. 11).

Fig.  11.  Reproduced  from Sossinsky  [19].  The  purported 

“sheet bend” represented in (e) will not hold.

(11) The same knot can be tied in different ways. 

There is the train-way (movement of the working end 

to create the whole knot structure) but often the tying 

does  not  require  pulling  of  the  working  end,  or 

requires it only partially. I gave at the beginning an 

example with the shoelace. Textbooks often present 

several  procedural  variants  for  the  most  common 

knots such as the Bowline and the Clove Hitch [2]. 

It is important to observe that these variants are not 

easily predictable, and realization of the equivalence 

in their result often comes as a surprise (or, if not, as 

an interesting theorem). 

(12)  Metric  knowledge.  Knotters  have  an 

understanding of how much rope is needed to tie a 

knot  (“Will  it  suffice?”,  “You  took  too  much/too 

little”)

(13) Handedness: Michel and Harkins [17] found 

that  “observational  learning  of  manual  skills  [knot 

tying] is significantly enhanced when the student and 

teacher are concordant in handedness”. Some video 

tutorials for knots present a subjective viewpoint on 

the hands, and those that do not may warn about the 

“mirror” effect created by looking at a video. 

(14) People make systematic mistakes or encounter 

systematic difficulties in tying certain types of knot 

(eg. turning the final loop in tying a Cleat Hitch.) 

(15) Generalizability. To some extent, once one has 

learned to tye a given knot,  one can generalize (to 

thicker ropes, to specular knots, to different supports, 

to constrained tying, e.g. with a single hand). There 

are  limits,  though  (once  more,  expertise  is  often 

context-bound). I learned a certain sequence for the 

Clove  Hitch  (“superpose  rings  in  a  “non  intuitive 

way”), but this only holds for a rope's standing end 

that is presented on the right hand-side of the right 

hand. It is difficult for me to do the same for the left  

hand. I learned how to tie a Bowline with two hands, 

but I  may need to do it  with only one hand.  I  am 

better at tying the Cleat Hitch on the starboard side 

than  on  the  port  side.  Under  constraints  (rain),  I 

happened to have to tie a sheet to the roof using a 

Clove Hitch: no visibility, wet glasses, only one hand 

available, use of teeth, “generalizing”, starting from 

the memorized sequence, no visual control. It helped 

that I had memorized the sequence eyes shut. Success 

in some of these performances would speak in favor 

of some generality in mental representation of knots. 

More often than not, success does not appear to be at 

hand, thus indicating rigidity of the representation. 

(16)  Retrievability:  We have  some understanding 
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of  the  knotting  sequence,  given  perception  of  the 

final result of the knot. At some point I realized that a 

Clove Hitch is the result of tying two Half Hitches 

(Fig. 12). 

Fig. 12. Tying two Half Hitches in a sequence produces a 

Clove Hitch. Functionally, it  is  not a simple addition:  the 

second step “closes” the Clove Hitch.

In the case at issue, the visual asymmetry of the 

final product masks the iteration within the sequence. 

We see the working end and the standing end “leave” 

in  two  different  directions.  But  if  we  follow  the 

movement of one of the two ends, we can appreciate 

the iteration. 

Topologists can appreciate the compositionality of 

knots; a standard task is the decomposition of a knot 

into  prime  knots,  i.e.  knots  that  cannot  be  further 

decomposed. Once more, it  is not obvious that this 

performance  has  an  ecological  counterpart.  A 

topological knot can be decomposed into two trefoil 

knots; but a sequence of two plain knots on the same 

piece  of  rope  does  not  automatically  count  as  one 

knot.

Some imperfect understanding of compositionality 

may  make  one  imagine  impossible  operations.  I 

dreamed for a while of an “inverse” knot of a given 

knot,  such  that  by  combining  the  two and  pulling 

ends I would end up with the unknot.

 (17.1) Graphical  competences 1. Drawing knots, 

given  knowledge  of  a  knot  and  of  the  knotting 

process (as opposed to copying a knot from life), is 

not  trivial.  Personal  experience  (Fig.  13)  suggests 

that the best way to draw a knot (without copying it 

from life)  is  to  retrace  the  movement  that  tied  it. 

(Draftsmen  who  prepare  drawings  for  manuals  are 

likely to copy tied knots.)

(17.2)  Graphical  competences  2:  deciphering 

diagrams.  Over  and  above  topological  diagrams, 

diagrams are widely used in knot textbooks.  Some 

diagrams appear to be more useful or more readable 

and effective than others. Although it is  difficult to 

provide a measure, we can point out some elements.

Fig. 13. Author's drawing of a Bowline from memory (left, 

preparatory sketch. 15.06.2012)

Fig. 14. The “little train” graphic method, based on the path 

followed by the working end.
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Fig.  15.  The  “grab  the  bight”  method.  Circles,  or  hooks, 

indicate what to hold and where to move it in the next step.

The  “little  train”  rendition  method  (Fig.  14) 

follows the topological construction of the knot and 

is in general of little assistance. The “grab the bight” 

rendition  method  (Fig.  15)  models  actual  motor 

shortcuts that create the knot structure. Thumb rules 

for diagrams are derived by general indications about 

how to avoid cluttering graphic rendition, applied to 

the specifics  of  knots  (Tufte  [21]).  Diagrams must 

represent  intersections  in  order  to  convey  the 

structure of the knot, thus intersection noise should 

be  avoided.  Tangents  suggest  intersections  and  are 

thus  forbidden;  information  about  intersections 

should be kept;  irrelevant intersections ought to be 

avoided  (Fig.  16).  Graphic  conventions  about 

intersections (rope is not “cut” at the intersection, but 

is seen to continue under it) rely on Gestalt factors, 

such as the law of good continuation (“What is the 

continuation  of  what?”)  which  also  underlies 

perception of physical knots .

Fig. 16. On the left hand side column are examples of poor 

graphical  renditions  for  knots.  Top,  an  irrelevant  loop  is 

drawn.  Middle,  intersections  are  ambiguous.  Bottom, 

tangents clog the image. Improvements appear in the right 

hand side column.

(18)  We  do  not  only  categorize  knots  and  have 

names for them; we also have names for knot parts. 

These are not only technical names such as 'bight', 

'loop', 'elbow'. (See Fig. 1.). People use terms such as 

'bunny ears' in teaching how to tie shoelaces (for a 

bight), or refer to the 'hole' or 'furrow' in describing a 

Bowline (for a loop). These terms, invented in order 

to  name the  parts  of  the  knot  or  of  the  rope  that 

contribute  to  knot  structure,  are  metaphorical  or 

analogical.  The  action  repertoire  for  knotting,  that 

includes complex interactions with rope and object, 

is  fine-grained,  and  the  scarcity  of  dedicated 

terminology  is  compensated  for  by  metaphorical 

introductions.1

As we have seen, there is a large set of different but 

partly  interdependent  recognitional,  practical  and 

linguistic performaces to be explained. What are the 

ingredients of the explanans?

Knotting competence

Tying  knots  is  a  sequential  action  that  uses 

repeated moves to create configurations of rope. Our 

first  goal  is  to spell  out the mental  lexicon for  the 

basic operations one performs on ropes when tying. 

Besides,  knots  are  a  wonderful  case  study  for 

embodied  and  object-dependent  cognition,  as  their 

realization  depends  on  continuous  object  and 

sensorimotor  feedback.  The  proper  representation 

may involve not only the structure of the knot on a 

piece of rope, but the structure of the complex that 

includes rope and object.

In  what follows I  rely  on Pignocchi  [18]  on  the 

organization of the learning sequence of draftsmen. 

In learning to draw, children – but also adults – move 

from  simple  scrawls,  the  results  of  motor 

experiments,  to  more  and  more  complex  skeletal 

representations, that they are then able to integrate in 

images with an articulate content ( Fig. 17).

Fig.  17.  Basic  scrawls  that  merge  into  more  and  more 

complex graphic schemes in learning

1 Semi-technical  knot  terminology  (“working  end/standing 

end”) appears to be recent; it is used by people who teach knots 

with words. As a contrast, the terminology of types of ropes used 

in sailing (mooring line, sheet, etc.) is probably older, as it is used 

to distinguish ropes with different functions.
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Mastery  of  Atomic  Graphic  Schemes  (AGS) 

controls  the  production  of  simple  scrawls.  Scrawls 

are represented as mentally undivided, accomplished 

in a single gesture. Once Atomic Graphic Schemes 

are  stabilized,  they  can  either  be  reused  in  more 

complex,  Molecular  Graphic  Schemes  (MGS),  that 

are chains of AGS, or be slightly modified to fulfill 

other  representational  purposes.  The  repeated 

execution of  MGS has in some cases  the effect  of 

making  them  to  some  extent  automatic,  thereby 

turning them into new, richer AGS. 

The  account  has  a  number  of  theoretical 

advantages. For instance, it explains the difficulty in 

generalizing and the topic-boundedness of expertise. 

Draftsmen specialize: those who are good at drawing 

flowers are not thereby good at drawing faces. The 

theory  also  explains  the  peculiar  stylistic  traits  of 

draftsmen,  which  depend  on  the  idiosyncracies  of 

AGS.  The  theory  keeps  “Darwinian”  and 

“Lamarckian”  aspects  of  creativity,  introduced  by 

Johnson-Laird,  in  balance.  Little  random variations 

in executing AGSs or MGSs may appear satisfactory 

and get stabilized by repetition (Darwininan aspect). 

General  constraints  on  how  to  hold  and  move  a 

pencil and on what counts as a representation control 

the  exploration  of  new  AGS  (Lamarckian  aspect). 

The  account  further  predicts  that  at  least  some 

gesture  that  produced the  drawing  are  perceptually 

retrievable.   

The  working  hypothesis  of  the  present  article  is 

that the theory of AGS provides a plausible model of 

knotting  competence  and  of  its  development. 

Accordingly, one would learn some Atomic Knotting 

Schemes  (AKS),  reuse  them  in  (compositional) 

Molecular  Knotting  Schemes  (MKS)  that,  with 

practice,  become  or  are  treated  like  new  atomic 

lexical entries. In learning an AKS, one associates a 

sequence  of  movements  and  a  visual  (or  visuo-

tactile)  result.  The  peculiarities  of  learning, 

innovation, generalization and transmission would be 

explained by using the resources of the AKS-MKS 

framework.  For instance,  random variation in AKS 

can get  stabilized by repetition;  general  constraints 

on how to tie knots control the search of new knots 

and  condition  the  consolidation  of  MKS  (balance 

between Darwinian and Lamarckian aspcts). Finally, 

gestures  behind  knot  production  would  be 

retrievable.

In developing AGS one relies on existing abilities. 

Holding an object like a pencil, or tracing a line in 

the  sand  with  one's  fingers,  are  proto-graphic 

activities. Likewise, in the creation of AKS one relies 

on pre-existing abilities. Whoever has used a piece of 

rope (say, to walk a dog) knows that coiling it twice 

around one's hand renders the grip firmer. When we 

pull  something,  we  often  take  advantage  of  fixed 

poles to reduce our effort. When coiling rope around 

a bar  (e.g. around a tree) we easily discover that a 

Half  Hitch  configuration  is  extremely  effective. 

These  are  proto-knotting  activities  and  knowledge 

that  get  integrated  in  the  simplest  AKS.  Creating 

MKS, on the other hand, involves the deployment of 

compositional abilities.

A side hypothesis is that one will, or will not, be 

able to tie an unknown knot by looking at the result, 

according to one's repertoire of AKS and MKS.

But what are the ingredients of AKS and MKS? In 

the  following  sections  we  describe  some  of  the 

hypothetical ingredients of the mental computations 

involving  AKS and  MKS.  Some of  these  are  sub-

atomic, such as the ability to generate and see certain 

relations  between  movements  of  the  hand  and 

configurations  of  rope.  Others  are  of  higher  level, 

such as the chaining of AKS in long sequences.

Parts of knots, of rope

Some parts of the rope become salient and are used 

as  beacons  for  orienting  the  knotting  process.  The 

corresponding concepts may be lexicalized, or may 

be activated by analogies.  In the traditional way to 

teach the Bowline, a segment is dubbed the “tree”, 

the working end is renamed “the rabbit”, and the loop 

is a “furrow” or a “rabbit's hole”.

“A  mnemonic  used  to  teach  the  tying  of  the  

bowline is to imagine the end of the rope as a rabbit,  

and where the knot will begin on the standing part, a  

tree trunk. First a loop is made near the end of the  

rope, which will  act  as the rabbit's  hole.  Then the  

"rabbit" comes up the hole, goes round the tree right  

to  left,  then  back  down  the  hole.  ”  (Bowline,  

Wikipedia entry, retrieved on 09.01.2012)

Terminology in knotting practices is semi-technical 

(Fig. 18). It is not to be assumed that knotters know 

it,  nor  that  it  lexicalizes  some  mental  concepts 

knotters  have.  Most  likely  it  has  been  fixed  by 

writers of knot books for teaching purposes. 
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Fig.  18.  From  left  to  right:  working  end,  bight,  loop, 

standing end.

 

Loops and torsions

Asher  [1]  brings  to  the  fore  some  important 

physico-geometrical  properties  of  twisted  rope.  If 

you  look  along  the  axis  of  a  piece  of  rope  while 

twisting it e.g. clockwise, you will see that the rope 

undergoes a torsion; call this a right-handed torsion. 

Right-handedness  is  here  an  intrisic,  viewpoint 

independent characteristic of the rope (if you look at 

the rope from the opposite direction, it will appear to 

you  right-handed  as  well.)  In  order  to  release  the 

torsion,  you can  do either  of  two things:  twist  the 

rope counterclockwise, or coil it counterclockwise. If 

you look at the coiled rope along the axis of the coil, 

you will see that moving away from you the coil is 

left-handed. 

Fig. 19. Two ways to create loops.

Thus, you can produce a loop

1) by shifting the working end (Fig. 19, top).

2) By passing the thumb over the index finger to 

induce a torsion of the rope (fig 19, bottom). 

A rope can be modeled as a series of rigid coaxial 

discs  with  a  limited  freedom of  movement  around 

their  axis.  The internal  circumference  of  a  loop  is 

shorter than its external circumference. Each disk is 

then asked to rotate a bit in order to find room for the 

matter  compressed in the internal  part  of  the loop. 

Conversely,  torsions  automatically  generate  loops 

(Fig. 20). 

Fig.20 Ropes  are  things such that  torsions generate  loops 

and conversely.

These  are  physico-geometric  properties  of  rope, 

that  can  be  machine  produced  and  machine 

measured.  Two invariants  surface:  the  right-handed 

torsion, that generates a left-handed coil, and the left-

handed-torsion,  that  generates  a  right-handed  coil 

(and conversely). As a consequence, the global shape 

of a part of the knot (of the coil) stores some implicit  

information about the potential torsion of the rope. 

When  learning  to  tie  knots,  a  person  performs 

twisting and coiling; these invariants are associated 

with sensorimotor primitives. Twisting rope provides 

haptic feedback. One  feels the torsion, i.e. one feels 

that the rope tries to get back to its original shape. 

The  tension  at  the  tip  of  your  fingers  is  released 

when a coil is formed. To form the coil, you just have 

to move your hands close to each other. Conversely, 

at  the  end  of  one  coil,  one  realizes  that  one  has 

generated  a  torsion,  which  can  be  eliminated  by 

untwisting  the  rope.  (Neglect  of  this  operation  has 

produced many a kinked water hose.) 

To sum up, the basic rules are:

Twisting and joining causes coiling

Coiling and separating produces twists.
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The basic knowledge of any knotter concerns the 

interaction of the physical and geometrical properties 

of rope. But although a knotter may implicitly know 

(feel)  the  torsion-to-loop  interaction,  she  may  be 

blind to the converse interaction. Beginners must be 

told that when coiling rope, for each loop they have 

to produce a torsion, otherwise loops will mess up.

Knowledge of knots is first and foremost storage in 

memory  of  these  elementary  sensorimotor 

regularities.  The  final  visual shape  of  the  coil  is 

associated with a certain movement that produces or 

releases a torsion.1

A  number  of  ecological  knots  are  created  by 

generating coils and making them interact. The Clove 

Hitch,  when  constructed  in  the  middle  of  rope, 

without using the working end, is  the result  of the 

superposition  of  two  coils.  Creating  coils  is  a 

prerequisite for executing these knots in an efficient 

way. We have seen that some most commmon knots 

are unknots, topologically speaking: the Clove Hitch, 

the Half Hitch. Let me add one more, less common 

knot  to  the  lot,  the  Sheepshank  (Fig.  21).  The 

Sheepshank is the result of the pairwise intersection 

of three coils.  

Fig.  21.  The  Sheepshank  is  actually  an unknot,  that  only 

survives because of tensions. 

These (un)knots,  incidentally,  have the advantage 

that they can be tied in the middle of rope, without 

access to the ends of the rope, by simple interaction 

1The different ways of tying the shoelace knot desribed at the 

beginning generate different torsions, thus store energy in different 

ways  in  each  knot.  Accordingly,  the  generated  knots  are  only 

superficially equivalent.

of loops. On top of loops/coils, one produces bights 

when  executing  a  knot  (by  holding  running  and 

standing  ends,  each  in  one  hand,  and  having  the 

hands get closer to each other.) 

Pass-through

If some (un)knots require no access to the working 

end,  “real” knots are in general  tied by having the 

working end pass through a loop. A basic principle 

governs knot production.

Working-end-and-loop axiom.  You can only tie  a 

(real, i.e. non-unknot) knot by having the the working 

end pass through a loop. 

This  is  a  necessary  but  in  no  way  sufficient 

condition, as you can tie unknots that way (e.g. the 

Clove Hitch, that can be tied directly on the standing 

end.) 

The role of visual crossing

Intuitively, no matter how many times you coil a 

piece of rope around a pole, you won't thereby have a 

knot. But coil once and cross over, and you'll have a 

Half  Hitch.  Crossing  is  related  to  twisting  and 

coiling.  The  structure  of  knots  involves  a  passage 

through a loop, whereby the principle that:

the 2d projection of any knot will always involve a  

crossing. 

Thus  perceptual  crossing  (the  presence  of  an  x-

junction in the image) is  a  necessary condition for 

being  recognized  as  a  knot  (it  is  not  a  sufficient 

condition, as the unknot can present crossings)

Crossing is  in  general  an important  condition  in 

assessing  topological  equivalencies.  The  “tied” 

double  donaught  is  topologically  equivalent  to  the 

“untied”  double  donaught,  notwithstanding  their 

visual  difference,  that  suggests  a  topological 

distinction. The perceived difference is an x-junction. 

Knowledge  of  the  sidedness  of  a  loop: 

guaranteeing stability

Another piece of intuitive knowledge concerns the 

interaction  between  the  intrinsic  orientation  of  the 

loop and the side of the loop from where the working 
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end  must  enter  if  one  wants  to  get  a  stable  knot 

structure (i.e. the knot will form and not collapse into 

the  unknot.)  When  starting  the  Bowline  or  the 

Sheepshank  or  the  Plain  Knot,  I  know  that  the 

working end must enter from one, and not the other, 

side of the loop; or that a bight must pass on one, and 

not the other, side of the loop. I immediately see that 

the wrong side will not provide a stable structure. I 

know  whether  I  am  creating  a  “building  step”  or, 

sadly, an “empty step”. One has intuitions about what 

will work.

In tying a Bowline, one can compute the correct 

sidedness at each step. Knowing that the working end 

should exit the loop where it entered the loop, one 

must first determine the correct way to enter the loop, 

and consequently the correct  way to create a bight 

around the standing end (Fig. 22). 

Fig.  22.  Only  the  right  bottom  interaction  of  each  case 

stabilizes the tension stored in the loop.  (The stabilizer can 

be an external object, or a piece of the same rope used for 

the loop.)

Knot and object: external dependency

Many  knots  are  used  to  create  ties  between 

objects,  or  to  fix  rope  on  an  object.  This  invites 

discussion  of  a  complex  set  of  invariances  and, 

consequently,  of  sensorimotor  contingencies.  The 

first, basic principle concerns unknots:

Unknot dependency:  An unknot can be tied only  

on an object.

Clove  Hitches,  Cleat  Hitches,  Half  Hitches  are 

unknots whose survival depends upon the existence 

of an object they are tied around. They are dependent  

knots. 

There are seeming counterxamples: you can tie a 

Clove Hitch on a portion of the very same rope you 

are  using  for  the  hitch.  Now,  although  the  “local” 

movements are those for creating a Clove Hitch, the 

end  result  is  a  Plain  Knot.  The  seeming 

counterexample allows us to distinguish two senses 

of dependency:

self-dependency (e.g. you can tie a Clove Hitch on 

the standing end) and 

other-dependency (e.g. you tie the Clove Hitch on 

an object that is not the rope itself.) 

Two-object topologies

This  introduces  the  theme  of  two-object 

topologies.1 The  formal  counterpart  of  two-object 

topologies involving knots is the study of links. Once 

more,  the  descriptive  gap  between link  theory  and 

ecological links is as wide as the gap between knot 

theories  and  an  account  of  ecological  knots.  The 

arguments are the same that we used for topological 

knots.  For  instance,  topological  links  are  not  the 

result of tying, whereas ecological links are tied.

We should distinguish the metaphysical properties 

of  self/other-dependency  from  the  functional 

properties  of  self-reference.  Some  knots  are  self 

referential:  they are only used to store ropes, or to 

reduce the volume or length of rope.

Fig. 23. A notoriously slippery knot, the Cow Hitch is used 

to “serve the rope”, fixing it so as not to create a mess, and 

allowing for quick untying. 

Self-dependency and self-reference are orthogonal 

to  each  other.  The  Cow  Hitch  (Fig.  23)  and  the 

Sheepshank are self-referential in that they are used 

to change the properties of the rope and not for fixing 

anything.  But  the  Cow  Hitch  is  other-dependent, 

whilst  the  Sheepshank  is  self-dependent. 

(Functionally, the Sheepshank is used to shorten the 

1 Two-object topologies were used by Casati and Varzi [7] in 

order to account for some classificatory performances related to 

holed  objects.  Considering  holes  as  completely  filled,  the 

topological properties of the contact surface between the host and 

the filler correlates fairly well with most commonsense categories 

of holes.
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available  portion  of  rope,  or  to  use  rope  with  a 

damaged portion.)

Object-based functional lexicon

We have seen that the lexicon for knots introduces 

terms to characterize parts of the rope and elements 

of knots. The part of rope, or the external object that 

stabilizes the loop (see again Fig. 22) is a stabilizer. 

Whether a part of rope or an external obejct can act 

as a stabilizer depends on its capability to counter the 

tension created by the loop. In the case of rope, this 

may in turn depend on the stabilizer part's tension, or 

on its weight (for instance, if the standing end is long 

enough).

In view of the importance  of  external objects  in 

tying  knots,  we  need  some  semi-technical 

terminology for supports (Fig. 24). 

Fig. 24. Handlebody; pole; bar; cleat. Dashed lines indicate 

that the object's bounds are not within reach; the object is to 

be considered endless for knotting purposes (rope will not be 

allowed to slip out  from there.)  The cleat  is topologically 

equivalent  to  the  bar,  but  its  shape  conditions  the  knot. 

Starting from this simple taxonomy, endless compositional 

variations are available.  

As  we  noticed,  geometric  features  of  knots  are 

related to their causal properties (stop knots,  stable 

knots,  etc.)  There  is  further  an  interaction  of 

geometrical features of knots and physical properties 

of both ropes and things tied. For instance, one can 

create a figure-of-eight stop knot that is large enough 

so as not run through the handlebody. The elementary 

morphologies of Fig. 23 provide a lexicon of basic 

shapes. There is no upper bound to the complexity of 

object shapes one can use to create links. The basic 

lexicon  helps  characterizing  the  elementary 

interactions  between rope and object.  Tying a knot 

through  a  handlebody  takes  advantage  of  the 

topology  of  the  handlebody  to  constrain  the 

movement  of  the  rope,  and  at  the  same  time  the 

handlebody  requires  that  the  working  end  passes 

through the hole in it. The pole is less constraining 

and at the same time allows for knotting procedures 

that do not involve the working end. Another relevant 

aspect of two-object  interaction, in the case of knots, 

is  that  one  of  the  two  objects  is  in  the  norm 

underformable.  This  means  that  one  can  take 

advantage  of  its  rigidity  in  the  execution  of  the 

knotting  sequence.  A final  object  feature  knotting 

takes advantage of is the permanence of the topology 

of the object. We do rely on the fact that objects (as 

opposed to rope) do not change their topology. (And 

indeed,  we  are  susprised  when  this  happens,  for 

instance  when  topological  properties  of  the  object 

can  migrate  to  the  rope.  If  I  tie  up  my  arms  by 

crossing them, and then grasp two ends of a piece of 

rope with my hands, and then open up my arms, I end 

up with a Plain Knot on the rope, and no knot on my 

arms. The knot has moved from my arms to the rope.) 

The  features  in  question  defy  classification; 

geometry is intertwined with function. Topologically 

there is no difference between the pole and the cleat, 

and  although  there  is  no  topological  difference 

between Clove and Cleat Hitch, as the execution is 

controlled  by  the  object,  it  results  in  two  utterly 

different  procedures.  Or,  cosider  ring  and  bar  (an 

example of a bar would be a tall tree, around whose 

trunk  one  ties  a  knot).  Functionally  they  could  be 

considered  equivalent:  their  end  segments  do  not 

exist or are not accessible, so that the tying procedure 

requires a use of the working end. But the ring has 

the further property of keeping the knot in a certain 

place. 

Knowledge of knots, the original loop, and the 

fundamental role of the Half Hitch

Half Hitches are ubiquitous components of knots 

(cf. once more Fig. 12, showing that the Clove Hitch 

is the result of tying two Half Hitches in sequence. 

Now, the Half Hitch is an unknot: it is a simple loop. 

According to Unknot Dependency, it can be tied only 

on an object.  The object  acts as  a  stabilizer  of the 

loop.  This  object  –  according  to  Self-Dependency, 

can be be another part of the same rope. This has in 

general the consequence of turning an unknot into a 

knot. The Half Hitch then “becomes” a Plain Knot. 

This  elementary  dynamics  is  at  the  basis  of  most 

knotting.  The  Half  Hitch  stabilizes  the  tension 

generated in the creation of the loop. Knowledge of 

knot is thus mastering of operations that orchestrate 

the  management  of  the  energy  stored  with  the 

creation of the original loop.

(Provisional) conclusions

We  have  seen  that  some  ecological  knots  are, 

mathematically speaking, unknots, and thus that the 
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topological theory of knots is at best a partial account 

of  knotting abilities.  We have further  seen that  the 

mental  representation  of  knots  should  allow  for 

limited  generalization,  understanding  of  knot 

equivalences and compositionality. Even if you have 

some understanding of the compositional structure of 

tying  a  simpe  knot,  you  do  not  thereby  have  an 

access to the end result of just any knotting procedure 

that  involves  the elements  of  the composition.  The 

consequences of the atomic actions you perform are 

not easy to predict; not even for experts. As knotting 

involves  external  objects  essentially,  the  feedback 

loop that unites perception and action is essential for 

our understanding of them; knotting provides an ideal 

case  for  situated  cognition and  externalized mental 

procedures.  It  is  early  to  provide  a  formal 

characterization of the principles at play – an algebra 

of knotting and knot understanding, as if it were, as 

opposed  to  an  algebra  of  knots.  Some  existing 

models  accounting  for  motor-perceptual 

performances  (e.g.  models  for  drawing)  can  be 

reused in the case  of  knotting,  thus allowing us  to 

distinguish  an  atomic  level,  with  sub-atomic  parts, 

and a molecular level. We were able to enlist some 

principles  at  the  atomic  or  subatomic  level,  all 

involving sensorimotor representations: the relevance 

of parts of rope and their lexicalization; the duality of 

twisting and coiling and the contribution of both to 

the  storing  of  action  into  the  configuration  of  the 

knot;  the  interaction  of  loops  and  ends  to  create 

stable structure (good and bad 'sides' of the loop) and 

the consequence for the visual aspect of the knot, that 

must  include  x-junctions;  the  interactions  of  rope 

with  object  shape  and  topology  and  the  lexical 

saliency of functional object features; the necessity of 

dealing with two-object  representations;  the object-

dependency of unknots; the distinction between self-

dependency and self-reference; and the fundamental 

role of loop stabilization in half hitches, that turns out 

to  be  the  most  important  subatomic  elements  of 

knots.

The present article pleads for the investigation of 

process  topology  as  opposed  to  static  topology. 

Shapes  are  usually  considered  as  static  properties. 

But in the case of ecological knots, their features bear 

a trace of the process that led to them, that included 

planning, motor execution, and perceptual control, in 

the service of the management of the energy stored in 

the shape of a rope to create stable structures. 

References

[1] Asher, H., 1989, The alternative knot book. London, Nautical Books.

[2] Ashley, C.W., 1944, The Ashley Book of Knots. New York: Doubleday. 

[3] Balari, S., Benítez-Burraco, A., Camps, M., Longa, V.M., Lorenzo, G., Uriagereka, J., 2011. The archaeological record speaks: Bridging 

anthropology and linguistics. International Journal of Evolutionary Biology 2011, doi:10.4061/2011/382679. 

[4] Balari, S.,  Benítez-Burraco, A., Camps, M.,  Longa, V.M., Lorenzo, G., 2012, Knots, Language, and Computation: A Bizarre Love  

Triangle? Replies to Objections. Biolinguistics, Vol 6, No 1, 79-111.

[5] Bayman, 1977, Theory of hitches, American  Journal of Physics, 45 (1977) 185 

[6] Camps, M., Uriagereka, J. 2006. The Gordian knot of linguistic fossils. In J. Rosselló & J. Martín (eds.), The Biolinguistic Turn. Issues  

on Language and Biology, 34–65. Barcelona: Publications of the University of Barcelona. 

[7] Casati, R., Varzi, A.C., 1994, Holes and Other Superficialities. Cambridge, Mass. MIT Press.

[8] Casati, R. 2009. Does topological perception rest on a misconception about topology? Philosophical Psychology 22 (1):77 – 81.

[9] Chen, L., 2005 The topological approach to perceptual organization. Visual Cognition, 12, 553-637. 

[10]Cross, E.S., Cohen, N.R., Hamilton, A.F.d.C., Ramsey, R., Wolford, G., Grafton, S.T., Physical experience leads to enhanced object 

perception in parietal cortex: Insights from knot tying. Neuropsychologia, 50, 3207-3217.

[11] Crowell, B. undated, Knot Physics. http://www.lightandmatter.com/article/knots.html , last retrieved Feb 01, 2013.

[12]De Toffoli, S., Giardino, V., 2013, Forms and Roles of Diagrams in Knot Theory. Ms.

[13]Herzfeld, C., Lestel, D., Knot tying in great apes: etho-ethnology of an unusual tool behavior Social Science Information 2005 44: 

621-653.

[14]Karmo, T., 1977, ‘Disturbances’, Analysis 37: 147-148.

[15]Lobina, D.J., 2012, All tied in knots, Biolinguistics, 6, 1, 70-78.

[16]Lobina, D.J., Brenchley M., 2012, Language, Knots and Computation: More Bermuda than Love. Biolinguistics, 6, 2, 176-204.

[17]Michel, G. F., Harkins, D.A. 1985. Concordance of handedness between teacher and student facilitates learning manual skills. Journal of 

Human Evolution 14, 597–601. 

[18]Pignocchi, S., 2010, How the intentions of the draftsman shape perception of a drawing. Consciousness and Cognition, 19(4):887-98.

[19]Sossinsky, A., 2002 Knots: Mathematics with a twist. Harvard University Press.

[20]Strohecker, C., 1999 Why Knot? PhD thesis, MIT.

[21]Tufte, E.R., 1997, Visual Explanations: Images and Quantities, Evidence and Narrative, Cheshire, CT, Graphics Press.

18



[22]Tracy, J., Flanders, A., Madi,  S.,  Laskas, J., Stoddard, E., Pyrros, A., Natale, P., DelVEcchio, N., 2003, Regional Brain Activation 

Associated with Different Performance Patterns during Learning of a Complex Motor Skill., Cerebral Cortex, 13:904-910.

[23]Urton,  G.,  1998  "From  Knots  to  Narratives:  Reconstructing  the  Art  of  Historical  Record  Keeping  in  the  Andes  from  Spanish  

Transcriptions of Inka Khipus". Ethnohistory 45 (5): 409–438.

Acknowledgments

I'm indebted to the members of the perception seminar  at  Institut Nicod,  and to Achille  Varzi,  Alessandro 

Pignocchi, Alessandro Scorsolini, Paolo Biagini, Andrea Formica, Paulo Santos, Valeria Giardino and Silvia De  

Toffoli for discussion. Errors are my sole responsibility.

 

19


