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Abstract. Sketches are shapes that represent objects, scenes, or ideas
by depicting relevant parts and their spatial arrangements. While hu-
mans are quite e�cient in understanding and using sketch drawings,
those are largely inaccessible to computers. We argue that this is due to
a specific shape based representation by humans and hence the use of
cognitively inspired representation and reasoning techniques could lead
to more proficient sketch processing. We also propose a three-level ar-
chitecture for sketch learning and recognition that builds on concepts
from cognitive science, especially from analogy research, to map and
generalize sketches.
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1. Introduction

Sketches can be considered as an intermediate level of abstraction between raw
sub-symbolic streams of sensory input on the one side and icons on the other. In
contrast to a drawing, a sketch only captures the conceptually relevant parts of the
displayed object or situation as well as the spatial relations between these parts,
making their treatment substantially di↵erent from classical image processing.
The pertinence of sketches for future information technology applications and
services can hardly be overestimated. Especially the spread of tablet computers
and devices equipped with touch screens paves the way for new human computer
interfaces, in which sketches can play an essential role. Future applications can be
search services for large knowledge bases utilizing input sketches, support services
in software systems for shortening the path through complex menus, automatic
sketch generation for manuals and assembly instructions, a bridging approach
between computer vision and conceptual reasoning, or creative usage of sketches
in e-learning contexts.

In this paper, we present ideas on modeling the human ability to operate
with sketches. We focus on a competence model for recognition, classification,
memorization and retrieval of sketches guided by cognitive principles. In a first
step, the envisaged system acquires basic knowledge on how to sketch a given
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49



object. The essential and optional components as well as their spatial arrange-
ment are learned by comparing di↵erent sketches of the same type of object pro-
vided to the system as training data. In the next step, after elementary types
have been learned in this bootstrapping process, the system will generate more
abstract categories by cross-type comparison, establishing a hierarchical index of
sketch schemata and shapes. This index will then support the recognition ca-
pacity: new sketches will be compared to the abstract descriptions in the sketch
database to find structurally matching sketches in memory. We argue in favor of
a symbolic approach because the structure of a sketch can be captured explicitly
in such a representation, and changes in the conceptualization can be performed
by automatic inference techniques.

The paper is structured as follows. We start with discussing requirements
for a representation language for sketches in section 2. The description of the
proposed system is given in section 3, which constitutes the main part of this
paper. We then provide links to related work in section 4, before concluding with
some remarks and future work in section 5.

2. Sketch Representation and Re-representation

Sketches are assumed to be given as a collection of dots and lines, possibly an-
notated with an order of drawing. Multiple relational representations can thus
be constructed based on psychological principles, which take into account that
human cognition of spatial environments is qualitative in nature. Humans do not
perceive absolute locations and quantitative relations between spatial objects,
but rather relative locations and qualitative relations [1,2,3,4]. By observing a
geometric figure, the unstructured information is transformed into a structured
representation of coherent shapes and patterns [5,6]. Perception tends to follow a
set of Gestalt principles: stimuli are experienced as a possibly good Gestalt, i.e.
as regular, simplistic, ordered, and symmetrical as possible. Gestalt psychology
argues that human perception is holistic: instead of collecting every single element
of a spatial object and afterwards composing all parts into one integrated picture,
people experience things as an integral, meaningful whole. The whole contains an
internal structure described by relationships among the individual elements.

We argue that qualitative spatial relations play a major role during sketch
recognition and hence sketches should be described on a qualitative level by a
symbolic language. The spatial representation language has to meet two major
requirements: it must describe all elements of a spatial object with respect to
the aspects relevant in human perception, and it must also describe the spatial
characteristics that are important in recognizing spatial objects. To reflect hu-
man perception, the language must comprise significant perceptual vocabulary to
specify visual structures. The geometry in a sketch, i.e. of its elements and their
spatial relations, has to be represented in a way that allows for cognitively plausi-
ble reasoning. The language can be based on psychological theories for perception
and pattern recognition, such as Gestalt Theory [7,8,5,6], Marr’s theory of vision
[9] and Biedermann’s Geons [10], and on research specifically directed towards
the sketch mapping task such as the CogSketch [11] approach.
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Figure 1. Visual ambiguity exemplified by di↵erent representations of a sketch relative to a given
context in a proportional analogy, according to [12].

The potential ambiguity of sketches, e.g. caused by di↵erent groupings of
elements or di↵erent interpretations, is an essential point to be considered. In-
durkhya [12] has demonstrated the e↵ects of visual ambiguity in proportional geo-
metric analogies and has argued for a mechanism that can change representations.
The importance of re-representation is exemplified in Figure 1, where structural
commonalities between representations can be detected only if suitable represen-
tations for the geometric figure are available. The Star of David in the top row of
Figure 1 should be represented as two overlapping triangles, whereas the one in
the middle row should be represented as six triangles plus a central hexagon, and
that in the bottom row should be represented as three overlapping rhombuses.
Re-representation in this case means changing from one of these representations
to another one which suits better to the given problem.

Re-representation, in the domain of sketches, means spatial re-organization
and re-structuring of the elements within a spatial object, and can be formalized
as a deduction task: from a given description of a sketch an alternative description
has to be derived, that represents the same visual scene. It therefore requires spa-
tial reasoning capabilities and existing qualitative spatial reasoners can be used
to support this task (such as the SparQ toolbox [13] or General Qualitative Rea-
soner (GQR) [14]). Furthermore, to reflect human strategies of re-representation,
appropriate heuristics are needed to guide the re-representation process.

3. A System for Analogy-Based Sketch Learning

Human learning is not a one-step action but a continuous, incremental process
of acquiring new and revising old knowledge, where knowledge is learned at dif-
ferent levels of abstraction. Such observations about human learning motivate us
to develop a three-level architecture for learning perceptual categories based on
sketches. Perceptual categories in this context refer to structured representations
of graphical elements that are common to a class of sketch drawings, represented
as structured descriptions with respect to relevant topological, directional, and
geometrical properties. The two main mechanisms for learning are learning via
transfer and learning by abstraction. The former refers to the transfer of facts
from the source to the target domain, while the latter denotes the generalization
process that is essential to derive abstract concept definitions. Existing classical
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learning approaches usually require large sets of data samples to create general-
izations, though humans can already generalize over a small set of samples.

Our proposed system applies analogical comparison to discover structural
commonalities and combines them with inductive refinement to extract the es-
sential characteristics defining a perceptual category. Analogy-making, as a non-
standard reasoning technique, is combined with classical deductive and inductive
reasoning to compare di↵erent sketch drawings for commonalities and generalize
a common underlying perceptual category. For all tasks involving comparison of
sketches, analogical mapping is used to align two stimuli based on structural sim-
ilarities. Such a mapping is essentially shape based, i.e. it is performed on visual
descriptions only, and does not rely on functional, intensional, or usage-based
information. There are two central requirements that need to be realized. The
system needs, first, to be able to incrementally add newly learned categories, and,
secondly, to be adaptive in the sense that a computed generalization is modifiable
if new stimuli require a relaxation of the imposed constraints. Knowledge learned
from training examples can be used to recognize and classify new sketches.

The model presented in this section is inspired by [15], where first ideas for
an incremental learning theory were proposed. In that paper, we used a multi-
layered model based on analogies to explain how abstract physical principles such
as the law of energy conservation and the concept of an equilibrium of forces can
be learned. These ideas are revived here and applied to the domain of sketches
yielding a three-level architecture. The first level refers to the computation of
analogical generalizations between a pair of sketches (section 3.1). The second
level is the inductive refinement of the computed generalizations based on a re-
representation process that adapts representations to make it compatible to fur-
ther sketches (section 3.2). The third level focuses on learning through a revision
process when comparing abstract generalizations to new domains (section 3.3).
Finally, we discuss how the aquired knowledge can be used for sketch recognition
(section 3.4).

3.1. Level 1: Analogical Generalization

At the lowest level, two sketches are taken as input, and an analogy between
them is computed based on structural commonalities (cf. Figure 2). The relational
structure of the description of the sketches is thus crucial. The analogical mapping
may be partial, i.e. it allows parts of one sketch that have no counter-parts in

Figure 2. A flat description of a sketch is mapped to a structural representation
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the other sketch. The mapping will give rise to a generalization, i.e. an abstract
description of the common parts of both sketches.

Heuristic-driven theory projection (HDTP) is a logic-based framework for
analogy making, presented in [16], where domains are described by logical theories
and are represented by a finite set of axioms. An analogy is established by mapping
axioms of two domains, based on a generalization computed via anti-unification
(cf. [17]). HDTP allows re-representation of input domains: If the axiomatizations
provided for the domains do not exhibit su�cient common structure to establish
a good analogy, formulas from the domain theory, which can be derived from the
axioms by logical deduction, are considered for mapping (cf. [18]).

The framework uses a set of heuristics to compute an analogical mapping
that can be adapted to fit the special needs in the sketch domain. Essential com-
plexity measures and heuristics are applied on di↵erent levels to guide the align-
ment process and to evaluate possible mappings in the sketch mapping scenario.
Heuristics are used to (1) determine the order in which axioms are selected and in-
cluded in the mapping process: psychologically motivated (and syntactic) heuris-
tics can proof useful, where perceptually significant elements in human percep-
tion are likely to influence the analogy-making process more than non-significant
elements (axioms should be selected therefore in the order of perceptual signifi-
cance); (2) guide the re-representation: heuristics should reflect human strategies
of re-representation, and the spatial language, particularly the re-representation
rules, influences the development of the heuristics; and (3) determine when an
analogy contains su�cient analogous structures such that a new sketch stimulus
can be classified as a certain object. The approach has to bridge the gap between
largest possible mappings – the more analogical structures are identified, the bet-
ter the analogy – and di↵erences in the sketches that should not be part of the
analogy.

3.2. Level 2: Inductive Refinement

Inductive refinement is motivated by transferring ideas of concept formation to
perceptual category learning. By comparing di↵erent sketches of objects, which
should fall under the same category, the system should be able to construct a
description of this category in terms of the relevant visual features. The inductive
refinement proposed here combines a generalization of classified sketches as well
as a clustering of subsets of the classified objects.

Figure 3 illustrates an example: four sketches of stoves are compared. All of
them have a cubic shape and share significant elements of stoves such as hot-

Figure 3. A structural comparison of sketches reveals commonalities that all sketches share.
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Figure 4. Hierarchical structure of categories learned from sketches.

plates and temperature regulators. Given a pair of sketches, the first level of the
proposed system detects the analogous structure and constructs a generalization
containing the commonalities as a by-product. This generalization represents the
first step towards the perceptual category stove at an abstract level. Iterating this
process with additional input stimuli and computing generalizations of already
computed generalization candidates will elaborate this category. More generally,
provided a set of sketches is given, the exemplified brute force approach would be
to compute for each pair of sketches a generalization. These generalizations func-
tion as candidates for new perceptual categories, and can be ordered according to
their generalization complexity (e.g. substitution lengths in HDTP: The smaller
the substitution lengths in the anti-unification process, the more plausible it is
to assume that the two input sketches belong to the generated candidate for a
perceptual category). The ordered set of candidate generalizations can be used for
further structural comparison via anti-unification in order to find commonalities
between more than two sketches. Applying clustering techniques may possibly
identify optional elements of sketches that appear in many but not all objects
(e.g. water vapor over the cups in Figure 3).

3.3. Level 3: Creating a Perceptual Category Hierarchy

Analogies are not only iteratively applied among instances of the same category
(drawings of cups), but also between sketch drawings of di↵erent categories such
as cups, mugs, buckets etc., so that a hierarchy of perceptual categories is at-
tempted to be built (cf. Figure 4). Generated perceptual categories from Level 2
will constitute the leaves of the hierarchy. By analogical comparison of pairs of
perceptual categories, generalizations are computed that can represent candidates
of new, more abstract perceptual categories. These candidates can be ordered
according to the complexity of the underlying analogical mapping and only those
candidates constitute new categories that are maximally similar to each other.
The generalizations successively reach an abstraction level such that the highest
level of generalizations contains elementary geometric shapes.
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3.4. The Recognition Task

The recognition task refers to the problem of determining whether a given sketch
corresponds to an object from the system’s knowledge base. It can also be treated
as an analogy problem, in which the source domain consists of the system’s knowl-
edge on how to sketch a certain object, and has to be mapped to the unstructured
graphical input (target) presented to the system as a flat collection of lines and
dots. The structural commonality between the flat representation of the target
and the structured representation of the source is initially not obvious. To suc-
cessfully classify a new stimulus, an analogous structure has to be created for the
target stimulus. During the analogy-based mapping process the target must be
re-represented such that common structures may become visible.

The hierarchical memory structure built by the system (cf. Figure 4) is used
as a starting point for the retrieval. The search algorithm will try to map abstract
categories from that hierarchy to the search item, by computing appropriate sub-
stitutions to prove that the search item is a suitable instance of that abstract
category. Hence, the retrieval is organized as a top-down search: starting from the
most abstract category, all sub-categories are analogically mapped to the query
sketch. Good matches are those categories where the aligned elements reach max-
imal coverage of the stored descriptions as well as maximal coverage of the search
item. Matching items are all those sketches which are classified below a suitable
category in the hierarchy. Suitable categories need to exhibit a su�ciently high
coverage of the search item and the category itself. The result of a retrieval process
ranks all matching items according to their relevance. We suggest the following
criteria to determine the degree of relevance:

1. Depth of the matching database category: The higher a matching category
in the hierarchy, the more abstract it is.

2. Coverage of the analogy: We assume that the higher the coverage of the
search item, the better is the match.

3. The analogical relation between the search and the database items should
be a coherent and connected match. This indicates that not only single
elements align, but at least a certain part of the sketch aligns coherently.

In a ranking heuristics that combines the di↵erent aspects, the coverage has to
be considered with respect to the abstractness of the database category.

4. Related Work

The ideas presented here build on two research fields: spatial analogies and cate-
gory learning with analogies. Spatial analogies have a rather long history in arti-
ficial intelligence, whereas analogy-based learning is far less developed. The first
analogy system, ANALOGY [19], was dedicated to solving proportional geometric
analogy problems. O’Hara & Indurkhya [20,21] proposed InterAct, an algebraic
analogy model for geometric proportional analogies between line drawings. Das-
tani [22] developed a formal language for this analogy model to describe elements
in geometric figures and compute automatically a structural, Gestalt-based rep-
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resentation. Forbus et al. [11] developed a general architecture for sketch under-
standing, CogSketch, which is domain independent and takes freehand sketches
as input [23]. Each freehand sketch drawing consists of several primitive elements
called glyphs. CogSketch interprets the primitive elements via their ontological
description and via their shapes, and computes spatial relations between primi-
tive elements based on the convex hull of glyphs. Copycat is a non-deterministic
analogy model for proportional analogies in the string domain [24]. Tabletop [25]
is a computational program based on Copycat that was developed to detect anal-
ogous spatial arrangements in a micro-world such as a well-laid table. Like Copy-
cat, Tabletop combines representation-building and correspondence-finding into
one integrated process. Davies and colleagues examine visual analogies in archi-
tectural design. They showed in experiments [26] that humans use visuospatial
representations for the analogical mapping and transfer: participants used visual
and spatial knowledge, mostly the topology of objects, to align a given architec-
tural design with an architectural design problem and construct a solution via
analogical transfer. Davies et al. developed the analogy model Galatea, an imple-
mentation of the constructive adaptive visual analogy theory [27,28], to compute
visuospatial analogies.

Analogy-based learning di↵ers from the enormous number of proposed classes
of learning methods and methodologies in classical artificial intelligence research,
as for example, instance-based learning, exemplar-based learning, case-based
learning in the area of lazy learning and version space learning, decision tree
learning, inductive learning, neural learning, and probabilistic learning in the area
of eager learning. Many of these approaches require a relatively large sample of
examples in order to learn reasonable generalizations. Although there may be cer-
tain approaches that attempt to incorporate structure of the generalization space
into the learning process, in order to facilitate learning from small training data
samples – similar to analogical learning – there are significant di↵erences between
these approaches and analogy-based learning. Only a rather limited number of
positive examples are required for learning due to the conceptually guided way of
establishing analogical generalizations, which are the source for new knowledge.
An explicit generalization is necessary to capture new categories, re-use learned
knowledge, and refine knowledge over learning steps. It is worth pointing out that
one can find quite often references to analogical learning [29], but no spelled-out
theory of analogical learning has been proposed so far. Inductive Logic Program-
ming (ILP) [30] and Relational Learning [31] could be mentioned as a modern
probabilistic version of frameworks where structure plays an important role in
the learning approach. But compared to these most prominent approaches, the
computation of an analogical relation does not incorporate probabilities, nor does
it require that examples are taken from the same domain. However, the computa-
tion of an analogical relation is a complex process including aspects like retrieval,
transfer, re-representation, refinement etc. Closest in spirit to analogy-making,
may be the approach originally proposed by Plotkin [17], who computed least
general generalizations for facilitating learning.
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5. Summary and Future Work

We have outlined ideas for a system to model sketch learning and recognition.
The setup is motivated by psychological findings emphasizing that human recog-
nition capabilities are not only data-driven, but crucially governed by cognitive
mechanisms and principles such as analogical reasoning and Gestalt principles.
This contrasts with most work in the context of image retrieval, which use low-
level features and does not guarantee that the resulting model reflects the human
competence in recognition processes, as many of the used features are possibly
not accessible by humans. One of the rare exceptions is [32] who propose to view
image retrieval as a knowledge representation problem, where structured objects
are retrieved such that syntactic and semantic aspects play an important role.

Even though the work presented here is currently purely conceptual, we have
explained in detail how the envisaged system can make use of existing technolo-
gies, especially from the field of spatial and analogical reasoning. We have ar-
gued in favour of a symbolic representation of visual scenes and have proposed
to use HDTP as a framework for analogy making. For our system, HDTP has to
be extended to make use of spatial reasoners, e.g. from the SparQ toolbox [13],
for re-representation during the analogical mapping. A prototype implementation
may be applied to a set of test sketches, allowing to compare di↵erent heuris-
tics. A primary concern is the development of a suitable language for describing
shapes and sketches. Here we can build on a plethora of existing semiformal and
formal approaches, like Dastani’s languages of perception [22]. Central objectives
for such a language are, that it allows for cognitively plausible representation and
supports the manipulations required by our system.
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