
Collaborative Authoring Requires Advanced Change
Management

Ethan Munson
Department of EECS

University of Wisconsin-Milwaukee
Milwaukee, WI, USA

munson@uwm.edu

ABSTRACT
Collaborative document authoring is a pervasive activity of
modern life. The obvious examples are jointly authored
works of scholarship, literature, and journalism. But collab-
oration can also be found in many work domains: doctors
collaborate on the creation of a patient’s chart; lawmakers
and their aides collaborate on legislation; opposing lawyers
“collaborate” on a legal settlement; editors collaborate with
authors to correct or improve manuscripts.

In addition, while software engineers rarely give their work
the name “collaborative authoring,” that is precisely what it
is. Because of this and because it is their nature to make
better tools, software engineers have created powerful and
robust programs to support collaboration, such as version
control and build systems. These tools allow software en-
gineers to share documents, divide them into complicated
subdocuments, edit them in parallel, merge editing changes
semi-automatically, and recombine the subdocuments into a
cohesive and correct whole.

It is the thesis of this talk that collaborating authors of
natural language documents need the same kinds of tools
that software engineers take for granted. In fact, because
of important domain differences, people collaborating on a
natural language document need better tools than software
engineers. One key difference is that natural language doc-
uments lack clear standards of correctness. Where software
engineers can use compiler errors and test results to vali-
date the merged changes of multiple authors, natural lan-
guage authors, especially for creative literature and poetry,
have few equivalent tools. Another difference is that some
collaborators (see the legal example above) may not trust
each other, so even changes that do not generate a conflict
still must be validated manually by the other collaborators.
Finally, natural language authors and editors are not pro-
grammers, so they need solutions with interfaces that are
accessible to a non-technical audience.

The document engineering research community has been
working on this problem domain for a considerable time,

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0
Unported License (CC BY-SA 3.0). To view a copy of the license, visit
http://creativecommons.org/licenses/by-sa/3.0/.

DChanges 2013, September 10th, 2013, Florence, Italy.
ceur-ws.org Volume 1008, http://ceur-ws.org/Vol-1008/keynote.pdf .

particularly in the area of version control of XML docu-
ments, which is the primary representation for modern office
documents. Key research results have included a variety of
schemes for merging and patching XML document versions,
advances in formalizing document deltas, a scheme for con-
trolling author access to the various sections of a document,
and demonstrations that authors can edit a document simul-
taneously over the Internet without locking mechanisms.

I will argue that document systems must adopt the full
range of version management tools used by software engi-
neers, including full branch-and-merge versioning, but then
must extend those tools and simplify their use. Naive users
cannot be expected to maintain version repositories or even
to follow a protocol rigorously. We need approaches to shar-
ing documents and merging their changes that are highly
automated, that recognize the difference between format-
ting and content, that permit fine-grained access control,
and that help users understand the provenance of changes so
that responsibility is correctly assigned. My laboratory has
taken initial steps towards this vision with efficient differ-
encing and three-way merging and by introducing Version-
Aware Documents that carry the full version history in an
office document file. But the long term vision requires better
user interfaces, better algorithms and schemes for identify-
ing document differences, and probably, lightweight artificial
intelligence to improve merging of conflicting edits.

Once office documents have this kind of advanced change
management, it is easy to picture extending the paradigm
to specific domains. What if a patient’s medical history
was viewed as a series of “versions” of the patient? What if
automated tools could easily identify subtle changes that one
party is trying to“sneak into”a new law or a contract? What
if the same techniques that automate merging of conflicting
human-generated edits could be used to correct document
analysis errors?

Categories and Subject Descriptors
I.7.1 [Document and Text Processing]: Document and
Text Editing—Version control; Document management


