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ABSTRACT

Merging is a fundamental operation in revision control egss that
enables integrating different changes made to the samerdots.
In open platforms, such as Wikipedia, uncertainty is ulimus,
essentially due to a lack of knowledge about the reliabdftgon-
tributors. We propose in [2] a version control frameworkigesd
for uncertain multi-version tree-structured documentsedd on a
probabilistic XML model. In this paper, we define a merge aper
tion that complements our framework and enables the caticifi
of uncertain versions. We devise an efficient algorithm timge-
ments the merge operation and prove its correction.

Categories and Subject Descriptors

H.2.1 Database Management]: Logical Design—bata models
1.7.1 [Document and Text Processing]: Document and Text Edit-
ing—Version control

Keywords

XML, collaborative work, uncertain version control, merge

1. INTRODUCTION

Uncertain version controlversion control of uncertain data
has concrete applicability in open environments such asseale
editing platforms. Most of these platforms, in particulaikipedia®,
are facing (1) the rapid growth of the number of contributeith
different level of reliability, and (2) the will to providené users
with the most trustworthy content. This latter purpose eesally
challenging because of uncertainties in data inherent teliable
contributors, recurrent conflicts (contradictions or esitrs) and
frequent malicious contributions (e.g., spam). Besidas thust is
a subjective notion which sorely depends on the user prefese
So far, within web-scale collaborative platforms like Wi&dia,
version control allows maintaining the integrity of eactcdment
by tracking all contributions, as well as their history ahdit au-
thors. This gives therefore the ability to revert to a givewnision
when some editing problems such as vandalism acts and wesbur
information appear. Used version control approaches amever
not necessarily intended to the versioning of uncertaia,dand
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they do not integrate this important property (the fact thatqual-
ity and trust in every single update operation varies) iir tmedel.
To tackle this lack, we propose in [2] an XML version contrgss
tem tailored for uncertain tree-structured multi-versimeuments.
The targeted applications mostly handle tree-structuatal r for-
mats akin to it like XML documents: HTML or XHTML docu-
ments, office documents and structured Wiki formats. Ouennc
tain multi-version XML model is based on the general framdwo
for updating probabilistic XML data proposed in [8]. Thisfne-
work specifies uncertainty modeling and assessing in adyper-
sion control process, ensuring the efficiency of updates.

Problem statementThe current paper extends our uncertain
version control model with merge capabilities. Merging ifia-
damental operation in version control systems. It allowsgrat-
ing different changes (revisions) made to the same docuriiéig
operation is particularly helpful for software configugati man-
agement, where the configurations and their components €an b
built based on a combination of different versions of défarele-
mentary parts of the software (see [5]). In web-scale coliative
platforms, the merging operation as known in traditionaksian
control systems is not yet supported. Its use in this kincheiren-
ment (large-scale, open and collaborative) is of integssoon as
concurrent editing and alternative revisions are allow&d.detail
motivations next.

Motivations. Amongst the motivations for this work, we can
cite the following ones. On one hand, users may trust onlyesom
contributors and want to see the document resulting frontdime
ciliation of their contributions, i.e., the merge of theisons pro-
duced by these contributors. If the user preferences arerk(@g.,
based on her personal settings or past behaviour), a recodeme
system can be built on Wikipedia in order to propose to the ase
version resulting from the merge of the contributions ofthested
authors. On the other hand, open platforms such as Wikipedia
requires as a core functionality the merge of articles wiuicbr-
lap (articles related to the same topic or sharing a largenoom
part). This operation is currently done manually and rezpia lot

of time and coordination between contributors. This rasinta
tedious and error-prone supervised merge process. Pmgvadi
automated integration processes of these articles isimtgrizse-
ful. To this goal, a merging operation is needed and it haske t
into account the uncertainty associated to the merged tathis
paper, we present our uncertain version control model witieey-

ing operation that covers common deterministic merge stEna
over XML documents while managing uncertain data. We devise
an efficient algorithm for merging uncertain multi-versiiiL
documents and prove its correctness.

Outline. First, we present in Section 2 the merge and edit detec-
tion techniques used for XML documents. Then, we summanize i
Section 3 our uncertain muti-version model. Section 4 cetety
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presents our merging operation, as well as a correspontfiog et
algorithm. Finally, we conclude the paper in Section 5.

2. XML MERGE ALGORITHMS

The increasing use of XML-based systems, in particularehos
with a built-in version control engine, has lead to the aitwpbf
new XML merge techniques, e.g., [6, 10, 13]. These algorsthm
aware of the tree-like structure of XML documents, haveegrias
a reliable alternative to classical methods within XML s&g$. In-
deed, traditional methods for merging text or binary filesnrot
detect meaningfully the semantics of changes over treest bfo
current XML merge algorithms share as a baseline the diff @it
detection) always preceding the generation of the merged-do
ment. Some main differences can be stated as follows: (e
versus three-way approaches, that is, the use or not of thenca
base document from which merged ones are derived; (i) thefse
handled edit operations; (iii) the compliance to orderedLXdfe-
ments or unordered ones and; (iv) the conflict managemextegir.

In the following, we briefly survey a few of these algorithnos f
merging XML documents. We refer to [3, 12] for a more exhaus-
tive overview about deterministic XML merge and edit detact
techniques.

Merging in [13] and [10] has tackled ordered XML trees, more
suitable in some human-edited contexts such as structapsuits,
rich text formats, etc. In [13], the motivation was the syroch
nization of versions of documents edited by different usérse
author has explored a structural two-way merge via a polyalem
time algorithm which directly computes two isomorphic seep-
resenting the merge output from the two input XML documents.
The trees are progressively built in a bottom-up fashiom widdes
(having unique identifiers) from the two documents, whilswing
their isomorphism during this construction by applying deseof
node insertion, deletion and update when a difference ctkd.
As aresult, the process of generating isomorphic treesllgehe
merge result, slightly involves a detection of the differes be-
tween merged XML documents. Therefore, there is an impdicit
cessing of edit changes. However, no details are given bsuttieor
about the processing of conflicts. As for [10], the focus washe
reintegratior? of changes to a document in cases where multiple
independently modified copies of the document have been.made
The paper has proposed a three-way XML merging algorithrh wit
clear merge rules (e.g., node sameness, node context) atd-a c
gorization of conflicts based on real-world use cases. Irrash
to [13], the algorithm of Lindholm [10] uses a trees matchimg-
cess detecting move operations in addition to insertioakgtions
and updates of nodes. In its merge stepre and optional con-
flicts are defined: a core conflict (e.g., update/update ofdeno
will cause a failure of the merge, whereas an optional cdr{iig.,
delete/update of a sub-tree) may be tolerated. The systa® do
not pretend to resolve all conflicts, but it always reportsesolved
scenarios. La Fontaine, in [6], has focused more on the beét X
matching strategy regarding node insertions and deletiAnsin-
termediate (optimal) XML diff file encoding the matches ieds
to ease the merge process with the help of an XML transfoonati
language such as XSLT dialect. This algorithm was desigoed t
run both in a two-way setting and a three-way one regardletheo
considered XML document model. Note that the aforementione
XML merge algorithms are all deterministic.

In contrast, two-way merging operations in [11] and [1] are i
tended for uncertain XML documents. The followed process co

2Merging changes that led to two distinct documents and apely
merge result into a third document.

sists of the same steps as in deterministic settings. The dis
tinction with [11] is that its merge outcome is an XML docurhen
where nodes come with some elements modeling their amount of
uncertainty (the synchronizer [11] is based Dampster—Shafer
theoryto deal with uncertainty, in the form of probability values,
degrees of beliefs, or necessity measures, associatedafptdat
does not retain enough information for retrieving back vidlial
versions merged. [1] is most closely related in spirit to¢berent
paper since both rely on the same general framework for manag
ing uncertain XML in a typical versioning process; mergiaqot
formally considered in [1].

3. UNCERTAIN MULTI-VERSION XML

A multi-version (XML) document with uncertain data evolyes
through uncertain updates, and leads to uncertain verdidasep-
resented by the means of ancertain multi-version XML document
mode| that describes theersion spac®f this document together
with a probability distributionover the set of possible versions.

The following is a concise summary of the formal foundatiohs
our model and the evaluation of updates over it. For moreildeta
see [2].

Model: Formal Definition.A multi-version XML document
Imv With uncertainty is a couplé¥,Q) where¥ is a directed
acyclic graph (DAG) over a set’ U {ep} of eventsey...ey rep-
resenting the version space .6f,, andQ is a function giving the
possible versions of the document, as we now detail.

An event gin ¥ has a random nature and happens with a cer-
tain probability. It is defined as a conjunction of random Ran
variablesb; ... by that each model a given source of uncertainty
(e.g., the source of information). This definition of the @geusing
Boolean variables lies on the following: (i) variables aggrwise
independent, that i®r(bj Aby) = Pr(b;j) x Pr(by) for all bj # by;

(i) a variablebj, correlating different events, can be reused across
events; (iii) onerevision variable ), representing more specifi-
cally the uncertainty in the content, is not shared acrdssr@vents
and only occurs irg. Our version control system &ate-based
with events modeling the different uncertain states of thwugion

of the versioned document. A state, i.e., an event, has xioiaie
information about a given version (in the form of, first, Beah
random variables involved; second, an edit sakipthird, possible
other metadata).

The DAGY = (¥ U{ep}, &) keeps the history of the evolution
of Imy with: (i) the particular evengy ¢ ¥/, which represents the
initial state of Zmy, as the root of7; (i) & C ¥?2 defines the set
of directed edges o¥ that enable to implicitly track derivation
relationships between the generated (uncertain) versfohsanch
of ¢ is a directed path in which the tagj is reachable from the
heade by traversing a set of ordered edgeinA rooted branch
is a branch wittey as head node.

A versionof Imyis an XML document mapping to a set of events
in ¢, the events whose edit scripts together made this version ha
pen. Such an event set is always a rooted brancH in a de-
terministic versioning case, whereas it can be arbitrarthéun-
certain setting. In the model, formally an XML document is an
unordered, unranked andlabeledtree 7 in which a node has a
unique identifierr (x) in .# and a labelp(x) in 2 with #/ N.Z =0
(for brevity, we do not mention node identifiers when depigtx-
ample trees). In addition, all trees considered share time saot
node (same label, same identifier). Given the sétd? all sub-
sets of 7" and the infinite set? of all XML trees, the mapping

3We leave the extension to ordered trees open as in [2].



Q: 27 — 9 associates sets of events to versionsZgf, in such a
way that (a)2(0) corresponds to the root-only XML tree 6f and;
(b) for alli, for all 7 C 2”\{&}, Q({g} U.Z) = [Q(F)]® where
A is the script attached to the evestand [Q(.%)]% its evalua-
tion over the documer®(.%). A mappingQ implicitly defines a
probability distribution over the set of versions, as dethin [2].

We have just defined an abstract multi-version XML document
— we now provide a general and concise syntax for it, that bas f
semantics such a multi-version document.

Probabilistic Encoding: Syntax and Semantigg have

introduced in [2] a syntaﬁwfor an uncertain multi-version XML
document, based on probabilistic XML [9]. Aumcertain multi-

version XML encodingﬁw is defined by a paif¥, %) where

() ¢ is as before a DAG of events and; (@is aPrxmLfie p-
document with random variabldsg . .. by, representing efficiently
all possible versions and their corresponding event setsnélly,

the PrxXMmLfie p-documen@is anunordered unranked andla-
beledtree where every node (except the raothay be annotated
with anarbitrary propositional formula fiéx) overb ...bm. Dif-
ferent nodes in the p-document can be correlated by the wsesrof
mon variables. Avaluationv of the variable$; ... by is a Boolean
function that sets some variablesttae and the remaining téalse.

This valuationv produces overZ the particular XML document

—

v(Z), also known as @ossible world in which only nodes an-
notated with formulas valuated &ue by v are kept (nodes whose
formulas are valuated talse by v are deleted from the treeA,along
with their descendants). The probability of this documefi¥?) is
given by the sum of the probability of the valuations thatdide
document. For a more detailed picture of theXM Lfie representa-
tion system, see [8, 9].

The semantics of an encodi@m, denoted]._/%\nv}], is an uncer-
tain multi-version XML document¥,Q). The DAG¥ does not

—

change, whereaQ is such thaQ(.#) := v () forall # C 7,
wherev ¢ is a valuation over variablds . .. by, defined as follows.
Let B} be the set of all random variables occurring in one of the
events of% and seB; the set of all revision variables)’s for g
notin.7. Thenv g sets variables 0B, to true, variables o8,

to false, and other variables to an arbitrary value. This semantics
remains non-ambiguous as long as formulas occurrir;@iare ex-
pressed as formulas over the events/gfi.e., do not make use of
the Boolean variables separately of the events.

Updates: Semantics and Evaluatiom edit scriptA is a
set of edit operation over XML nodes. An edit operation ib@itan
insertion or a deletion of nodes. Ansertionis formally defined
asins(i,x) with i the identifier of the node where the insertion
must take place anxlthe label of the new node to be added. As
for a deletion it is introduced asiel (i) wherei represents the
identifier of the node to remove. The evaluatiod\aiver any XML
document? produces the documeh#]? by applying insertions
and deletions ta7'; if no node is selected by a given insertion or
deletion, it is simply ignored.

An update operatiolis set up in the uncertain multi-version XML
framework asipd0P, . ¢ WhereA is an edit scripte is an actual
event pointing to the edited version agdis a fresh one assess-
ing the uncertainty in this update. Its semantics@n, = (¢,Q)

(i) updates¥ to (9 U ({€},{(e,€)}) and; (ii) extendsQ to Q'

by letting for all. # C ¥ U{€}: Q/(F) = Q(F) if € ¢ F and
Q'(F) = [Q(F\{¢})]? otherwise. The translation of this seman-
tics on the general syntagﬂ\nv: (@, @ is done through an update
algorithm updPrXML that first modifies as before, and then it

evaluates operations ihover the p-documen@as follows. This
is the usual implementation of updates in probabilistic X8l
and we show that this is compatible with the semantics of imult
version encodings in [2].
e For an insertioru = ins (i,x) in A: fie(x) of xin Pis setto
fie(x) v (¢) if x already occurs in; otherwise u insertsx
in 2 with fie(x) = €.
e For a deletioru = del (i) in A: the nodex in Z such that
o (x) =i (if it exists) has its formuldie(x) updated tdie(x) A

(-€)

ExampLE 3.1. Figure 1 shows an uncertain multi-version doc-
ument.Zmy With: (a) the version spac® with four staged events;
(b) four event sets and associated versions; (c) the p-dentim
2 encoding all the possible versions based on staged evedts an
their attached edit scripts, resulting in formulas attadhie nodes
(shown above each node). As a sketeh,\ —ey) reveals thats
was added at gand then removed abe The given four versions
are exactly those modeled by deterministic systems. lrrasint
the possible world mapping tfe1,e4} is only valid within our
framework. It occurs with the reject of the changes intrastiby
event @. Note that the probability of each possible version can be
evaluated based on event sets that map to it and their prébabi

4. MERGE APPROACH

We detall in this section the translation of the usual XML geer
operation within our uncertain versioning model.

A merge operation considers a set of versions and integraes
content in a single new one. We view this outcome as obtaiiged v
a three-way merg®, that is, an integration of the changes from the
inputs with respect to their common base version. We focus he
on merging two versions which is the most common case in real
applications. However, an extensionrto- 2 versions is straight-
forward. In addition, we also assume that all the mergediaess
are only originated from updates over the base versionsyieedo
not consider merging of versions with a different mergednist-
this is again for the sake of clarity of the exposition.

The merge process usually implies two steps: a) an extracfio
the different sets of edit scripts that have led to the inmrsions
and; b) a generation of the merge result by evaluating a dnifie
set of the extracted edit scripts over the initial data. Taés step
must deal with possible conflicting edits (for the definitfrcon-
flicts, see next) due to concurrent changes (i.e., when titored
independently changes the same piece of data). The resohiti
conflicts may yield several different content items for therge.
As a result, each possible merge outcome is obtained by makin
choice between several possible edits. This naturallyrfitise sys-
tem with uncertainty handling because in such a settingtiseno
longer only one truth but several different possibilitieach with a
certain probability of validity.

We first present the process of computing the edit scriptséo u
for the merge, as well as common merge scenarios. Then vee intr
duce the semantics of merging uncertain multi-version X\oc-d
uments, as well as an efficient algorithm on the probalsiX¥ML
encoding.

4.1 Detection of Editsand Merge Scenarios

Assume an unordered XML document under version control.
Let us consider two arbitrary versiog and .7, along with their
common lowest ancestdr,, of this.

4A three-way merge enables a better matching of nodes and-dete
tion of conflicts.
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Figure 1: Encoding of an uncertain multi-version XML docurhe

4.1.1 Computation of Edit Scripts

A large majority of current versioning models provide three

We do not assume here given any explicit edit script. Instead cOmmon merge scenarios that consider the resolution oflpess

of this, we include edit detection as an integral part of trerga
process for the sake of generality. We define the edit sqiptis
fying the merge of versiong’; and % through the three-way diff
algorithmdiff3(.71, %, Za) on unordered trees with unique identi-
fiers for nodes. The algorithm will return a script with onlgde
inserts and deletes as edit operations. Like in [7], we saturp
diff3 based on the two-way diffdiff2(.7a,.71) and diff2( %, 72)
as subroutines. These two-way functions separately cartput
intermediate edit scripts using the same process.

o diff2(.73, 71) initially matches the nodes in tree% and.7 in
order to find out the shared, deleted, and inserted nodes, T
algorithm encodes the matches in terms of a set of node iosert
and deletions which evaluated of} give .77. A nodex € Z; with
no match in7; is deleted, whereas a noge .73 with no match in
T is added. Let us denote this edit scriptdy.

o diff2(.7,, 92) follows the same process and provides the script
A, leading to.% from ;.

A more global edit script, referred ds, models the final value
of thediff3; Az is obtained by mixing\; andA,. We describe this
combination with three types of edits as follows.

Equivalent edits An equivalenceoccurs between all edits in

conflicts. Recall that in most cases, this resolution is rahrthat
is, it requires user involvement. L&ty be the outcome of the
merge of7; and 2. We formalize the possible merge scenarios as
follows.

1. First, one would like to perform the merge based%nand
by updating this with the non-conflicted edits fraa. For this
case, we havey, = [7)% A7

2. The second scenario is symmetric to the first one: it censid
as a base versiofr, and fetches the non-conflicted edits fréam
For this case, we sef, = [ 52127

3. Finally, the last case maps to the update of the common ver-
sion .7, with the non-conflicted edits iAs, that is, one would like
to reject all the conflicting edits in the merge outcome. Hus t
case, we sefy, = [Za)2 A7
It is straightforward to show that wheh? = 0, then we obtain
the same content for the three merge scenarios. This oligerisa
inherent to the computation of the edit scripts and the defimbf
the merge outcome in each scenario. Observe that we do rot dea
with the (intuitive and naive) merge case where the userectsr
the conflicting parts with new inputs. However, this case lban
simply treated by first choosing one the three outcome aboge a

A1 andA, with the same semantics and the same arguments (samethen by performing updates over this.

identifiers and same labels). Specifically, two insertiops A
andug € Ay are equivalent if they specify the same node identifier
and the same label to be added. As for deletiods;iandAy, there

is an equivalence between two if these target the same naden G
two equivalent edits, only one of the two operations is keptj.

Conflicting edits.Any two given operationsiy € Az, U € Ay
areconflicting editswhen they come with different semantics, i.e,
if Uy is an insertion, theny is a deletion (and conversely), and the

4.2 Merging Uncertain Multi-Version XML

We now introduce our abstraction of the merge operation-(cov
ering at least the set up of the merge scenarios above) whhbin
uncertain multi-version XML document model.

For sure, an uncertain context induces an inherent unnerntaige;
involved versions andliffs come with uncertainties. LeZyy =
%ﬁ,Q) be an uncertain multi-version XML document with;/tgged

insertion has added some new nodes as descendants of the nod .

that is removed with the delete operation. We introduce wiat
edits inAg to be those satisfying the properties given above. Given
that, we refer to the set of all conflicting editsAa with A?. We

say that a node handled by conflicted edits t®aflicted node

Independent editsThose edits imy; andA; that do not belong
to the two first classes. The set of equivalent and indepé redtits
form the non-conflictededits of a given diff algorithm. A node
impacted by a non-conflicted edit isren-conflicted noddor a
given merge operation. (Note that conflicted and non-cdeflic
nodes together form the set of all nodes impacted by edjptsdn
Az).

Now, let us briefly present the merging scenarios (cf. usatm
options, especiallynine-conflictand theirs-conflict in tools like
SubVersior4]) usingdiffs andinput versions

4.1.2 Deterministic Merge Scenarios

version control events. In addition, we consiﬁﬁvz (9, &) as
the probabilistic XML encoding ofZny. Recall again that each
version of Zyy is identified with a particular event i, the one
representing the tail of the branch%fleading to this version. We
reason on events instead of full versions since these agauineer-
tain and can be defined in an arbitrary manner using events. Th
section introduces the formalism of the merge operatiom aug
uncertain multi-version XML document and the mapping altbon
over its probabilistic XML encoding.

4.2.1 Abstracting Uncertain Merge Operation

With the help of the triplde;, e, €), we refer in our setting with
uncertainty to a merge operation 2R ®¢, o, ¢ Wheree, ande,
point to the two versions to be merged ads a new event assess-
ing the amount of uncertainty in the merge operation. Weusitel
the semantics of such a merge operation o¥gy with uncertainty



as follows.

MRGe, ¢,.¢ (Tmv) = (4 U ({€}.{(e1,€).(e2.€)}), Q).

notion of conflicted nodeén the PrXMLfe probabilistic encoding
given the merge of eventg ande;.

The history of edits over any specific nodednis encoded with

On the one hand, this evaluation inserts a new event and two its attached formula. We base on this for detecting the axafli

edges in the version spaé& On the other hand, it generates a
new distributionQ’ which represents an extension @fwith new
possible versions and event sets. k&f and.c, be the set of all
strict ancestor eventi ¢ of e; ande, respectively. We denote
the common set by = /e, N He,. For all subsetZ e 27V{€},
formally we set:

o if e ¢.7: Q(F) = QF);

o if {e1,60,€} C.F: Q(F):=Q(F\{€});

o if {&,6} C.7 andezef Q(F) = [Q(F\{e})\
(e, \ )22

o if {6} C.7 ande1 ¢ 7 Q(F) = [Q(F \{e}\
(e, \ o)) P8

o if {&, 00} NF = (Dande/ e F:Q(ZF)=[QUF\{¢})\

A%
(e, \ ) U (e, \ 6))) ]P0
We consider the aforementioned edit scripts as all obtaieed

nodes. Let us set the following valuations of event¥/in (i) vs
setting the events irz to true and the revision variables of all
other events tdalse; (ii) v1 assigning arue value to the events in
e, U{e1} and afalse value to the revision variables of the other
events and finally; (iii, setting the events inze, U {e>} to true
and all the revision variables in the remaining eventkse. )

We firstintroduce the lineage of an uncertain node irthéM L fie
p-document.

DEFINITION 4.1. (Node lineage) The lineage formula of a given

node xe ﬁ denoted by figx), is the propositional formula re-
sulting from the conjunction of the formula of this node xwtfte

formulas attached to all its ancestor nodesif

Instead of its formul?, the lineage of a given node in the p-
document encodes the entire history of edits, starting ftwarini-

the diff3 process sketched in Section 4.1.1. For each involved case,tial event, over the path leading to this node. Given thatcem

the diff3 is executed on the (uncertain) arbitrary versiois=
Q((F \{€} Ny )U{er}) and T = Q((F \ (€'} N ;) U{e2}),
and 7, = Q(Z \ {€} N a%) where.Z is the subset of events in
¥ U{€} considered as valid.

ExXAMPLE 4.1. Figure 2 describes the process of merging two
possible versions, denoted By and %, from Figure 1 given their
common bas&,. In our proposal, this operation is simply encom-
passed with the merge specified over eves@nel e which point
to the two input versions. On the left-hand side of the exampl
we provide the versionsi, 7 and 9, together with edit scripts
{u2,u4} and{us} that led to them from the bas&,. Typically, we
view these scripts as given by diff functions outlined iiSed.1.1
based on full versions. The right-hand side in Figure 2 eixjglghe
process of mergingZ; and % (with the merge event evaluating
the uncertainty in the merge) as follows: (i) First, all theits in the
scripts above coming with no conflicts, i.e., here onjyate vali-
dated for building the part of the merge (seen as an interatedi
outcome) that is certain with the existence f(@) Then, gener-
ating the set of possible merge items by enumerating theretiff
possibilities with the conflicting edits,land . The two initial
possible results are obtained by propagating respectiughnd w
given the intermediate outcome. Such a propagation wié githe
first case a merged version that only contains the sub-ttearsd
in the second case a merged version with the sub-trg@eslud-
ing nodes pand ) in addition. Concretely, our merge approach
will compute the same merged documents by first considehnimg t
input versions7; and %, and then by updating these with the edits
without conflicts respectively frofus} and {u,,us}. Finally, the
last possible content for the merge is obtained by discardihthe
conflicting edits and by combining the concurrent nodesérbidse
version with the intermediate result.

The uncertain merging operation as formalized above resnain
however intractable since it requires to evaluate evergiptesver-
sion for computing the overall merge result. Below, we ps#a
more convenient way to do this merge.

4.2.2 Merging over Probabilistic XML Encoding
We efficiently present the semantics of the merge operation i

Ty aS Algorithm 1, namelynergePrXML. Prior to a deeper de-
scription of the proposed algorithm, we start by introdgcthe

approach the conflicted nodes in the p-document using timeir |
eage formulas as follows.

DEFINITION 4.2. (Confllcted node) Under the general syntax
?m\,, we say that a given x i is a conflicted node with respect to
the merge implying the events and & when its lineage satisfies
the following conditions:

1. fiegl (x) |= vs;

2. fiel (x) b= v1 (or fiel (x) j= vo) and;

3. Jye P, desc(x, y): fiel (y) j« vsand fié (y) |= v, (or fiel (y)

= v1) wheredesc (X, y) means thaty is a descendant of the
node x.

PrROPOSITION 4.1. Definition 4.2 is consistent with the defini-
tion of conflicted nodes given in Section 4.1.1.

PROOF (Sketch) Letx in Z be a conflicted node such that
1) fie' (x) = vs; 2) fie (x) b= vq; 3) fiel (y) b~ vs andfiel (y) = va
with desc (X, y) true. The relation 1) yields € vs(@ which is a
document corresponding to the common lowest ancestor okthe
sionsvy (& )andvz( ) The relations 2) means thmgz vl(/\)

i.e., in the history of edits that ga\rq(]) from vs(ﬁ’) there was
at Ieast a deletiony over the nodex. This is implied by the way
updPrXML () proceeds Besides that, 3) enables us to write in one

sidex € vz(}) sincey € vz(}) and on another S|dye§Z vs(Z A)

As a result, in the history of edits that led vo(%? ) ) from Vs(gz)
there was an insertiony which addedy as a child ofx. In other
words,u, anduy define two conflicted edits performed on the same
nodex. [

A conflicted node inZ results in conflicting descendants. We
refer to the conflicted set of nodes i according to the merge of
eventse; ande as the restrictiom@‘%{% o Under this, we infer
below the non-conflicted set of nodes.

DEFINITION 4.3. (Non-conflicted node) For the merge of events
e; and e, we define a non-conflicted node x as a node@r\
@%}{e} o) having a formula figx) satisfying one of the following
conditions.

5The formula just describes the semantics of edits from tlemtev
where the node was inserted for the fist time.
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Figure 2: Merge Operation: (a) Input versions and (b) Gef@raf Merge results

figX) |= vs, fie(x
fig(x) £ vs, fie(x

) = v and figx
fie(x% I= vs, fie(x

)

)

)

I=v1 and figx
I= v1 and figx
F= vq and figx
I= v1 and figx
= vq and figx

Lﬁ Vo.

‘: Vo.

% Vo.

‘: Vo.

% Vo.

‘: Vo.

figX) |= vs, fie(x
fig(x) £ vs, fie(x
fig(x) [~ vs, fie(x

PrROPOSITION 4.2. Definition 4.3 is consistent with the defini-
tion of non-conflicted nodes given in Section 4.1.1.
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X XXXXX
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The proof is straightforward. To be exhaustive about nanflized
nodes, we infer the following lemma.

LEMMA 4.1. Let us assume the merge over eventamrd e.
Given the sets#s C a5, F1 C (ole, U{e1}) \ s and F C (e, U
{e2}) \ 7, the expression of f{g) for any non-conflicted nodee

P\ 32\‘5@1. is consistent with one of the following formulas.
1 (Agess (& ))/\ﬁ(/\eiaylu%) (ej)>

(&) (/\e,a% ej))

o (Ae,eg-l ©))) A (Aaes <e@)

1

(/\e,eff’l )

(a)) A=

( ) (/\ejeffl (e)) ))V Nece 7, (&
)

( /\aeff’s
( /\aeff’s

(/\e,eff’l a)
6- (Neez, (&))

PROOF The proof relies on Definition 4.3.[1

a » w0 N

Let us continue this section by first describiitgrgePrXML, then
by demonstrating its correctness with respect to the atigtraof
the merge operation in Section 4.2.1.

Input: (¥, 2), ey, &, €

Output: Merging Uncertain XML Versions itZmy
¢:=70({e} {(er.€).(.€)});
foreach non-conflicted node x iﬁ?\%%{q_ o do
e, (e Ve));

e, (e Ve));

replace (fie(x),
replace (fie(x),

return (¢, @7)
Algorithm 1: Merge Algorithm frergePrXML)

Algorithm 1 considers as inputs the probabilistic encoc{tﬁg@
of an uncertain multi-version XML documenfy,, the eventse;
ande, of ¢, and the new everd modeling both the merge con-
tent items and the amount of uncertainty in these. Given, that
mergePrXML first updates? as specified in Section 4.2.1. Then,

the merge inZ will result in a sllght change in formulas attached

to certain non-conflicting nodes if? \ 93%» o) The function

replace modifies such formulas by substltutlng all occurrences of
e ande; by (e1 V€) and(e; v €) respectively. The idea is that

each possible merge outcome, which occurs wéés valuated to

true regardless of the valuation of the other events, must cortte wi

at least the non-conflicted nodes fras seen as valid witle; and
&. The remaining non-conflicted nodes, whose existence dee in
pendent o) ande,, will depend uniquely on the valuation of their
ancestor events in each given valid event set includindt least,
the validity of a conflicting node in a merge result relies be t
probability of ; ande, when the event ig’ certain If €, together
with ey, are only valuated terue, we say that; is moreprobable



thane, for the merge; in this case, only conflicted nodes valid with

e, U{e1} are chosen. The converse works in the same manner.

Any conflicted node will be rejected with a valuation sett@#do
true and the revision variables in bo#) ande, to false.

Assume an uncertain multi-version XML documefiy = (¢,Q)
and the corresponding probabilistic XML encod'ﬁﬁw: (@, @
In addition, let us defing.] as the semantics operator which, ap-
plied on Zmy, yields its correct semanticﬁ@r\nv]] = (9, [[9/37}]) such
that¥ is the same as ity and [[3/5}] defines the same probabil-
ity distribution over a subset of documentsgnthanQ. Given a
merge operatioltRBe, ¢, ¢, We NOW show the main result of this
paper:

PROPOSITION 4.3. The definition of Algorithm 1 is correct with
respect to the semantics of the merge operation over thetaitce
multi-version XML document. In other words, the followirig-d
gram commutes:

_ [1 _
ymv [[ymv]]
mergePrXML
(er.e2.€) TCe e
T [7m]
[
MRS, 6, ¢ ([Tmd) = (4,)

PrROOF Assume{

T= 4", 7") and[ T ] = (4',Q")

Seeing that we reach the same version space usifgePrXML
is trivial. Now, we have to show that @’ will correspond[[??”]];
that is, Q' = Q”. Given each seZ C ¥/, five scenarios must be
checked for this equality.

1. Foreach subse¥ suchthat' ¢ %, we haveQ) (#) =Q(Z).
By definition, Q(.%) = v(éz\) wherev is a valuation setting the
special revision variable i@’ to false and the other events to an
arbitrary value. Abstracting out the formulas, we can clénat
P~ P regardingmergePrXML. Since€ [~ v, the result of the
evaluation ofv over (e; vV €) and(e; vV €) (or their negation) only
depends on the truth values &f ande, respectively. Thus by re-
placing in formulas of#”’ all occurrences ofe; v €) and(e; v €)
by e; ande, respectively, we are sure to build a p- -document
with v(2") = v(Z"). But by the definition ofergePrxuL, 7"
is exactly??& As aresult, we obtam(@) = v(ﬁ”) Knowing be-
forehand tha®” () = v(7'), we can state tha¥' (Z) = Q" (.F)
forany.# C ¥’/\ {¢}.

2. For each subse# such that{e;,e;,€}N.Z # 0, we have
Q' (F)=Q(F\{€}). Letv be avaluation setting all the events in
Z \ {€'} to true, the revision variable ig’ to an arbitrary value and
the revision variables in the remaining eventgatee. Sincee’ does
not occur in formulas in?, we can writeQ(.# \{€'}) = v(@ for
sure. At this step, we resort to the logical consequerfegs=
V)= ((e1vVe) = v)and(e; E V) = ((&2V€) = v) regardless
of the truth-value of the ever. In the same way,—e; [~ v) =
(—(e1VE) £ v) and(—e; £ V) = (-(e2VE) [~ v). Therefore, by
substituting in formulas of?’ all occurrences ofey V) and(eg v
€) by e andez respectively, we obtain the old p- -documeritwith

(9’) = v(]) given the semantics afergePrXML. Moreover,
Q' (F) =v(P) becaus€ (F) = Q(F\ {€}) andQ(F \ {¢}) =
v(2). So by inference, we can demonstrate B4t7) = Q" (7)

using the relation®’(.#) = v(@, v(@ = v(ﬁ) andv(@) =
Q”(ﬁ) 6'

3. For each subse? such that{e;,€}N.Z # 0 ande, ¢ .
we haveQ () = [Q((F \ {€})\ (o, \ %)% 2", Let 7} =
(F\{€D)\ (e, \ %)) be the set of valid events excepting the
valid ancestor events @b in .# N (<, \ %). For the valuatiorv
setting all the events irjﬁzf to true and the revision variables in
the remaining events tlalse, Scenarios 1 and 2 enable us to write
v(@ =Q(Z]) andv(@ = v(@). Now, we just need to show
that [v(2)]22-8% = v/(2') (V' being the valuation that sets all
the events inZ to true and the revision variables in all others to
false) to obtain the expected proof, that )(.#) = Q"(.%). Let
us seth = A, — A% . We distinguish the two following cases.

(a) For the class of nodesin v(éz\’) unmodified byA. That is,
Xe v(]’) andx € [v (@)} For each node in this cIassfieT( X)

in ' requires the trueness of events.#;" sincex € v(]’)
Moreover, by the definition o, x may be either a conflicted node
or its existence is independent of the values of evertgim (7, \
os)) U {ez}) If x is a conflicted node, it is intuitive to see that
fiel (x) in P is satisfied if events i7" are all set totrue and
not if only those in(.% N .<%,) are set tacrue (cf. Definition 4.2.1
andupdPrXML). In the another caséig! () is only function of the
values of events i7" for the setZ (typically whenfie' (x) is Ex-
pression 5 in Lemma 4.1 witt#; = F;" N (e, \ @) U {e1})).

In both cases, we can state tfiat (x) = v’ sincev’ similarly tov
sets all the events itF;" to true. As a result, we havec v’(@\’)
whenx belongs to this class.

(b) For the class of nodese v(@) handled withA. Let x &
\% (]’)]A, that is, there is an operatianin A that removex from
v(@’). By the construction of\, it is easy to show thafie(x)

in ﬁmaps to Expression 3 in Lemma 4.1 withs = ﬁf N s,
F1= 1 0((e\ ) Ufer}) and T = (F (e, \ 55)) U {2}

In 2’| this formulafie(x) is just updated across Algorithm 1 by re-
placing the events; (the disjunction) in the first member anglin
the second one respectively (g vV €) and(e, vV €). Sincev’ sets
all the events in# to true, therefore the first member &&(x) will

be valuated tarue while the second member will be valuated to
false. As a consequence, clearly we can state file&t) [~ v/, i.e.,
X¢ v’(@). In summary, we proven that for each nod& v(@)
deleted withd, X is also not chosen by’ in v/(27'). Note that the
case wherex does not occur irv(g/i) is trivial and it corresponds
to a scenario in whicliie(x) maps to Expression 1 in Lemma 4.1
with Zs = 7" N5, F1 = F N (e, \ o) U{e1}) and F, =
(F N (e, \ ) U {€2}. Now, letx ¢ v(Z') andx € [v(2')]A,
That is, there is an insertiamin A that adds the nodeas a child
of a nodey in v(2'). Let.7) = (F\ {€}N.%,) be the set of
all valid ancestor events @ i |n Z . By the definition ofA, we can
state that the formulfie(x) of X in 2 maps to Expression 4 or 6 in
Lemma 4.1 with%s = F;" N, F1 = F; N ((Fe, \ o) U{€1})
and.% = (F N (e, \ %)) U{ex}. If fie(X) is Expression 4, this
formula in 7' is updated by Algorithm 1 which replacesin the
first member (the conjunction) ared in the second member by
(e1VE) and(e, Vv €) respectively. Since’ sets all the events i

to true, the first member ofie(x) will be valuated tdfalse. As for
the second member, it will be valuatedttae underv’ because all
the events in%, are set tatrue and(e; V€) = V. As a resulty’

5The last relation is due by the fact that the evesit@inde, are
both valuated tarue.



will selectx in v/(7") sincefie(x) is such thafie(x) |= v'. Other-

wise, iffie(x) is Expression 6, it is updated i’ by mergePrXML

which substitutes, by (e; vV €). Given that it is straightforward to
prove thaffie(x) = v/ since all the events i, are set ttrue and

(2Ve) V.

Scenarios (a) and (b) demonstrate that Wh@[v(@)}A, then

X € v’(@). Similarly, the converse can be reached. We con-

clude[v(2')]2 = v/(2") which joint with v(Z") = Q(.%;) and

V(7)) = Q'(F) yield [Q(F])]A = Q"(F). At last, the result

Q(F)=Q"(F) relies onQ(F) = [Q(F] )2

4. For each subse¥ such thafey, €} N.# # 0 ande, ¢ .7, we
haveQ (Z) = [Q((Z \ {€'}) N (e, U{e}))21~2" . This scenario
is entirely symmetric to Scenario 3.

5. For each subse¥ such thaf{e;,e;} N.Z =0 ande € .#, we
haveQ'(7) = [Q((F \{€})\ (e, \ ) U (e, \ 5)))]5727
Let setF’ = (F\{€})\ ((He, \ F) U (e, \ #%)). Given a val-
uationv setting all the events i’ to true and the revision vari-
ables in all other events false, we can writeQ(.#') = v(§5) and
v(gfi) = v(@) according to Scenarios 1 and 2. Similarly to Sce-
nario 3, we have now to demonstrate that2?')|%2 = v/(2')
(wherev' is the valuation setting all the events#fito true and the
revision variables of all the remaining event$dtse) to obtain that
[Q(F"))2~A% = /(). This result will be sufficient for stating
thatQ' (F) = Q" (.F) since by definitior’ (%) = [Q(F"))A%
andV'(2') = Q'(F). Let us considel = Az — A%, For the
proof, the intuition here is to see that by implementattocan be
rewritten as(A; — A%) U (A —A%) on one side. So, if we ar-
rive to show that for all the nodes y such thak e [v(27')]21-4°
andy € [v(2)]22-87  thenx € V/(2') andy € V/(Z'), we can
trivially deduct that for each nodec [v(2)]2, thenx € v/(7).
These relations can be proven in the same spirit as in Scebasi
just noting that:

(a) For the set of unmodified nod&sn v(?ﬁ”) with A, fie(x) in
Zis compatible to Expression 1 in Lemma 4.1 wiffy, =
F'Nats, F1=(F N (e, \ Hs))U{€1}, and.F1 = (F N (e, \
s))U{ez}. .

(b) Forthe set of nodesin v(#') handled withA. If the operation
comes from(A; — A%), fig(x) is compatible to Expression 3 or
5 in case of insertions and this formula maps to Expression 4
for deletions. Concerning operations (i, — A%), fie(x) is
compatible to Expression 4 or 6 for insertions and to Expres-
sion 3 for deletions.

Furthermore, the inclusion in the opposite direction, tisafor

each nodex € v’(?ﬁ”), thenx e [v(@)}A, is obvious for nodes

unchanged byA. For the other nodes, we only need to verify that
they are correctly handled fyin v(@) depending whether it cor-
responds to an addition or a deletion in this document. Rirtig
that, we can state th&@'(%) = Q"(.#) holds for each subse¥

of events in¥ that contain&’ but note; andey,. [

We conclude by showing efficiency aérgePrXML.

PROPOSITION 4.4. mergePrXML performs the merge over the
encoding of any uncertain multi-version XML document inetim
proportional to the size of the formulas of nodes impactedhley
updates in merged branches.

PROOF (Sketch) The intuition behind the time complexity is
thatmergePrXML results in a constant-time update of DAGfirstly.
Secondly, by viewingﬁ as an amortized hash table, the algo-
rithm retrieves any node impacted by a (non-conflicting)aipdn

constant time. Finally, theeplace method only depends on the
lengths of formulas. [J

5. CONCLUSION

We presented in this paper a merge operation, as well as an
efficient mapping algorithm, that supplements our uncentailti-
version XML framework presented in [2]. The merging mecha-
nism proposed covers common deterministic XML merge seenar
ios while managing uncertain data. Example applicatiookude
the merging of documents in uncertain version control ptats
such as Wikipedia.
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