
Merging Uncertain Multi-Version XML Documents

M. Lamine Ba
Institut Mines–Télécom;
Télécom ParisTech; LTCI

Paris, France
mouhamadou.ba@
telecom-paristech.fr

Talel Abdessalem
Institut Mines–Télécom;
Télécom ParisTech; LTCI

Paris, France
talel.abdessalem@
telecom-paristech.fr

Pierre Senellart
Institut Mines–Télécom;
Télécom ParisTech; LTCI

Paris, France
pierre.senellart@

telecom-paristech.fr

ABSTRACT
Merging is a fundamental operation in revision control systems that
enables integrating different changes made to the same documents.
In open platforms, such as Wikipedia, uncertainty is ubiquitous,
essentially due to a lack of knowledge about the reliabilityof con-
tributors. We propose in [2] a version control framework designed
for uncertain multi-version tree-structured documents, based on a
probabilistic XML model. In this paper, we define a merge opera-
tion that complements our framework and enables the conciliation
of uncertain versions. We devise an efficient algorithm thatimple-
ments the merge operation and prove its correction.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design—Data models;
I.7.1 [Document and Text Processing]: Document and Text Edit-
ing—Version control

Keywords
XML, collaborative work, uncertain version control, merge

1. INTRODUCTION
Uncertain version control.Version control of uncertain data
has concrete applicability in open environments such as web-scale
editing platforms. Most of these platforms, in particular Wikipedia1,
are facing (1) the rapid growth of the number of contributorswith
different level of reliability, and (2) the will to provide the users
with the most trustworthy content. This latter purpose is especially
challenging because of uncertainties in data inherent to unreliable
contributors, recurrent conflicts (contradictions or editwars) and
frequent malicious contributions (e.g., spam). Besides that, trust is
a subjective notion which sorely depends on the user preferences.

So far, within web-scale collaborative platforms like Wikipedia,
version control allows maintaining the integrity of each document
by tracking all contributions, as well as their history and their au-
thors. This gives therefore the ability to revert to a given revision
when some editing problems such as vandalism acts and unsourced
information appear. Used version control approaches are however
not necessarily intended to the versioning of uncertain data, and

1http://www.wikipedia.org/

This work is licensed under the Creative Commons Attribution-
ShareAlike 3.0 Unported License (CC BY-SA 3.0). To view a copy
of the license, visit http://creativecommons.org/licenses/by-sa/3.0/.

DChanges 2013,September 10th, 2013, Florence, Italy.
ceur-ws.org Volume 1008, http://ceur-ws.org/Vol-1008/paper1.pdf .

they do not integrate this important property (the fact thatthe qual-
ity and trust in every single update operation varies) in their model.
To tackle this lack, we propose in [2] an XML version control sys-
tem tailored for uncertain tree-structured multi-versiondocuments.
The targeted applications mostly handle tree-structured data, or for-
mats akin to it like XML documents: HTML or XHTML docu-
ments, office documents and structured Wiki formats. Our uncer-
tain multi-version XML model is based on the general framework
for updating probabilistic XML data proposed in [8]. This frame-
work specifies uncertainty modeling and assessing in a typical ver-
sion control process, ensuring the efficiency of updates.

Problem statement.The current paper extends our uncertain
version control model with merge capabilities. Merging is afun-
damental operation in version control systems. It allows integrat-
ing different changes (revisions) made to the same document. This
operation is particularly helpful for software configuration man-
agement, where the configurations and their components can be
built based on a combination of different versions of different ele-
mentary parts of the software (see [5]). In web-scale collaborative
platforms, the merging operation as known in traditional version
control systems is not yet supported. Its use in this kind of environ-
ment (large-scale, open and collaborative) is of interest,as soon as
concurrent editing and alternative revisions are allowed.We detail
motivations next.

Motivations. Amongst the motivations for this work, we can
cite the following ones. On one hand, users may trust only some
contributors and want to see the document resulting from thecon-
ciliation of their contributions, i.e., the merge of the revisions pro-
duced by these contributors. If the user preferences are known (e.g.,
based on her personal settings or past behaviour), a recommender
system can be built on Wikipedia in order to propose to the user a
version resulting from the merge of the contributions of hertrusted
authors. On the other hand, open platforms such as Wikipedia
requires as a core functionality the merge of articles whichover-
lap (articles related to the same topic or sharing a large common
part). This operation is currently done manually and requires a lot
of time and coordination between contributors. This results in a
tedious and error-prone supervised merge process. Providing an
automated integration processes of these articles is certainly use-
ful. To this goal, a merging operation is needed and it has to take
into account the uncertainty associated to the merged data.In this
paper, we present our uncertain version control model with amerg-
ing operation that covers common deterministic merge scenarios
over XML documents while managing uncertain data. We devise
an efficient algorithm for merging uncertain multi-versionXML
documents and prove its correctness.

Outline. First, we present in Section 2 the merge and edit detec-
tion techniques used for XML documents. Then, we summarize in
Section 3 our uncertain muti-version model. Section 4 concretely

http://www.wikipedia.org/

presents our merging operation, as well as a corresponding efficient
algorithm. Finally, we conclude the paper in Section 5.

2. XML MERGE ALGORITHMS
The increasing use of XML-based systems, in particular those

with a built-in version control engine, has lead to the adoption of
new XML merge techniques, e.g., [6, 10, 13]. These algorithms,
aware of the tree-like structure of XML documents, have arisen as
a reliable alternative to classical methods within XML settings. In-
deed, traditional methods for merging text or binary files, cannot
detect meaningfully the semantics of changes over trees. Most of
current XML merge algorithms share as a baseline the diff step (edit
detection) always preceding the generation of the merged docu-
ment. Some main differences can be stated as follows: (i) two-way
versus three-way approaches, that is, the use or not of the common
base document from which merged ones are derived; (ii) the set of
handled edit operations; (iii) the compliance to ordered XML ele-
ments or unordered ones and; (iv) the conflict management strategy.
In the following, we briefly survey a few of these algorithms for
merging XML documents. We refer to [3, 12] for a more exhaus-
tive overview about deterministic XML merge and edit detection
techniques.

Merging in [13] and [10] has tackled ordered XML trees, more
suitable in some human-edited contexts such as structured reports,
rich text formats, etc. In [13], the motivation was the synchro-
nization of versions of documents edited by different users. The
author has explored a structural two-way merge via a polynomial-
time algorithm which directly computes two isomorphic trees rep-
resenting the merge output from the two input XML documents.
The trees are progressively built in a bottom-up fashion with nodes
(having unique identifiers) from the two documents, while ensuring
their isomorphism during this construction by applying a series of
node insertion, deletion and update when a difference is detected.
As a result, the process of generating isomorphic trees, thereby the
merge result, slightly involves a detection of the differences be-
tween merged XML documents. Therefore, there is an implicitpro-
cessing of edit changes. However, no details are given by theauthor
about the processing of conflicts. As for [10], the focus was on the
reintegration2 of changes to a document in cases where multiple
independently modified copies of the document have been made.
The paper has proposed a three-way XML merging algorithm with
clear merge rules (e.g., node sameness, node context) and a cate-
gorization of conflicts based on real-world use cases. In contrast
to [13], the algorithm of Lindholm [10] uses a trees matchingpro-
cess detecting move operations in addition to insertions, deletions
and updates of nodes. In its merge step,core and optional con-
flicts are defined: a core conflict (e.g., update/update of a node)
will cause a failure of the merge, whereas an optional conflict (e.g.,
delete/update of a sub-tree) may be tolerated. The system does
not pretend to resolve all conflicts, but it always reports unresolved
scenarios. La Fontaine, in [6], has focused more on the best XML
matching strategy regarding node insertions and deletions. An in-
termediate (optimal) XML diff file encoding the matches is used
to ease the merge process with the help of an XML transformation
language such as XSLT dialect. This algorithm was designed to
run both in a two-way setting and a three-way one regardless of the
considered XML document model. Note that the aforementioned
XML merge algorithms are all deterministic.

In contrast, two-way merging operations in [11] and [1] are in-
tended for uncertain XML documents. The followed process con-

2Merging changes that led to two distinct documents and applythe
merge result into a third document.

sists of the same steps as in deterministic settings. The main dis-
tinction with [11] is that its merge outcome is an XML document
where nodes come with some elements modeling their amount of
uncertainty (the synchronizer [11] is based onDempster–Shafer
theory to deal with uncertainty, in the form of probability values,
degrees of beliefs, or necessity measures, associated to data) that
does not retain enough information for retrieving back individual
versions merged. [1] is most closely related in spirit to thecurrent
paper since both rely on the same general framework for manag-
ing uncertain XML in a typical versioning process; merging is not
formally considered in [1].

3. UNCERTAIN MULTI-VERSION XML
A multi-version (XML) document with uncertain data evolves,

through uncertain updates, and leads to uncertain versions. It is rep-
resented by the means of anuncertain multi-version XML document
model, that describes theversion spaceof this document together
with aprobability distributionover the set of possible versions.

The following is a concise summary of the formal foundationsof
our model and the evaluation of updates over it. For more details,
see [2].

Model: Formal Definition.A multi-version XML document
Tmv with uncertainty is a couple(G ,Ω) whereG is a directed
acyclic graph (DAG) over a setV ∪ {e0} of eventse0 . . .en rep-
resenting the version space ofTmv, andΩ is a function giving the
possible versions of the document, as we now detail.

An event ei in V has a random nature and happens with a cer-
tain probability. It is defined as a conjunction of random Boolean
variablesb1 . . .bm that each model a given source of uncertainty
(e.g., the source of information). This definition of the events using
Boolean variables lies on the following: (i) variables are pairwise
independent, that is,Pr(b j ∧bk) = Pr(b j)×Pr(bk) for all b j 6= bk;
(ii) a variableb j , correlating different events, can be reused across
events; (iii) onerevision variable b(i), representing more specifi-
cally the uncertainty in the content, is not shared across other events
and only occurs inei . Our version control system isstate-based
with events modeling the different uncertain states of the evolution
of the versioned document. A state, i.e., an event, has contextual
information about a given version (in the form of, first, Boolean
random variables involved; second, an edit script∆i ; third, possible
other metadata).

The DAGG = (V ∪{e0},E) keeps the history of the evolution
of Tmv with: (i) the particular evente0 6∈ V , which represents the
initial state ofTmv, as the root ofG ; (ii) E ⊆ V 2 defines the set
of directed edges ofG that enable to implicitly track derivation
relationships between the generated (uncertain) versions. A branch
of G is a directed path in which the tailej is reachable from the
headei by traversing a set of ordered edges inE . A rooted branch
is a branch withe0 as head node.

A versionof Tmv is an XML document mapping to a set of events
in G , the events whose edit scripts together made this version hap-
pen. Such an event set is always a rooted branch inG in a de-
terministic versioning case, whereas it can be arbitrary inthe un-
certain setting. In the model, formally an XML document is an
unordered3, unranked, andlabeledtreeT in which a nodex has a
unique identifierα(x) in I and a labelφ(x) in L with I ∩L = /0
(for brevity, we do not mention node identifiers when depicting ex-
ample trees). In addition, all trees considered share the same root
node (same label, same identifier). Given the set 2V of all sub-
sets ofV and the infinite setD of all XML trees, the mapping

3We leave the extension to ordered trees open as in [2].

Ω : 2V → D associates sets of events to versions ofTmv in such a
way that (a)Ω(/0) corresponds to the root-only XML tree ofD and;
(b) for all i, for all F ⊆ 2V \{ei}, Ω({ei}∪F) = [Ω(F)]∆i where
∆i is the script attached to the eventei and [Ω(F)]∆i its evalua-
tion over the documentΩ(F). A mappingΩ implicitly defines a
probability distribution over the set of versions, as detailed in [2].

We have just defined an abstract multi-version XML document
– we now provide a general and concise syntax for it, that has for
semantics such a multi-version document.

Probabilistic Encoding: Syntax and Semantics.We have
introduced in [2] a syntax̂Tmv for an uncertain multi-version XML
document, based on probabilistic XML [9]. Anuncertain multi-
version XML encodingT̂mv is defined by a pair(G ,P̂) where
(a) G is as before a DAG of events and; (b)̂P is aPrXML

fie p-
document with random variablesb1 . . .bm representing efficiently
all possible versions and their corresponding event sets. Formally,
thePrXML

fie p-documentP̂ is anunordered, unranked, and la-
beledtree where every node (except the root)x may be annotated
with anarbitrary propositional formula fie(x) over b1 . . .bm. Dif-
ferent nodes in the p-document can be correlated by the use ofcom-
mon variables. Avaluationν of the variablesb1 . . .bm is a Boolean
function that sets some variables totrue and the remaining tofalse.
This valuationν produces over̂P the particular XML document
ν(P̂), also known as apossible world, in which only nodes an-
notated with formulas valuated attrue by ν are kept (nodes whose
formulas are valuated tofalse by ν are deleted from the tree, along
with their descendants). The probability of this documentν(P̂) is
given by the sum of the probability of the valuations that yield the
document. For a more detailed picture of thePrXML

fie representa-
tion system, see [8,9].

The semantics of an encodinĝTmv, denotedJT̂mvK, is an uncer-
tain multi-version XML document(G ,Ω). The DAGG does not
change, whereasΩ is such thatΩ(F) := νF (P̂) for all F ⊆ V ,
whereνF is a valuation over variablesb1 . . .bm defined as follows.
Let B+

F
be the set of all random variables occurring in one of the

events ofF and setB−
F

the set of all revision variablesb(i)’s for ei

not in F . ThenνF sets variables ofB+
F

to true, variables ofB−
F

to false, and other variables to an arbitrary value. This semantics
remains non-ambiguous as long as formulas occurring inP̂ are ex-
pressed as formulas over the events ofV , i.e., do not make use of
the Boolean variables separately of the events.

Updates: Semantics and Evaluation.An edit script∆ is a
set of edit operation over XML nodes. An edit operation is either an
insertion or a deletion of nodes. Aninsertion is formally defined
as ins(i,x) with i the identifier of the node where the insertion
must take place andx the label of the new node to be added. As
for a deletion, it is introduced asdel(i) where i represents the
identifier of the node to remove. The evaluation of∆ over any XML
documentT produces the document[T]∆ by applying insertions
and deletions toT ; if no node is selected by a given insertion or
deletion, it is simply ignored.

An update operationis set up in the uncertain multi-version XML
framework asupdOP∆, e, e′ where∆ is an edit script,e is an actual
event pointing to the edited version ande′ is a fresh one assess-
ing the uncertainty in this update. Its semantics onTmv= (G ,Ω)
(i) updatesG to (G ∪ ({e′},{(e,e′)}) and; (ii) extendsΩ to Ω′

by letting for all F ⊆ V ∪{e′}: Ω′(F) := Ω(F) if e′ 6∈ F and
Ω′(F) := [Ω(F\{e′})]∆ otherwise. The translation of this seman-
tics on the general syntax̂Tmv= (G ,P̂) is done through an update
algorithm updPrXML that first modifiesG as before, and then it

evaluates operations in∆ over the p-document̂P as follows. This
is the usual implementation of updates in probabilistic XML[8]
and we show that this is compatible with the semantics of multi-
version encodings in [2].

• For an insertionu= ins(i,x) in ∆: fie(x) of x in P̂ is set to
fie(x)∨ (e′) if x already occurs in̂P; otherwise,u insertsx

in P̂ with fie(x) = e′.
• For a deletionu = del(i) in ∆: the nodex in P̂ such that

α(x) = i (if it exists) has its formulafie(x) updated tofie(x)∧
(¬e′).

EXAMPLE 3.1. Figure 1 shows an uncertain multi-version doc-
umentTmv with: (a) the version spaceG with four staged events;
(b) four event sets and associated versions; (c) the p-document
P̂ encoding all the possible versions based on staged events and
their attached edit scripts, resulting in formulas attached to nodes
(shown above each node). As a sketch,(e1 ∧¬e2) reveals thats1
was added at e1 and then removed at e2. The given four versions
are exactly those modeled by deterministic systems. In contrast,
the possible world mapping to{e1,e4} is only valid within our
framework. It occurs with the reject of the changes introduced by
event e2. Note that the probability of each possible version can be
evaluated based on event sets that map to it and their probabilities.

4. MERGE APPROACH
We detail in this section the translation of the usual XML merge

operation within our uncertain versioning model.
A merge operation considers a set of versions and integratestheir

content in a single new one. We view this outcome as obtained via
a three-way merge4, that is, an integration of the changes from the
inputs with respect to their common base version. We focus here
on merging two versions which is the most common case in real
applications. However, an extension ton> 2 versions is straight-
forward. In addition, we also assume that all the merged versions
are only originated from updates over the base versions, i.e., we do
not consider merging of versions with a different merge history –
this is again for the sake of clarity of the exposition.

The merge process usually implies two steps: a) an extraction of
the different sets of edit scripts that have led to the input versions
and; b) a generation of the merge result by evaluating a unified
set of the extracted edit scripts over the initial data. Thislast step
must deal with possible conflicting edits (for the definitionof con-
flicts, see next) due to concurrent changes (i.e., when two editors
independently changes the same piece of data). The resolution of
conflicts may yield several different content items for the merge.
As a result, each possible merge outcome is obtained by making a
choice between several possible edits. This naturally fits in the sys-
tem with uncertainty handling because in such a setting there is no
longer only one truth but several different possibilities,each with a
certain probability of validity.

We first present the process of computing the edit scripts to use
for the merge, as well as common merge scenarios. Then we intro-
duce the semantics of merging uncertain multi-version XML doc-
uments, as well as an efficient algorithm on the probabilistic XML
encoding.

4.1 Detection of Edits and Merge Scenarios
Assume an unordered XML document under version control.

Let us consider two arbitrary versionsT1 andT2, along with their
common lowest ancestorTa, of this.
4A three-way merge enables a better matching of nodes and detec-
tion of conflicts.

G)
e0

e1

e2 e3

e4

(a) Version space

T1) r

s1

p1

t1

T2) r

s2

T3) r

s1

p1

t1

p1

t′1

T4) r

s2

p2

t2

{e1} {e1, e2} {e1, e3} {e1, e2, e4}

(b) Four event sets and corresponding versions

P̂) r

s1

e1∧¬e2

p1

t1

p′1

e3

t′1

s2

e2

p2

e4

t2

(c) PrXML
fie p-document

Figure 1: Encoding of an uncertain multi-version XML document

4.1.1 Computation of Edit Scripts
We do not assume here given any explicit edit script. Instead

of this, we include edit detection as an integral part of the merge
process for the sake of generality. We define the edit script speci-
fying the merge of versionsT1 andT2 through the three-way diff
algorithmdiff3(T1,T2,Ta) on unordered trees with unique identi-
fiers for nodes. The algorithm will return a script with only node
inserts and deletes as edit operations. Like in [7], we set upour
diff3 based on the two-way diffsdiff2(Ta,T1) and diff2(Ta,T2)
as subroutines. These two-way functions separately compute two
intermediate edit scripts using the same process.

• diff2(Ta,T1) initially matches the nodes in treesTa andT1 in
order to find out the shared, deleted, and inserted nodes. Then, the
algorithm encodes the matches in terms of a set of node insertions
and deletions which evaluated onTa give T1. A nodex∈ Ta with
no match inT1 is deleted, whereas a nodey∈T1 with no match in
Ta is added. Let us denote this edit script by∆1.

• diff2(Ta,T2) follows the same process and provides the script
∆2 leading toT2 from Ta.

A more global edit script, referred as∆3, models the final value
of thediff3; ∆3 is obtained by mixing∆1 and∆2. We describe this
combination with three types of edits as follows.

Equivalent edits.An equivalenceoccurs between all edits in
∆1 and∆2 with the same semantics and the same arguments (same
identifiers and same labels). Specifically, two insertionsu2 ∈ ∆1
andu4 ∈ ∆2 are equivalent if they specify the same node identifier
and the same label to be added. As for deletions in∆1 and∆2, there
is an equivalence between two if these target the same node. Given
two equivalent edits, only one of the two operations is kept in ∆3.

Conflicting edits.Any two given operationsu2 ∈ ∆1, u4 ∈ ∆2
areconflicting editswhen they come with different semantics, i.e,
if u2 is an insertion, thenu4 is a deletion (and conversely), and the
insertion has added some new nodes as descendants of the node
that is removed with the delete operation. We introduce conflicted
edits in∆3 to be those satisfying the properties given above. Given
that, we refer to the set of all conflicting edits in∆3 with ∆C . We
say that a node handled by conflicted edits is aconflicted node.

Independent edits.Those edits in∆1 and∆2 that do not belong
to the two first classes. The set of equivalent and independent edits
form the non-conflictededits of a given diff algorithm. A node
impacted by a non-conflicted edit is anon-conflicted nodefor a
given merge operation. (Note that conflicted and non-conflicted
nodes together form the set of all nodes impacted by edit scripts in
∆3).

Now, let us briefly present the merging scenarios (cf. usual merge
options, especiallymine-conflictand theirs-conflict, in tools like
SubVersion[4]) usingdiffsandinput versions.

4.1.2 Deterministic Merge Scenarios

A large majority of current versioning models provide three
common merge scenarios that consider the resolution of possible
conflicts. Recall that in most cases, this resolution is manual, that
is, it requires user involvement. LetTm be the outcome of the
merge ofT1 andT2. We formalize the possible merge scenarios as
follows.

1. First, one would like to perform the merge based onT1 and
by updating this with the non-conflicted edits from∆2. For this
case, we haveTm = [T1]

∆2−∆C

.
2. The second scenario is symmetric to the first one: it considers

as a base versionT2 and fetches the non-conflicted edits from∆1.
For this case, we setTm = [T2]

∆1−∆C

.
3. Finally, the last case maps to the update of the common ver-

sionTa with the non-conflicted edits in∆3, that is, one would like
to reject all the conflicting edits in the merge outcome. For this
case, we setTm = [Ta]

∆3−∆C

.
It is straightforward to show that when∆C = /0, then we obtain
the same content for the three merge scenarios. This observation is
inherent to the computation of the edit scripts and the definition of
the merge outcome in each scenario. Observe that we do not deal
with the (intuitive and naive) merge case where the user corrects
the conflicting parts with new inputs. However, this case canbe
simply treated by first choosing one the three outcome above and
then by performing updates over this.

4.2 Merging Uncertain Multi-Version XML
We now introduce our abstraction of the merge operation (cov-

ering at least the set up of the merge scenarios above) withinthe
uncertain multi-version XML document model.

For sure, an uncertain context induces an inherent uncertain merge;
involved versions anddiffs come with uncertainties. LetTmv =
(G ,Ω) be an uncertain multi-version XML document withn staged
version control events. In addition, we consider̂Tmv= (G , P̂) as
the probabilistic XML encoding ofTmv. Recall again that each
version ofTmv is identified with a particular event inG , the one
representing the tail of the branch ofG leading to this version. We
reason on events instead of full versions since these are here uncer-
tain and can be defined in an arbitrary manner using events. This
section introduces the formalism of the merge operation over any
uncertain multi-version XML document and the mapping algorithm
over its probabilistic XML encoding.

4.2.1 Abstracting Uncertain Merge Operation
With the help of the triple(e1,e2,e′), we refer in our setting with

uncertainty to a merge operation asMRGe1,e2,e′ wheree1 ande2
point to the two versions to be merged ande′ is a new event assess-
ing the amount of uncertainty in the merge operation. We evaluate
the semantics of such a merge operation overTmv with uncertainty

as follows.

MRGe1,e2,e′(Tmv) := (G ∪ ({e′},{(e1,e
′),(e2,e

′)}), Ω′).

On the one hand, this evaluation inserts a new event and two
edges in the version spaceG . On the other hand, it generates a
new distributionΩ′ which represents an extension ofΩ with new
possible versions and event sets. LetAe1 andAe2 be the set of all
strict ancestor eventsin G of e1 ande2 respectively. We denote
the common set byAs = Ae1 ∩Ae2. For all subsetF ∈ 2V ∪{e′},
formally we set:

• if e′ 6∈ F : Ω′(F) := Ω(F);
• if {e1,e2,e′} ⊆ F : Ω′(F) := Ω(F \{e′});
• if {e1,e′} ⊆ F and e2 6∈ F : Ω′(F) := [Ω((F \ {e′}) \

(Ae2 \As))]
∆2−∆C

;
• if {e2,e′} ⊆ F and e1 6∈ F : Ω′(F) := [Ω((F \ {e′}) \

(Ae1 \As))]
∆1−∆C

;
• if {e1,e2} ∩ F = /0 ande′ ∈ F : Ω′(F) := [Ω((F \{e′})\

((Ae1 \As)∪ (Ae2 \As)))]
∆3−∆C

;
We consider the aforementioned edit scripts as all obtainedvia

thediff3 process sketched in Section 4.1.1. For each involved case,
the diff3 is executed on the (uncertain) arbitrary versionsT1 =
Ω((F \{e′}∩Ae1)∪{e1}) andT2 = Ω((F \{e′}∩Ae2)∪{e2}),
and Ta = Ω(F \ {e′} ∩As) whereF is the subset of events in
V ∪{e′} considered as valid.

EXAMPLE 4.1. Figure 2 describes the process of merging two
possible versions, denoted byT1 andT2, from Figure 1 given their
common baseTa. In our proposal, this operation is simply encom-
passed with the merge specified over events e3 and e4 which point
to the two input versions. On the left-hand side of the example,
we provide the versionsT1, T2 and Ta together with edit scripts
{u2,u4} and{u3} that led to them from the baseTa. Typically, we
view these scripts as given by diff functions outlined in Section 4.1.1
based on full versions. The right-hand side in Figure 2 explains the
process of mergingT1 andT2 (with the merge event e′ evaluating
the uncertainty in the merge) as follows: (i) First, all the edits in the
scripts above coming with no conflicts, i.e., here only u4 are vali-
dated for building the part of the merge (seen as an intermediate
outcome) that is certain with the existence of e′; (ii) Then, gener-
ating the set of possible merge items by enumerating the different
possibilities with the conflicting edits u2 and u3. The two initial
possible results are obtained by propagating respectivelyu2 and u3
given the intermediate outcome. Such a propagation will give in the
first case a merged version that only contains the sub-tree s2, and
in the second case a merged version with the sub-tree s1 (includ-
ing nodes p1 and p′1) in addition. Concretely, our merge approach
will compute the same merged documents by first considering the
input versionsT1 andT2, and then by updating these with the edits
without conflicts respectively from{u3} and{u2,u4}. Finally, the
last possible content for the merge is obtained by discarding all the
conflicting edits and by combining the concurrent nodes in the base
version with the intermediate result.

The uncertain merging operation as formalized above remains
however intractable since it requires to evaluate every possible ver-
sion for computing the overall merge result. Below, we propose a
more convenient way to do this merge.

4.2.2 Merging over Probabilistic XML Encoding
We efficiently present the semantics of the merge operation in

T̂mv as Algorithm 1, namelymergePrXML. Prior to a deeper de-
scription of the proposed algorithm, we start by introducing the

notion of conflicted nodesin thePrXML
fie probabilistic encoding

given the merge of eventse1 ande2.
The history of edits over any specific node in̂P is encoded with

its attached formula. We base on this for detecting the conflicted
nodes. Let us set the following valuations of events inG : (i) νs
setting the events inAs to true and the revision variables of all
other events tofalse; (ii) ν1 assigning atrue value to the events in
Ae1 ∪{e1} and afalse value to the revision variables of the other
events and finally; (iii)ν2 setting the events inAe2 ∪{e2} to true

and all the revision variables in the remaining events tofalse.
We first introduce the lineage of an uncertain node in thePrXML

fie

p-document.

DEFINITION 4.1. (Node lineage) The lineage formula of a given
node x∈ P̂ , denoted by fie↑(x), is the propositional formula re-
sulting from the conjunction of the formula of this node x with the
formulas attached to all its ancestor nodes in̂P .

Instead of its formula5, the lineage of a given node in the p-
document encodes the entire history of edits, starting fromthe ini-
tial event, over the path leading to this node. Given that, wecan
approach the conflicted nodes in the p-document using their lin-
eage formulas as follows.

DEFINITION 4.2. (Conflicted node) Under the general syntax
T̂mv, we say that a given x in̂P is a conflicted node with respect to
the merge implying the events e1 and e2 when its lineage satisfies
the following conditions:

1. fie↑(x) |= νs;
2. fie↑(x) 6|= ν1 (or fie↑(x) 6|= ν2) and;

3. ∃y∈ P̂ , desc(x, y): fie↑(y) 6|= νs and fie↑(y) |= ν2 (or fie↑(y)
|= ν1) wheredesc(x, y) means that y is a descendant of the
node x.

PROPOSITION 4.1. Definition 4.2 is consistent with the defini-
tion of conflicted nodes given in Section 4.1.1.

PROOF. (Sketch) Letx in P̂ be a conflicted node such that
1) fie↑(x) |= νs; 2) fie↑(x) 6|= ν1; 3) fie↑(y) 6|= νs andfie↑(y) |= ν2

with desc(x, y) true. The relation 1) yieldsx∈ νs(P̂) which is a
document corresponding to the common lowest ancestor of thever-
sionsν1(P̂) andν2(P̂). The relations 2) means thatx 6∈ ν1(P̂),
i.e., in the history of edits that gaveν1(P̂) from νs(P̂) there was
at least a deletionu2 over the nodex. This is implied by the way
updPrXML() proceeds. Besides that, 3) enables us to write in one
sidex ∈ ν2(P̂) sincey ∈ ν2(P̂) and on another sidey 6∈ νs(P̂).
As a result, in the history of edits that led toν2(P̂) from νs(P̂)
there was an insertionu4 which addedy as a child ofx. In other
words,u2 andu4 define two conflicted edits performed on the same
nodex.

A conflicted node inP̂ results in conflicting descendants. We
refer to the conflicted set of nodes in̂P according to the merge of
eventse1 ande2 as the restriction̂P|C{e1, e2}

. Under this, we infer
below the non-conflicted set of nodes.

DEFINITION 4.3. (Non-conflicted node) For the merge of events
e1 and e2, we define a non-conflicted node x as a node in̂P \

P̂|C{e1, e2}
having a formula fie(x) satisfying one of the following

conditions.

5The formula just describes the semantics of edits from the event
where the node was inserted for the fist time.

T1) r

s2

p2

t2

{e1,e2,e4}

r

s2

p2

t2

{e1,e2,e4,e′}

Ta) r

s1

p1

t1

{e1}

r

s2

p2

t2

{e′}

r

s1

p1

t1

p’1

t’1

s2

p2

t2

{e1,e3,e′}

T2) r

s1

p1

t1

p’1

t’1

{e1,e3}

r

s1

p1

t1

s2

p2

t2

{e1,e′}
a)Ta (common base);T1 andT2 (versions to merge); b) First, validatingu4 which does not have any conflict. Then,

{ u2, u4} and {u3} (edit scripts) resolving the conflict betweenu2 andu3.

u2 : Delete the subtree s1
u4 : Insert the subtree s2

u3 : Insert the subtree p′1
at the node s1

Merge
(event e’)

Pro
pagateu2

Propagateu3

Discardu
2 andu

3

Figure 2: Merge Operation: (a) Input versions and (b) Generation of Merge results

1. fie(x) |= νs, fie(x) 6|= ν1 and fie(x) 6|= ν2.
2. fie(x) 6|= νs, fie(x) |= ν1 and fie(x) |= ν2.
3. fie(x) |= νs, fie(x) |= ν1 and fie(x) 6|= ν2.
4. fie(x) |= νs, fie(x) 6|= ν1 and fie(x) |= ν2.
5. fie(x) 6|= νs, fie(x) |= ν1 and fie(x) 6|= ν2.
6. fie(x) 6|= νs, fie(x) 6|= ν1 and fie(x) |= ν2.

PROPOSITION 4.2. Definition 4.3 is consistent with the defini-
tion of non-conflicted nodes given in Section 4.1.1.

The proof is straightforward. To be exhaustive about non-conflicted
nodes, we infer the following lemma.

LEMMA 4.1. Let us assume the merge over events e1 and e2.
Given the setsFs ⊆As, F1 ⊆ (Ae1 ∪{e1})\As andF2 ⊆ (Ae2 ∪
{e2})\As, the expression of fie(x) for any non-conflicted node x∈

P̂ \P̂|C{e1, e2}
is consistent with one of the following formulas.

1.
(∧

ei∈Fs (ei)
)
∧¬

(∧
ej∈(F1∪F2)

(ej)
)

2.
(∧

ei∈F1
(ei)

)
∨
(∧

ej∈F2 (ej)
)

3.
((∧

ei∈Fs
(ei)

)
∨
(∧

ej∈F1 (ej)
))

∧¬
(∧

ek∈F2
(ek)

)

4.
((∧

ei∈Fs
(ei)

)
∧¬

(∧
ej∈F1 (ej)

))
∨
(∧

ek∈F2
(ek)

)

5.
(∧

ei∈F1
(ei)

)

6.
(∧

ei∈F2
(ei)

)

PROOF. The proof relies on Definition 4.3.

Let us continue this section by first describingmergePrXML, then
by demonstrating its correctness with respect to the abstraction of
the merge operation in Section 4.2.1.

Input: (G ,P̂), e1, e2, e′

Output: Merging Uncertain XML Versions in̂Tmv

G := G ∪ ({e′},{(e1,e′),(e2,e′)});
foreach non-conflicted node x in̂P \P̂|C{e1, e2}

do

replace(fie(x), e1, (e1∨e′));
replace(fie(x), e2, (e2∨e′));

return (G ,P̂)
Algorithm 1: Merge Algorithm (mergePrXML)

Algorithm 1 considers as inputs the probabilistic encoding(G ,P̂)
of an uncertain multi-version XML documentTmv, the eventse1
ande2 of G , and the new evente′ modeling both the merge con-
tent items and the amount of uncertainty in these. Given that,
mergePrXML first updatesG as specified in Section 4.2.1. Then,
the merge inP̂ will result in a slight change in formulas attached
to certain non-conflicting nodes in̂P \ P̂|C{e1, e2}

. The function
replace modifies such formulas by substituting all occurrences of
e1 ande2 by (e1 ∨e′) and (e2 ∨e′) respectively. The idea is that
each possible merge outcome, which occurs whene′ is valuated to
true regardless of the valuation of the other events, must come with
at least the non-conflicted nodes from̂P seen as valid withe1 and
e2. The remaining non-conflicted nodes, whose existence are inde-
pendent ofe1 ande2, will depend uniquely on the valuation of their
ancestor events in each given valid event set includinge′. At least,
the validity of a conflicting node in a merge result relies on the
probability of e1 ande2 when the event ise′ certain. If e′, together
with e1, are only valuated totrue, we say thate1 is moreprobable

thane2 for the merge; in this case, only conflicted nodes valid with
Ae1 ∪{e1} are chosen. The converse works in the same manner.
Any conflicted node will be rejected with a valuation settinge′ to
true and the revision variables in bothe1 ande2 to false.

Assume an uncertain multi-version XML documentTmv=(G ,Ω)

and the corresponding probabilistic XML encodinĝTmv= (G ,P̂).
In addition, let us defineJ.K as the semantics operator which, ap-
plied onT̂mv, yields its correct semanticsJT̂mvK = (G ,JP̂K) such
thatG is the same as inTmv andJP̂K defines the same probabil-
ity distribution over a subset of documents inD thanΩ. Given a
merge operationMRGe1,e2,e′ , we now show the main result of this
paper:

PROPOSITION 4.3. The definition of Algorithm 1 is correct with
respect to the semantics of the merge operation over the uncertain
multi-version XML document. In other words, the following dia-
gram commutes:

T̂mv JT̂mvK

T̂
′

mv JT̂ ′
mvK

J.K

mergePrXML

(e1,e2,e′)
MRGe1,e2,e′

J.K

PROOF. Assume:

{
MRGe1,e2,e′(JT̂mvK) = (G ′,Ω′)

T̂ ′
mv= (G ′,P̂ ′) andJT̂ ′

mvK = (G ′,Ω′′)

Seeing that we reach the same version space usingmergePrXML

is trivial. Now, we have to show that toΩ′ will correspondJP̂ ′K;
that is,Ω′ = Ω′′. Given each setF ⊆ V ′, five scenarios must be
checked for this equality.

1. For each subsetF such thate′ 6∈F , we haveΩ′(F)=Ω(F).
By definition, Ω(F) = ν(P̂) whereν is a valuation setting the
special revision variable ine′ to false and the other events to an
arbitrary value. Abstracting out the formulas, we can claimthat
P̂ ∼ P̂ ′ regardingmergePrXML. Sincee′ 6|= ν, the result of the
evaluation ofν over(e1∨e′) and(e2∨e′) (or their negation) only
depends on the truth values ofe1 ande2 respectively. Thus by re-
placing in formulas ofP̂ ′ all occurrences of(e1∨e′) and(e2∨e′)

by e1 ande2 respectively, we are sure to build a p-document̂P ′′

with ν(P̂ ′) = ν(P̂ ′′). But by the definition ofmergePrXML, P̂ ′′

is exactlyP̂ . As a result, we obtainν(P̂) = ν(P̂ ′). Knowing be-
forehand thatΩ′′(F) = ν(P̂ ′), we can state thatΩ′(F)=Ω′′(F)
for anyF ⊆ V ′ \{e′}.

2. For each subsetF such that{e1,e2,e′}∩F 6= /0, we have
Ω′(F) =Ω(F \{e′}). Let ν be a valuation setting all the events in
F \{e′} to true, the revision variable ine′ to an arbitrary value and
the revision variables in the remaining events tofalse. Sincee′ does
not occur in formulas in̂P , we can writeΩ(F \{e′}) = ν(P̂) for
sure. At this step, we resort to the logical consequences(e1 |=
ν) ⇒ ((e1 ∨ e′) |= ν) and (e2 |= ν) ⇒ ((e2 ∨ e′) |= ν) regardless
of the truth-value of the evente′. In the same way,(¬e1 6|= ν) ⇒
(¬(e1∨e′) 6|= ν) and(¬e2 6|= ν)⇒ (¬(e2∨e′) 6|= ν). Therefore, by
substituting in formulas of̂P ′ all occurrences of(e1∨e′) and(e2∨

e′) by e1 ande2 respectively, we obtain the old p-document̂P with
ν(P̂ ′) = ν(P̂) given the semantics ofmergePrXML. Moreover,
Ω′(F)= ν(P̂) becauseΩ′(F)=Ω(F \{e′}) andΩ(F \{e′})=

ν(P̂). So by inference, we can demonstrate thatΩ′(F) = Ω′′(F)

using the relationsΩ′(F) = ν(P̂), ν(P̂) = ν(P̂ ′) andν(P̂ ′) =
Ω′′(F) 6.

3. For each subsetF such that{e1,e′}∩F 6= /0 ande2 6∈ F ,
we haveΩ′(F) = [Ω((F \{e′})\ (Ae2 \As))]

∆2−∆C

. Let F+
1 =

((F \ {e′}) \ (Ae2 \As)) be the set of valid events excepting the
valid ancestor events ofe2 in F ∩ (Ae2 \As). For the valuationν
setting all the events inF+

1 to true and the revision variables in
the remaining events tofalse, Scenarios 1 and 2 enable us to write
ν(P̂) = Ω(F+

1) andν(P̂) = ν(P̂ ′). Now, we just need to show

that [ν(P̂ ′)]∆2−∆C

= ν ′(P̂ ′) (ν ′ being the valuation that sets all
the events inF to true and the revision variables in all others to
false) to obtain the expected proof, that is,Ω′(F) = Ω′′(F). Let
us set∆ = ∆2−∆C . We distinguish the two following cases.
(a) For the class of nodesx in ν(P̂ ′) unmodified by∆. That is,
x∈ ν(P̂ ′) andx∈ [ν(P̂ ′)]∆. For each nodex in this class,fie↑(x)

in P̂ ′ requires the trueness of events inF
+
1 sincex ∈ ν(P̂ ′).

Moreover, by the definition of∆, x may be either a conflicted node
or its existence is independent of the values of events in(F ∩(Ae2\
As))∪ {e2}). If x is a conflicted node, it is intuitive to see that
fie↑(x) in P̂ ′ is satisfied if events inF+

1 are all set totrue and
not if only those in(F ∩Ae2) are set totrue (cf. Definition 4.2.1
andupdPrXML). In the another case,fie↑(x) is only function of the
values of events inF+

1 for the setF (typically whenfie↑(x) is Ex-
pression 5 in Lemma 4.1 withF1 = F

+
1 ∩ ((Ae1 \As)∪ {e1})).

In both cases, we can state thatfie↑(x) |= ν ′ sinceν ′ similarly to ν
sets all the events inF+

1 to true. As a result, we havex∈ ν ′(P̂ ′)
whenx belongs to this class.
(b) For the class of nodesx ∈ ν(P̂ ′) handled with∆. Let x 6∈

[ν(P̂ ′)]∆, that is, there is an operationu in ∆ that removesx from
ν(P̂ ′). By the construction of∆, it is easy to show thatfie(x)

in P̂ maps to Expression 3 in Lemma 4.1 withFs = F
+
1 ∩As,

F1 =F
+
1 ∩((Ae1 \As)∪{e1}) andF2 =(F ∩(Ae2 \As))∪{e2}.

In P̂ ′, this formulafie(x) is just updated across Algorithm 1 by re-
placing the eventse1 (the disjunction) in the first member ande2 in
the second one respectively by(e1∨e′) and(e2∨e′). Sinceν ′ sets
all the events inF to true, therefore the first member offie(x) will
be valuated totrue while the second member will be valuated to
false. As a consequence, clearly we can state thatfie(x) 6|= ν ′, i.e.,
x 6∈ ν ′(P̂ ′). In summary, we proven that for each nodex in ν(P̂ ′)

deleted with∆, x is also not chosen byν ′ in ν ′(P̂ ′). Note that the
case wherex does not occur inν(P̂) is trivial and it corresponds
to a scenario in whichfie(x) maps to Expression 1 in Lemma 4.1
with Fs = F

+
1 ∩As, F1 = F

+
1 ∩ ((Ae1 \As)∪{e1}) andF2 =

(F ∩ (Ae2 \As))∪{e2}. Now, let x 6∈ ν(P̂ ′) andx ∈ [ν(P̂ ′)]∆.
That is, there is an insertionu in ∆ that adds the nodex as a child
of a nodey in ν(P̂ ′). Let F

+
2 = (F \ {e′}∩Ae2) be the set of

all valid ancestor events ofe2 in F . By the definition of∆, we can
state that the formulafie(x) of x in P̂ maps to Expression 4 or 6 in
Lemma 4.1 withFs = F

+
1 ∩As, F1 = F

+
1 ∩ ((Ae1 \As)∪{e1})

andF2 = (F ∩ (Ae2 \As))∪{e2}. If fie(x) is Expression 4, this

formula inP̂ ′ is updated by Algorithm 1 which replacese1 in the
first member (the conjunction) ande2 in the second member by
(e1∨e′) and(e2∨e′) respectively. Sinceν ′ sets all the events inF
to true, the first member offie(x) will be valuated tofalse. As for
the second member, it will be valuated totrue underν ′ because all
the events inF2 are set totrue and(e2∨e′) |= ν ′. As a result,ν ′

6The last relation is due by the fact that the eventse1 ande2 are
both valuated totrue.

will selectx in ν ′(P̂ ′) sincefie(x) is such thatfie(x) |= ν ′. Other-
wise, if fie(x) is Expression 6, it is updated in̂P ′ by mergePrXML
which substitutese2 by (e2∨e′). Given that it is straightforward to
prove thatfie(x) |= ν ′ since all the events inF2 are set totrue and
(e2∨e′) |= ν ′.
Scenarios (a) and (b) demonstrate that whenx ∈ [ν(P̂ ′)]∆, then
x ∈ ν ′(P̂ ′). Similarly, the converse can be reached. We con-
clude[ν(P̂ ′)]∆ = ν ′(P̂ ′) which joint with ν(P̂ ′) = Ω(F+

1) and

ν ′(P̂ ′) = Ω′′(F) yield [Ω(F+
1)]∆ = Ω′′(F). At last, the result

Ω′(F) = Ω′′(F) relies onΩ(F) = [Ω(F+
1)]∆.

4. For each subsetF such that{e2,e′}∩F 6= /0 ande1 6∈F , we
haveΩ′(F)= [Ω((F \{e′})∩(Ae2∪{e2}))]

∆1−∆C

. This scenario
is entirely symmetric to Scenario 3.

5. For each subsetF such that{e1,e2}∩F = /0 ande′ ∈F , we

haveΩ′(F) = [Ω((F \{e′})\ ((Ae1 \As)∪ (Ae2 \As)))]
∆3−∆C

.
Let setF ′ = (F \{e′})\ ((Ae1 \As)∪ (Ae2 \As)). Given a val-
uationν setting all the events inF ′ to true and the revision vari-
ables in all other events tofalse, we can writeΩ(F ′) = ν(P̂) and
ν(P̂) = ν(P̂ ′) according to Scenarios 1 and 2. Similarly to Sce-
nario 3, we have now to demonstrate that[ν(P̂ ′)]∆3−∆C

= ν ′(P̂ ′)
(whereν ′ is the valuation setting all the events inF to true and the
revision variables of all the remaining events tofalse) to obtain that
[Ω(F ′)]∆3−∆C

= ν ′(P̂ ′). This result will be sufficient for stating
thatΩ′(F) = Ω′′(F) since by definitionΩ′(F) = [Ω(F ′)]∆3−∆C

and ν ′(P̂ ′) = Ω′′(F). Let us consider∆ = ∆3 − ∆C . For the
proof, the intuition here is to see that by implementation∆ can be
rewritten as(∆1 − ∆C)∪ (∆2 − ∆C) on one side. So, if we ar-
rive to show that for all the nodesx, y such thatx∈ [ν(P̂ ′)]∆1−∆C

andy ∈ [ν(P̂ ′)]∆2−∆C

, thenx ∈ ν ′(P̂ ′) andy ∈ ν ′(P̂ ′), we can
trivially deduct that for each nodex ∈ [ν(P̂)]∆, thenx ∈ ν ′(P̂ ′).
These relations can be proven in the same spirit as in Scenario 3 by
just noting that:
(a) For the set of unmodified nodesx in ν(P̂ ′) with ∆, fie(x) in

P̂ is compatible to Expression 1 in Lemma 4.1 withF1 =
F ′∩As, F1=(F ∩(Ae1 \As))∪{e1}, andF1 =(F ∩(Ae2 \
As))∪{e2}.

(b) For the set of nodesx in ν(P̂ ′) handled with∆. If the operation
comes from(∆1−∆C), fie(x) is compatible to Expression 3 or
5 in case of insertions and this formula maps to Expression 4
for deletions. Concerning operations in(∆2 −∆C), fie(x) is
compatible to Expression 4 or 6 for insertions and to Expres-
sion 3 for deletions.

Furthermore, the inclusion in the opposite direction, thatis for
each nodex ∈ ν ′(P̂ ′), thenx ∈ [ν(P̂ ′)]∆, is obvious for nodes
unchanged by∆. For the other nodes, we only need to verify that
they are correctly handled by∆ in ν(P̂ ′) depending whether it cor-
responds to an addition or a deletion in this document. Following
that, we can state thatΩ′(F) = Ω′′(F) holds for each subsetF
of events inV that containse′ but note1 ande2.

We conclude by showing efficiency ofmergePrXML.

PROPOSITION 4.4. mergePrXML performs the merge over the
encoding of any uncertain multi-version XML document in time
proportional to the size of the formulas of nodes impacted bythe
updates in merged branches.

PROOF. (Sketch) The intuition behind the time complexity is
thatmergePrXML results in a constant-time update of DAGG , firstly.
Secondly, by viewingP̂ as an amortized hash table, the algo-
rithm retrieves any node impacted by a (non-conflicting) update in

constant time. Finally, thereplace method only depends on the
lengths of formulas.

5. CONCLUSION
We presented in this paper a merge operation, as well as an

efficient mapping algorithm, that supplements our uncertain multi-
version XML framework presented in [2]. The merging mecha-
nism proposed covers common deterministic XML merge scenar-
ios while managing uncertain data. Example applications include
the merging of documents in uncertain version control platforms
such as Wikipedia.

6. ACKNOWLEDGEMENTS
This work was partially supported by the Île-de-France regional

DROD project, and the French government under the STIC-Asia
program, CCIPX project. We would like to thank the anonymous
reviewers for their valuable suggestions on improving thispaper.

7. REFERENCES
[1] T. Abdessalem, M. L. Ba, and P. Senellart. A probabilistic

XML merging tool. InProc. EDBT, 2011.
[2] M. L. Ba, T. Abdessalem, and P. Senellart. Uncertain version

control in open collaborative editing of tree-structured
documents. InProc. DocEng, 2013.

[3] G. Cobena, T. Abdessalem, and Y. Hinnach. A comparative
study for XML change detection. InBDA, 2002.

[4] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato.
Version Control with Subversion. O’Reilly Media, 2008.

[5] J. Estublier. Software configuration management: A
Roadmap. InProc. ICSE, 2000.

[6] R. L. Fontaine. Merging XML files: A new approach
providing intelligent merge of XML data sets. InProc. XML
Europe, 2002.

[7] S. Khanna, K. Kunal, and B. C. Pierce. A formal
investigation of Diff3. InProc. FSTTCS, 2007.

[8] E. Kharlamov, W. Nutt, and P. Senellart. Updating
Probabilistic XML. InProc. Updates in XML, 2010.

[9] B. Kimelfeld and P. Senellart. Probabilistic XML: Models
and Complexity. InAdvances in Probabilistic Databases for
Uncertain Information Management. Springer-Verlag, 2013.

[10] T. Lindholm. A three-way merge for XML documents. In
Proc. DocEng, 2004.

[11] J. Ma, W. Liu, A. Hunter, and W. Zhang. An XML Based
Framework for Merging Incomplete and Inconsistent
Statistical Information from Clinical Trials. In Z. Ma and
L. Yan, editors,Software Computing in XML Data
Management. Springer-Verlag, 2010.

[12] L. Peters. Change detection in XML trees: a survey. InTSIT
Conference, 2005.

[13] N. Suzuki. A Structural Merging Algorithm for XML
Documents. InProc. ICWI, 2002.

	Introduction
	XML Merge Algorithms
	Uncertain Multi-version XML
	Merge Approach
	Detection of Edits and Merge Scenarios
	Computation of Edit Scripts
	Deterministic Merge Scenarios

	Merging Uncertain Multi-Version XML
	Abstracting Uncertain Merge Operation
	Merging over Probabilistic XML Encoding

	conclusion
	Acknowledgements
	References

